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Sequence Detection in Nonlinear Channels: A
Convenient Alternative to Analog Predistortion
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Abstract—A new maximum-likelihood sequence detection re-
ceiver for spectrally efficient linear modulations on bandlimited
bandpass nonlinear channels is proposed. The receiver is based on
oversampling the received signal corrupted by noise and nonlinear
distortion. Contrary to other solutions in the literature, in the pro-
posed technique there is no need for a bank of matched filters,
and the receiver front end reduces to a single lowpass filter. For
a given peak power level, a performance gain can be achieved over
more traditional approaches to transmission on nonlinear chan-
nels, such as those based on predistortion, if a moderate spectral
expansion is allowed. To analyze the receiver performance, the con-
cept of distance spectrum is employed, since the minimum distance
alone cannot account for a reliable performance evaluation. Both
analysis and simulation are carried out for realistic narrowband
nonlinear channels, possibly employing reduced-state sequence de-
tection. Appreciable gain margins are confirmed to be possible in
these realistic cases.

Index Terms—Distance spectrum, maximum-likelihood se-
quence detection, nonlinear channels.

I. INTRODUCTION

THE analysis and design of digital communication links
including nonlinear power amplifiers is a twofold, chal-

lenging task. On the practical side, many radio frequency (RF)
systems, such as satellite links or terrestrial radio links, force
the designer to search for power amplifiers matching the lin-
earity requirements on which the system design is based. This
task can involve a dramatic tradeoff that often leads to giving up
a fair amount of the available power, for the sake of a linear am-
plifier transfer characteristic. Moreover, nonlinear phenomena
arise also in physical transmission means other than radio chan-
nels, like the magnetic and the optical channels, employed for
data storage purposes. On the theoretical side, most of the ef-
forts in the literature have been devoted to techniques for elim-
inating or reducing the nonlinear distortions caused by high
power amplifiers, through the use of analog or digital predis-
tortion techniques, including [1]–[5], just to cite a few. Alter-
native approaches for compensating the nonlinear effects while
acting on the receiver were also studied, mainly in the field of
nonlinear equalization, among which was the pioneering work
presented in [6].
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The early work in [7], dealing with performance evaluation,
suggests that satellite nonlinearities cause little or no inherent
performance degradation which cannot be recovered by an ap-
propriate receiver design. More recent studies, devoted to per-
formance evaluation, state that in some cases the nonlinear per-
formance of an amplifier can be desirable in fading radio chan-
nels, the nonlinearity being able to reduce the time dispersion
of a linear channel [8]. Based on the idea of exploiting the full
available power through an appropriate optimal receiver, there
have been some works, among which are [9]–[11], which de-
vise receiver structures for performing maximum-likelihood se-
quence detection (MLSD). All these solutions share the feature
of a remarkable receiver complexity, especially in the analog
front end section. Based on a Volterra-series expansion of the
nonlinear channel, we devise a novel optimal receiver which
makes use of oversampling and the Viterbi algorithm to perform
MLSD. Though the joint use of Volterra series and the Viterbi
algorithm is not new, see, e.g., [10] and [12], we emphasize that,
contrary to these references, the proposed solution uses a much
simpler receiver front end with a single filter, instead of a bank
of filters. Moreover, the considered solution overcomes some of
the practical limitations of previously proposed receivers, and in
particular, is characterized by a state complexity which does not
depend on the order of the nonlinearity.

The original contribution of this paper is twofold: 1) to
propose a new optimal receiver structure operating on non-
linear time-dispersive channels fed by linearly modulated
data sequences, while keeping the receiver complexity afford-
able, especially in the more critical analog front end; 2) to
demonstrate, both by analysis and simulation, that the superior
potential of nonlinear high power devices can be exploited
against noise so that the attainable performance can justify
the employment of such a receiver, instead of a less cost- and
performance-effective analog predistorter. This paper expands
upon preliminary work reported in [13] and [14].

The paper is organized as follows. In Section II, we describe
the system model. Section III introduces the new MLSD re-
ceiver based on oversampling. Section IV presents an analysis
of error performance. Numerical results are given in Section V,
and conclusions are drawn in Section VI.

II. SYSTEM MODEL

We assume a bandpass nonlinear digital transmission system
whose baseband equivalent is shown in Fig. 1. A sequence of
independent and identically distributed (i.i.d.) complex symbols

linearly modulate a shaping pulse . The linearly modu-
lated signal is fed to a nonlinear power amplifier, denoted as
NL in the figure, which outputs the nonlinearly distorted signal
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Fig. 1. Baseband equivalent of a nonlinear system.

. This signal exhibits a bandwidth expansion effect caused
by the nonlinearity. The power spectrum of thus depends
on the nonlinear characteristic, and may, in general, undergo a
bandwidth limitation prior to the transmission on the physical
channel. The filter can be viewed as the cascade of an RF
filter that limits the bandwidth of the transmitted signal and a
physical channel filter. For brevity, we refer to as a channel
filter. The receiver observes a signal which is corrupted by
additive white Gaussian noise (AWGN) , which is the base-
band equivalent of bandpass noise with power spectral density

. The receiver, labeled REC in Fig. 1, will be designed in
order to provide a maximum-likelihood estimate of the
transmitted sequence.

This system model is of a rather general type, and its main
feature is the presence of a single nonlinear memoryless element
between a cascade of linear filters. Such systems have been ex-
tensively studied and one of the most common approaches to
their modeling is through the use of the Volterra kernels [15].
This approach is based on a polynomial expansion of the non-
linear characteristic acting upon the linearly modulated band-
pass signal of complex envelope . This polynomial expan-
sion, with coefficients , is also convenient because it maintains
a polynomial form when the nonlinear element is characterized
in terms of the baseband equivalents of its input and output sig-
nals, as shown in [16]. Referring to Fig. 1, the relationship be-
tween and can be expressed using a polynomial model
of order for the nonlinear element as follows:

(1)

It is well known that, thanks to the bandpass property, only the
odd-order terms of polynomial memoryless bandpass nonlinear-
ities appear in the above expression [12], [16]. In (1), it must
be assumed that the coefficients are complex in order to
justify both amplitude (AM/AM) and phase (AM/PM) distor-
tions; complex coefficients can be derived, for instance, from
the parallel model described in [17], which takes into account
both nonlinear distortion effects through the use of two real non-
linear elements in two parallel quadrature branches, the second
including a phase shift of 90 .

If a linear modulation format, such as -ary quadrature am-
plitude modulation ( -QAM), is assumed, the input signal to
the nonlinearity takes the general form

(2)

in which is the symbol interval. We can now rewrite (1)
making the dependence on the transmitted sequence explicit;

for the sake of simplicity, we assume a third-order, or cubic,
nonlinearity such that

(3)

where a superscript denotes complex conjugation. This ex-
pression can be easily extended to the general case and the
derivation that follows can be adapted by adding similar extra
terms of higher order. Since for our purposes is sufficient
to describe all the relevant concepts, a cubic nonlinearity is as-
sumed in the following.

The signal is now filtered by the linear system
which, in general, may limit its bandwidth. The received signal
is thus

(4)

where the following two functions have been used:

(5)

(6)

in which denotes convolution. The first, , is the impulse
response of the cascade of shaping and channel filters, or, in
general, the cascade of all the linear elements present in the
transmission channel. The second function may be
regarded as a third-order time-domain response of the channel:
it is indeed closely related to the third-order Volterra kernel of
the nonlinear transmission channel. If one wishes to describe
the channel through its Volterra kernels as in [15], the first- and
third-order kernels are found by simply multiplying and

by and , respectively.

III. MLSD RECEIVER STRUCTURE

The bandwidth expansion caused by the nonlinear element,
along with the bandlimiting effect of the channel filter ,
yields a noiseless signal whose one-sided
bandwidth can still exceed the signaling frequency . The
bandwidth of is, in general, times that of the shaping
pulse .

We assume that the noiseless signal component has a
one-sided bandwidth that obeys the following inequality:

(7)

with a properly chosen integer. The signal is passed
through a filter with frequency response that is nonzero
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Fig. 2. Optimal receiver structure.

over the bandwidth and strictly bandlimited to such that
the following condition is met:

(8)

Based on the results of [18] and [19], and in particular on the
reversibility principle, the set of samples obtained by sampling
the output of this filter with rate is a sufficient statistic for
the detection of the transmitted sequence . We then refer
to the receiver structure shown in Fig. 2, in which the only task
of the front-end filter with impulse response is to preserve
the useful spectral components of and limit the bandwidth
of the noise component. The samples , at the output of a
sampler which operates with period , are indexed by sub-
scripts , that scans the symbol period, and ,
that scans the samples extracted in the th symbol period. Pro-
vided the “oversampling factor” satisfies (8), the “observed”
sequence is a sufficient statistic and can be used by a
suitably designed sequence detector. This sequence detector can
be based on the Viterbi algorithm for searching a trellis diagram
with proper branch metrics. In Fig. 2, the corresponding Viterbi
processor (VP) is shown.

An expression for the observed samples is

(9)

where the following channel dispersion parameters are defined:

(10)

(11)

and are filtered noise samples. The parameters in (10)
are obtained by oversampling,1 with rate , the impulse re-
sponse of all the cascaded linear elements of the channel: ,

, and . Such an impulse response is thus the result of the
integral in (5), provided that is replaced by a function
which results from the cascade of channel and front-end filter:

. A similar statement can be made for the
third-order parameters in (11), which relate to the function in
(6). The reason for using the same symbols, and , in (5) and
(6), as well as in (10) and (11), is that a very simple choice for the
front-end filter can be always made. In fact, by assuming

to be constant in the signal bandwidth , the front-end
filter does not alter the noiseless signal and

1The superscript (�) in (10) and (11) emphasizes this oversampling.

results. By further assuming to have vestigial symmetry
around the frequency , uncorrelated noise samples
result. Even though these conditions are not strictly required for
an optimal processing, they simplify the sequence detection al-
gorithm. For this purpose, we can resort to a root-Nyquist filter
with a flat frequency response over the bandwidth , for which
the square modulus obeys the first Nyquist criterion for
the absence of intersymbol interference (ISI) with signaling fre-
quency . Among the various possibilities, the extensively
used root-raised-cosine filter will be assumed for the theoret-
ical study hereafter.

The computation of the channel dispersion parameters in
(10) and (11) can be easily carried out by means of the discrete
Fourier transform (DFT), noting that the frequency domain
equivalents of (5) and (6) are

(12)

(13)

where and denote monodimensional and three-dimen-
sional Fourier transforms, respectively. Replacing with

, the last two equations can account for
both the channel and receiver filters, whenever necessary. Given
the transfer functions of all the filters, an inverse DFT of the
above expressions with proper time spacing gives the desired
channel dispersion parameters.

Assuming has strictly finite duration , it can
be easily seen from (5) and (6) that the result of the integral
defining also vanishes when any of the time vari-
ables lies outside an interval of length . Thus, all
the summations in (9) extend over symbol intervals. As-
suming causality, the summation indexes in (9) extend from 0
to , being the dispersion length, or memory, of the channel.
Clearly, cannot have finite duration since it is bandwidth
limited. If it is approximately so, i.e., if has only a finite ef-
fective duration, then it is intuitive that the effective duration of

will also be practically limited to the same interval
for any of the time variables . This result was confirmed by nu-
merical computation of channel dispersion parameters for some
typical radio channels. We can then conclude that the summa-
tions for the nonlinear term in (9) extend over the same interval
as the summation which accounts for the linear term.

Maximum-likelihood detection of the transmitted sequence,
given the observation of the sequence of samples (9), requires
the maximization of the conditional probability density function

. The vector of observed samples , given any particular
transmitted sequence , has a multivariate Gaussian distribu-
tion, each sample depending on transmitted symbols and
having a conditional expected value equal to the noiseless part
of that same sample

(14)
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and a variance given by the variance of the noise samples

(15)

with depending both on noise power spectral density and
the receiver filter transfer function. If a receiver filter is chosen
according to the aforementioned criteria, these noise samples
are uncorrelated, then independent since they are Gaussian. As-
suming the transmission of a finite sequence of symbols,
the MLSD decision strategy is

(16)

Following the celebrated approach in [20], it is now easy to
define a recursive sequence metric

(17)

with incremental branch metrics

(18)

defined for each possible state transition at the th
symbol interval, where the state at time is defined in terms of
the previously transmitted symbols .
The search for the sequence satisfying (16) can now be per-
formed by means of the Viterbi algorithm that traces the evo-
lution of the path metrics in (17) on a trellis diagram with
states. The only difference with respect to the classical use of
the Viterbi algorithm for performing MLSD on a linear channel
lies in the definition of the branch metrics (18), which incor-
porate the nonlinear features of the transmission channel in the
reference branch labels . Also, reduced-state sequence de-
tection (RSSD) algorithms [28]–[30] can be adapted to the pro-
posed receiver structure, as will be done in Section V.

The number of trellis states grows exponentially with the
channel memory , where is the effective support of
the channel responses and , with respect to each
time variable. In a conventional linear system with baud-rate
sampling , a common approach is to design the filters so
that the overall pulse approximates a bandlimited Nyquist
pulse, i.e., for . In this case, the time discrete
equivalent channel may exhibit a drastically shorter memory, as
compared to the effective duration of the time continuous overall
pulse. On the other hand, the use of oversampling may result in
a memory comparable with the effective length of this pulse.
This effect must be regarded as an inherent feature of the over-
sampling front end and is not related to the presence of a non-
linear element. In fact, the channel memory would be the same if
the oversampling strategy were applied in a linear channel with
response . We note, however, that if the physical channel
response is strongly frequency selective, the effective du-
ration of is indeed a realistic measure of channel memory
for any sampling rate.

IV. ERROR PERFORMANCE ANALYSIS

A performance analysis of MLSD receivers can be based on
the classical approach described, for example, in [12] and [21].

Let an error event begin at time , and assume that the MLSD
receiver chooses a sequence when a different sequence is
transmitted. We define as the sequence of error
symbols entailed by the error event. Hence, the path chosen by
the receiver in the trellis diagram differs from the correct one by

state transitions, the first starting at time , where
is called the duration of the error event, and the error sequence

includes
nonzero error symbols (at most, ). The square

distance of the error event is defined as

(19)

where is the entire transmission period and the double sum-
mation extends only over the nonzero terms. Note that
the square distance is defined in terms of the time-continuous
noiseless signals entering the sampler in Fig. 2, but it
can also be computed in terms of the corresponding time-dis-
crete Nyquist-rate-sampled sequences defined in (14).2 Mini-
mizing over all possible sequence pairs, yields
the minimum distance .

The following upper and lower bounds to the symbol error
probability hold in the general case of a deterministic channel
affected by AWGN (e.g., see [21, eqs. (7.85) and (7.94)]):

(20)

(21)

where is the set of symbol sequences compatible with ,
i.e., those for which is an allowable symbol sequence, and

is the set of all symbol sequences minimizing the distance
for some error sequence. Since at moderate and high signal-to-
noise ratios (SNRs) the function rapidly decreases with the
distance, the upper bound (20) can be approximated by retaining
only terms exhibiting a minimum distance

(22)

where and denote the sets of error sequences and
corresponding information sequences with minimum distance,
respectively. Comparing the lower bound (21) and the approxi-
mate upper bound (22), it appears that they differ for multiplica-
tive constants only. Should these constants be equal or close,
(22) would represent a good estimate of the error probability at
high SNRs. In fact, these multiplicative constants are equal for
the nonlinear channels considered in the numerical results.

In a classical approach to performance analysis for linear
channels, (22) is considered a reliable approximation even at
moderate values of SNR [12], [20], [22]. The minimization of

with respect to both the estimated and transmitted se-
quence is a much more difficult task in a nonlinear channel than
in the linear case; nonetheless, it can be performed by means of
an algorithm, first proposed by Saxena [12], [23], that efficiently
scans all possible path pairs in the trellis diagram, searching for

2Recall that a signal-nondistorting receiver filter r(t) is assumed.
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Fig. 3. Histogram of the distance spectrum for the nonlinear channel
considered in Section V (d quantized in 100 contiguous intervals).

Fig. 4. Distance spectrum for the linearized channel considered in Section V.

the sequence pairs with the minimum distance . The reason
for the increased complexity in this search is due to the lack of
a uniform error property (UEP) that characterizes linear chan-
nels, for which the square distance only depends on the error
sequence .

The absence of UEP in nonlinear channels has significant im-
plications on the applicability of (22). It is better seen how (22)
is a poor approximation by introducing the distance spectrum

of the nonlinear channel and comparing it with a similar
spectrum of a linear channel obtained by perfect linearization.
For a given sequence length and channel, is defined as the
number of unordered sequence pairs having distance . Figs. 3
and 4 show examples of such spectra computed for the non-
linear channel considered at the beginning of Section V and its
linearized counterpart, respectively. As is immediately recog-
nized, for the same number of considered sequence pairs, the
spectrum of the linearized channel is concentrated on some dis-
crete values of the distance , which correspond to the few error
sequences most likely to occur. This is not the case for the non-
linear channel in Fig. 3, where for each value of the error se-
quence there is a variety of transmitted sequences which yield
different values for the distance and thus produce
a spreading effect on the distance spectrum. The spreading is
even more remarkable than what is visible in Fig. 3 since, for
the sake of visualization, the figure is a histogram obtained by
grouping the distance values in 100 contiguous intervals. In the
linear channel of Fig. 4, it is possible to neglect all the spectrum
lines, and the corresponding sequence pairs in (20), except the
leftmost, with distance . On the contrary, it is not possible
to do so in the nonlinear channel of Fig. 3, for which the dis-
tance spectrum shows a whole group of lines (the leftmost part
of the spectrum) with distances very close to , weighed
by a multiplicity much larger than and giving
significant contributions to (20).

It is also possible to rewrite the upper bound (20) by means of
the distance spectrum. This is accomplished by partitioning all
the pairs with respect to their distance. For every value of

appearing in the function of (20), if we assume the same
weight for all error sequences associated with distance ,
then and can be factored out of the double summa-
tion. This assumption is verified on most channels of practical
significance, such that the distance increases with the length of
the error event and the relevant weight. The channels considered
in the numerical results satisfy this assumption. For every value
of , the resulting double summation in (20) yields the proba-
bility of having pairs with this distance. This probability
is trivially the ratio between the distance spectrum and
the total number of unordered sequence pairs. For the sake
of computability, one has to restrict the calculation of the spec-
trum to sequence pairs of a maximum given length. This is not
a problem, since the distance increases with the error sequence
length and large distance values can be neglected. This max-
imum length is the same length used for computing the total
number of sequence pairs. The new truncated upper bound
then reads

(23)

where the summation extends to a maximum value of the dis-
tance , above which the decreasing contributions to the
summation can be neglected.

It is worth noting that the figures appearing on the vertical
axes of Figs. 3 and 4 are justified as follows: starting from
any of trellis states, an error sequence of length

and unit weight is assumed. One of the
error symbols is followed by correctly detected symbols. With

and as in Section V-A, the number of un-
ordered sequence pairs of length and unit weight is then

, equal to the sum of the dis-
tance spectrum discrete values.

In analogy with turbo codes [24], the multiplicity of pairwise
errors with minimum distance [the only ones considered in the
approximation (22)] is extremely small. These can be thought of
as the only pairwise errors occurring when the SNR is extremely
high and the symbol error rate (SER) is very low, where the two
approximations in (22) and (23) tend to coincide. At the error
rates of interest, error events with larger distance prevail, thus
increasing the slope of the error curve at higher SERs. The dra-
matic truncation involved in (22) makes this approximation, and
thus the significance of for estimating the system perfor-
mance, totally inadequate at the error rates of interest, as will be
demonstrated in the numerical results of the Section V.

V. NUMERICAL RESULTS

In this section, we consider two different configurations for
the transmission channel of Fig. 1, both employing a 16-QAM
symbol set. The first includes an ideal passband physical
channel filter with 100% excess bandwidth; the second in-
cludes a seven-pole Chebyshev RF filter with cutoff frequency

, equal to half the symbol rate. The latter choice accounts
for the necessity to contain the spectrum of the nonlinearly
amplified signal within an assigned bandwidth, thus avoiding
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(a)

(b)

Fig. 5. AM/AM and AM/PM curves for the nonlinear semiconductor HPA
considered in Section V-A and its fifth-order MMSE approximation; dashed
lines show the ideally predistorted transfer characteristics.

interference with possible adjacent channels. This spectrum is
not flat, in general, thus allowing the use of an RF filter with
wider band. The bandwidth is chosen as a worst case
option. While the Chebyshev filter is physically realizable,
its impulse response has a duration of several symbol periods
and reduced complexity detection algorithms, such as RSSD,
are needed in the receiver to limit the number of trellis states
[28]–[30].

The simulation results on the SER will be compared, for each
channel configuration, to the SER obtainable on a perfectly lin-
earized channel including the same linear filters, in which the
nonlinear block is replaced by a linear amplifier having an equal
peak power level, i.e., with a linear AM/AM curve reaching
the same peak level and an identically null AM/PM curve (see
Fig. 5). This approach corresponds to an ideal analog predis-
tortion of the nonlinear device, which could only be approxi-
mated in practice. The SER will be plotted versus the peak-en-
ergy-to-noise ratio , where is times the square of
the maximum value of the AM/AM curve of the amplifier.

The reason for comparing performance in terms of the peak
energy , instead of the average symbol or bit energy or

, is that only the quantity remains unchanged after the
ideal analog predistortion. As for predistortion, the choice of
fixing the peak transmitted power, instead of the average one,
reflects a pragmatic point of view; in fact, it is not possible to
linearize a device maintaining the same average output power
(thus a larger peak power) without the aid of some supplemental,
and possibly expensive, high-power device. With this choice,
the nonlinear block inherently outputs a greater average power
as compared to its predistorted counterpart with the same peak

power. As a consequence, a comparison versus is of no
practical interest, and the choice of is mandatory for a
meaningful comparison. In Section V-A, we provide equations
to relate and explicitly in the case of a linear
channel.

A. Ideal Wideband Nonlinear Channel

Referring to Fig. 1, the nonlinear amplifier considered in this
section will be based on data measured from a semiconductor
high-power amplifier (HPA). In Fig. 5 the nonlinear transfer
characteristics of this amplifier, labeled HPA, are shown using
dots for measured data, together with the interpolating fifth-
order polynomial nonlinear characteristics (solid line) having
minimum mean square error (MMSE) from the measured data.
Dashed lines show the transfer characteristics of a perfectly pre-
distorted HPA, maintaining the same peak power, with linear
AM/AM curve and identically null phase distortion (AM/PM).

The other elements of the transmission chain are a raised co-
sine shaping filter with rolloff factor and a gain
able to drive the NL element to full saturation; an ideal low-pass
channel filter without attenuation and one-sided bandwidth

(100% excess bandwidth). Being the one-sided band-
width of the noiseless received signal, an oversampling factor

is sufficient if an ideal low-pass receiver front-end filter
with unit gain and one-sided bandwidth is chosen.

Other choices with a smoother profile of are possible, as
outlined in Section III, but a larger results. The time-contin-
uous response of the channel is, of course, infinite; for the pur-
pose of receiver design, a truncation of the channel response is
adopted, neglecting all linear and nonlinear channel dispersion
parameters below 5% of their respective peak value [see (10)
and (11)]. Based on this approximation, a time-discrete channel
memory of symbols results for both parameters, thus re-
quiring a Viterbi processor with trellis states. The
truncation of channel memory implies neglecting some “tail ef-
fects” for each transmitted pulse.

Since the receiver is based on an approximate polynomial
model of the amplifier, the receiver is not strictly optimal for
the actual transmission channel. We also consider a reference
system in which the real amplifier characteristic is replaced by
its fifth-order approximation so that this receiver is optimal, in
this case; this permits us to check the degradation margin in-
volved in the polynomial approximation. In Fig. 6, the curve
labeled HPA plots the SER against the peak-energy-to-noise
power-spectral-density ratio for a system fed by the HPA
semiconductor nonlinearity, with the receiver of Section III (de-
signed on a fifth-order approximation of HPA). The curve la-
beled NL5 (nonlinearity of fifth-order) shows the performance
of a similar system, where the power amplifier HPA is substi-
tuted by its fifth-order approximation (solid curves of Fig. 5)
without altering the receiver, which is optimal in this case. The
curve labeled L (linearized) identifies a system in which the
HPA is perfectly predistorted, maintaining the same peak power
(dashed curves of Fig. 5), and the receiver with oversampling
of Section III operates in a degenerate mode, since there is not
any nonlinear contribution to the received signal . Actually,
since in this case is a linearly modulated 16-QAM signal
with normalized signal set and raised
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Fig. 6. Error performance and analytic approximations for the nonlinear
channels considered in Section V-A (HPA and NL5) and their perfectly
predistorted counterpart (L).

cosine pulse with rolloff and peak value , per-
formance is comparable with literature data, keeping in mind
that

(24)

as results from the integration of the squared raised cosine pulse;
then, choosing a rolloff factor , the following relation
in logarithmic scale results:

dB dB (25)

For the linear (L) and fifth-order approximation (NL5) con-
figurations in Fig. 6, the truncated upper bound (23) is also
shown, in excellent agreement with simulation results; whereas
the approximation in (21), labeled “lower bound” in the
figure, usually considered as a reliable estimate of SER [12],
[25], is totally inadequate for these channels at the error rates of
interest. The distance spectra of Figs. 3 and 4 have been used for
calculating the two kinds of approximations. The significance of

for the linear case is demonstrated by the tightness of the
truncated upper bound and the lower bound even at high
SERs. The better performance of the nonlinear channel can be
intuitively justified by noting that even if the minimum distance
of the nonlinear channel is lower, the center of mass of its dis-
tance spectrum is shifted to the right, with respect to the distance
spectrum of the corresponding linearized channel.

From Fig. 6, the advantage of full utilization of the HPA dy-
namic range is evident. The loss entailed in employing a polyno-
mial approximation of the HPA for the design of the receiver is
negligible, as could have been conjectured from Fig. 5. A sub-
stantial gain of roughly 2 dB, for , is achieved
thanks to the greater average energy per transmitted symbol that
the HPA is capable of delivering. Such an increased average en-
ergy is, on the other hand, responsible for the nonlinear distor-
tion of the received pulses; the use of a suitable receiver is thus
a key factor for efficiently exploiting the amplifier’s potential.

The onset of a degradation at low SERs due to the “tail ef-
fects” induced by channel memory truncation can be inferred
by the slight difference of the simulation curves with respect

(a)

(b)

Fig. 7. (a) AM/AM and (b) AM/PM curves for the nonlinear TWT considered
in Section V-A and its fifth-order MMSE approximation; dashed lines show the
ideally predistorted transfer characteristics.

to theoretical predictions. Even simulations in the linear case
suffer from such imperfections, since the same kind of receiver
was employed for this purpose.

The asymptotical behavior of the two systems can be pre-
dicted using the following theoretical approximations. When
noise approaches zero, the two truncated upper bounds (for
linear and nonlinear channel) tend eventually to cross, and the
ideally predistorted system performs better than the nonlinear
one. Such a result is implicit in the comparison of the previously
computed minimum distances, which become significant for
the performance prediction of both systems only at very high

ratios. This cross occurs at a SER of 10 , where
simulations cannot be performed.

In order to demonstrate the robustness of the proposed re-
ceiver with respect to strong phase distortions, a traveling wave
tube (TWT) amplifier is now considered in place of the semicon-
ductor HPA employed so far. The Saleh model [26] is adopted,
with an asymptotical phase shift of 30 , as shown in Fig. 7. The
nonlinear characteristics of the TWT are nevertheless operated
only up to the peak output power of the AM/AM curve, which is
produced by an input amplitude , and shows an AM/PM
distortion of roughly 15 , as shown in Fig. 7, thus three times
larger than the maximum phase distortion caused by the semi-
conductor HPA. Simulations show that TWT operation beyond
this point does not improve performance.

Fig. 8 shows the simulation results for such a system and its
perfectly predistorted counterpart. The curves labeled L coin-
cide, of course, with those labeled L in Fig. 6, since the abscissa

takes into account the remarkable difference in the peak
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Fig. 8. Error performance and analytic approximations for the nonlinear
channel considered in Section V-A (TWT) and its perfectly predistorted
counterpart (L).

output power of the two nonlinearities. It is noteworthy that the
curve relative to the TWT system almost coincides with that
of the HPA system of Fig. 6. This can be related to the rela-
tively similar profile of the AM/AM curves for the two ampli-
fiers, at least up to their peak point of utilization. This result
suggests that the AM/AM curve plays a dominant role in the
obtainable performance, whereas the AM/PM distortion is fully
recovered by the proposed receiver. The simulation results are
again in good agreement with the truncated upper bound ap-
proximations, computed on the respective distance spectra.

B. Narrowband Physical Channel

The main problem with the examined systems, which achieve
a gain of roughly 2 dB as shown in Section V-A, is the require-
ment of a large physical bandwidth, namely double the symbol
rate. In order to check whether a similar achievement is possible
in the presence of strict limitations to the available bandwidth,
an RF filter is inserted in the transmitter, cascaded to the previ-
ously described HPA amplifier.

The system under consideration consists of the same shaping
filter, the same HPA and the same ideal physical channel filter of
Section V-A, plus a seven-pole Chebyshev filter with passband
ripple amplitude dB.3 The (one-sided) cutoff fre-
quency is first chosen as in order to avoid distortions on
the linear signal component. The detection algorithm described
in the following yields a loss of roughly 0.5 dB with respect to
the ideal channel case of Section V-A, which has a cutoff fre-
quency equal to .

Since we wish to test the robustness of the receiver in
the presence of severe bandwidth limitations, a worst case
Chebyshev filter with cutoff frequency of is chosen.
This filter introduces distortion even on the linear part of the
transmitted signal spectrum, and exhibits an attenuation of
40 dB at an offset frequency from the carrier, thus
making the transmitted signal compliant even with spectral
emission masks having strict requirements. The disadvantage
of such a filter is that the total impulse response of the linear
filters of this system, , has a much greater duration than
in the wideband channel case. This is due to the passband

3The so called � factor is equal to 0.25 [27].

Fig. 9. Error performance for the nonlinear channel considered in Section V-B
(semiconductor HPA plus a Chebyshev seven-pole RF filter) and its perfectly
predistorted counterpart (L + RF).

ripples of the transfer function of the filter and, most of all,
to the small cutoff frequency. If the effective time-continuous
duration of is measured with respect to a threshold equal
to 5% of the peak value of , then a dispersion length
is obtained. To perform MLSD with full complexity with a
16-QAM modulation format, about 16 million states would
be needed . In this case, we can resort to RSSD
techniques [28]–[30], typically employed when the problem of
long channel memory is at hand.

A receiver similar to that described in Section III is employed,
with states, where is the reduced channel
memory considered in the definition of the trellis states. The
noiseless samples appearing in (18) are
the sum of two separate contributions, the first being recovered
from the state transition under consideration, which specifies
only the symbols , the second including the
cross contributions that would appear in (14) when any of the
summation indexes extends beyond . The interfering symbols
are in this case recovered from the trellis memory according
to per-survivor processing [31]. The receiver is still based on
a fifth-order approximation of the HPA. The cross contribu-
tions are then of three kinds (first-, third-, and fifth-order) and
their number is extremely high. By considering only linear and
nonlinear channel dispersion coefficients whose value is above
2% of their respective peak value, an affordable complexity is
achieved while, again, introducing a truncation of the channel
memory.

Fig. 9 shows the receiver performance for the considered nar-
rowband nonlinear channel with semiconductor HPA. Again,
performance is compared with a perfect analog predistortion ap-
proach, maintaining the same peak output power from the HPA.
The gain margin in this worst case is reduced to 1 dB only, due
to the severe approximations involved not only in the HPA poly-
nomial representation, but also in channel memory truncation,
for the sake of a simple receiver design. Gain margins obtain-
able by relaxing the strict worst-case condition on the RF filter
bandwidth are, of course, larger.

The same RSSD approach has been applied to the wideband
channel considered in Section V-A. Given a channel memory of
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, in that case, a simplified receiver considering a reduced
channel memory of symbol, and thus using a trellis with
only 16 states, yields a loss of only 0.2 dB with respect to the
curve labeled HPA, shown in Fig. 6.

VI. CONCLUSIONS

The design of a near optimal receiver for linearly modulated
data sequences transmitted on nonlinear radio channels has been
pursued in this paper. The use of a suitable front-end analog
filter and signal oversampling renders the sequence of samples
a sufficient statistic for performing MLSD, through the use of
a VP. This solution is of practical interest, since only a modifi-
cation of the constants appearing in the definition of the branch
metrics is needed, without any modification in the structure of
the processor.

The error performance of this MLSD receiver has been
analyzed. An approximation to the symbol error probability
through the use of the minimum distance has been shown to be
inadequate for nonlinear channels. An enhanced approximation
has been considered, based on the use of the full distance
spectrum, showing that the lack of a uniform error property
produces a spreading effect in the distance spectrum for
nonlinear channels.

The performance of the proposed receiver has been com-
pared, in terms of SER, with respect to that obtainable by em-
ploying perfect analog predistortion (which is in practice not
feasible) of the nonlinear element, while maintaining its peak
output power. For an ideal wideband physical channel, a gain
of 2 dB has been achieved by the proposed MLSD receiver,
both for a semiconductor HPA and a TWT, showing that the
receiver is able to compensate for both phase and amplitude
distortions. Simulations also demonstrated the adequacy of the
proposed approximation of the error probability, as opposed to
the little significance of the minimum distance approximation.
An RF Chebyshev filter with worst case narrowband has been
cascaded to the nonlinear amplifier. Using RSSD algorithms re-
sulted in a lower, but still appreciable, gain margin.
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