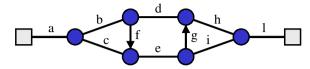


Soluzioni esercizi Parte I

Luca Veltri

(mail.to: luca.veltri@unipr.it)


Corso di Reti di Telecomunicazione, a.a. 2011/2012 http://www.tlc.unipr.it/veltri

Soluz. esercizi Reti TLC parte I

Esercizio 1.1 (soluz.)

• 1) Etichettando i rami della rete come in figura

è possibile individuare i seguenti 5 cammini privi di cicli (loop):

- > a-b-d-h-l
- > a-b-f-e-g-h-l
- > a-b-f-e-i-l
- > a-c-e-g-h-l
- > a-c-e-i-l
- 2) il nmu min di tagli è 2 (e.g. i rami "c" e "b")

2

Soluz. esercizi Reti TLC parte I

Esercizio 1.2 (soluz.)

• 1) maglia completa

- 2) stella con i soli 4 nodi
 - > le due topologie sono equivalenti

3

• 2bis) stella con un ulteriore nodo centrale

Soluz. esercizi Reti TLC parte I

Esercizio 1.3 (soluz.)

- $T_{TOT} = L/C_1 + d_1/v_0 + T_{elab} + L/C_2 + d_2/v_0 + T_{elab} + L/C_3 + d_3/v_0$
- 1) con:
 - > L= 500B=4000b
 - > C1=C2=C3=100Mb/s
 - \rightarrow d_{TOT}=d1+d2+d3=400m
 - ➤ T_{elab}= 2ms

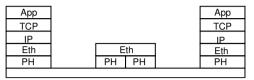
$$T_{TOT} = 3 L/C_1 + 2 T_{elab} + d_{TOT}/v_0$$

 $T_{TOT} = 4,122 ms$

- 2) con:
 - > C1=C3=1Mb/s e C2=10Mb/s

$$T_{TOT} = 2 L/C_1 + L/C_2 + 2 T_{elab} + d_{TOT}/v_0$$

 $T_{TOT} = 12,402 \text{ ms}$


Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Esercizio 1.4 (soluz.)

- $T_{TOT} = 2 L/C_1 + L/C_3 + L/C_4 + 3 T_{elab} + 4d_1/c_0$
- $T_{TOT} = 8x10^{-5}s + 4x10^{-4}s + 4x10^{-3}s + 3x10^{-3}s + 4x10^{-4}s$
- $T_{TOT} = 7,88 \text{ ms}$

Esercizio 2.1 (soluz.)

• 1) architettura protocollare della comunicazione tra H1 e H2

- 2) numero complessivo di UI inviate a livello PH
 - MTU a livello App = AppMTU = EthMTU L_{IPH} L_{TCPH} L_{AppH} = 1500B 40B = 1460B
 - > numero di UI: 5000B div 1460B = \[5000/1460 \] = 4

3) dimensione e formato UI

> 3x Ul di 1460B+58B=1518B : | 18B | 20B | 20B | 1460B | 1460

5

Soluz. esercizi Reti TLC parte I

Soluz. esercizi Reti TLC parte I

6

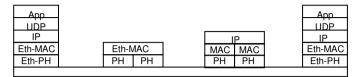
- 4) tempo necessario a H1 per trasmettere tutte le UI (tempo totale di trasmissione)
 - $T_{Tx} = 3 \times (1518B / (1Mb/s)) + 1 \times (678B / (1Mb/s)) = (3x1518B + 678B)/(1Mb/s) = (5000B + 4x58B)/(1Mb/s) = (5232x8b)/(1Mb/s) = 41856 \mu s = 41.856 ms$
- 3) coefficiente di utilizzazione del collegamento a livello PH, calcolato come quota parte dei bit utili rispetto a bit totali inviati
 - $\rho = 5000 / 5232 = 0.956$

Esercizio 2.2 (soluz.)

 1) Eth-PDU = Eth-PCI + IP-PCI + UDP-PCI + App-PDU ovvero, con altra notazione:

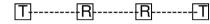
- 2) overhead introdotto per singolo pacchetto:
 - > (overhead)/(tot) = 46/206 = 22,33%
 - > (overhead)/(userdata) = 46/160 = 28,75%
- 3) bit rate medio a tra Eth-MAC e Eth-PH:
 - > 206B / 20ms = 82,4kb/s

Esercizio 2.3 (soluz.)


 1) rappresentare l'architettura protocollare complessiva della comunicazione

Арр			Арр
UDP			UDP
IP			IP
Eth-MAC	Eth-N	/AC	Eth-MAC
Eth-PH	PH	PH	Eth-PH

- 2) tempo di ritardo end-to-end per il trasferimento delle UI dati
 - $ightharpoonup T_{TOT} = 2 L_{Eth-PDU} / (100Mb/s) + T_{elab} + 2 d / (200000Km/s)$
 - $T_{TOT} = 6,176 \ 10^{-5} s + 2 \ 10^{-6} s + 1 \ 10^{-6} s = 64,76 \mu s$
- 3) throughput (carico) medio a livello IP
 - ightharpoonup L_{IP-PDII} = 320+12+8+20 B = 360B
 - ightharpoonup TH_{IP} = (360x8bit)/20ms = 144kb/s


Esercizio 2.4 (soluz.)

Architettura di comunicazione tra T1 e T4

Esercizio 2.5 (soluz.)

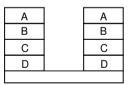
 NON è presente nessun collegamento tra entità alla pari (stesso tipo) che corrisponde alla seguente topologia (la terza):

10

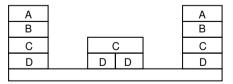
Università degli Studi di Parma
Dipartimento di Ingegneria dell'Informazione

Soluz. esercizi Reti TLC parte I

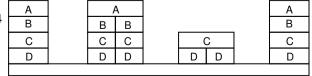
9


11

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione


Soluz, esercizi Reti TLC parte I

Esercizio 2.6 (soluz.)


• S1 -- S3

• S1 -- S3 -- S4

• s1 -- S2 -- S3 -- S4

Esercizio 2.7 (soluz.)

- A livello (A) vengono inviate 3 PDU controllo, 5 PDU dati e 2 PDU controllo
- ogni A-PDU viene incapsulata in una B-PDU in C-PDU per un totale di 20B+20B+10B=50B di PCI
- per un totale di
 - > 50B x 3 + (50B+800B) x 5 + 50B x 2 = 50B x 10 + 800 x 5 = 4500B
- 1) numero UI scambiate a livello C tra T1 e R:
 - > 10 UI
- 2) grado di utilizzazione:
 - > 4000B/4500B = 0,889

Esercizio 2.8 (soluz.)

- A livello (A) vengono inviate 3 PDU controllo, 5 PDU dati e 2 PDU controllo
- ogni A-PDU di controllo viene incapsulata in una B-PDU e in una C-PDU per un totale di 20B+20B+10B=50B
- ogni A-PDU dati viene incapsulata in due B-PDU per un totale di:
 - > A-PDU1 --> (460B+20B)+20B+10B=510B
 - > A-PDU2 --> 340B+20B+10=370B
- per un totale di
 - \gt 50B x 3 + (510B+370B) x 5 + 50B x 2 = 4650B
- 1) numero UI scambiate a livello C tra T1 e R:
 - > 15 UI
- 2) grado di utilizzazione:
 - \geq 4000B/4650B = 0.86

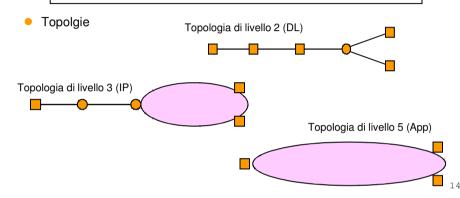
Soluz, esercizi Reti TLC parte I

Esercizio 2.10 (soluz.)

- $T_{TOT} = T_{TX1} + T_{p1} + T_{R} + T_{TX2} + T_{p2} + T_{R} + T_{TX3} + T_{p3} + T_{SW} + T_{TX4} + T_{p4} =$ $= T_{TX TOT} + T_{p TOT} + 2T_{R} + T_{SW}$
- con

 $T_{TX TOT} = L_{DPH-PDU}/C_{Dialup} + 3 L_{EPH-PDU}/C_{ethernet} = (560 \cdot 8/2 \cdot 10^5) sec + 3(570 \cdot 8/10^8) sec$ = 22,4ms + 0,1368ms $T_{p,TOT} = 2400 \text{m}/(2.10^8 \text{m/s}) = 0.012 \text{ms}$

quindi


$$T_{TOT} = 27,5488$$
ms

Esercizio 2.9 (soluz.)

Architettura di comunicazione tra H1 e H2

Soluz, esercizi Reti TLC parte I

Esercizio 2.11 (soluz.)

 Nell'ipotesi di indipendenza statistica degli eventi di bit errato all'interno dello stesso pacchetto, si ha:

Pr{pacchetto errato} = 1 - Pr{pacchetto corretto} =

- = 1 (Pr{bit corretto}) L_{PH-PDU} = 1 (1 Pr{bit errato}) L_{PH-PDU}
- Nel caso di ramo di Dialup:
 - Arr Pr{pacchetto errato} = P1 = 1 (1-10⁻³)^{560 x 8} = 0,9887
- Nel caso di ramo di Ethernet:
 - Arr Pr{pacchetto errato} = P2 = 1 $(1-10^{-5})^{570 \times 8}$ = 0.0446
- Supponendo che sia trascurabile la probabilità di falso positivo (errore sul pacchetto non rilevato), si ha:
 - Pr{pacchetto scartato tra H1 e H2} =
 - = P1 + (1-P1)P2 + (1-P1)(1-P2)P2 + (1-P1)(1-P2)(1-P2)P2 =
 - = 1 (Pr{pacchetto corretto tra H1 e H2}) = 1 (1-P1)(1-P2)³

Esercizio 4.1 (soluz.)

• 1) Trama inviata dal protocollo SLIP (SLIP-PDU) verso l'entità remota (e consegnata allo strato PH):

192 11 12 9 200 219 221 219 221 220 219 220 14 7 192

• 2) SLIP-SDU consegnata allo strato superiore

5 6 220 219 192 220

Esercizio 4.2 (soluz.)

• 1) Effettiva sequenza di bit passati allo strato PH

2) UI estratta

1111111

17

18

Soluz. esercizi Reti TLC parte I

Soluz. esercizi Reti TLC parte I

Esercizio 4.3 (soluz.)

- 1) Circuiti virtuali già instaurati:
 - \triangleright B \rightarrow E
 - \triangleright B \rightarrow D
 - \triangleright C \rightarrow D
 - > 2) Routing table con la nuova connessione C → E:

Routing Table M				
IN		01	UT	
Link	VCI	Link	VCI	
1	a	3	b	
2	a	3	С	
1	b	3	a	
2.	C	3	d	

F	Routing Table H					
I	IN		UT			
Link	VCI	Link	VCI			
2	С	3	d			
2	a	3	с			
2	b	3	b			
2	d	3	я			

I	Routing Table L				
I	N	01	UT		
Link	VCI	Link	VCI		
1	b	3	d		
1	d	2	a		
1	С	2	d		
1	a	3	b		

Esercizio 4.4 (soluz.)

• 1) VC (Circuiti Virtuali) correttamente instaurati:

 \rightarrow B \rightarrow D (ovvero: B \rightarrow SW1 \rightarrow SW3 \rightarrow SW2 \rightarrow D)

ightharpoonup B
ightharpoonup E (ovvero: B
ightharpoonup SW1
ightharpoonup SW3
ightharpoonup E)

• 2) Errori commessi in fase di configurazione:

Sw	Switching Table SW1				
II	IN		UT		
Link	VCI	Link-	→ VCI		
1	25	/ 3	8		
2	25	3	8.		
2	33	4	- 8		
2	19	4	17		

	Sw	itching	Table SV	W2
	IN		OUT	
L	ink	VCI	Link	VCI
	4 _	_ 8	3	20
/	1	8	2	42
	1	8 /	3	16
•	-			

Sw	W3		
IN		OUT	
Link	VCI	Link	VCI
1	8	3	16
1	17	2	8

> Errore: scelto medesimo VCI su medesimo link per 2 differenti VC

Esercizio 4.5 (soluz.)

Switching Table G				
I	N	OUT		
Link	VCI	Link	VCI	
1	a	3	a	
1	b	3	b	
2	a	3	c	
2	b	3	d	

Switching Table H					
I	N	01	UT		
Link	VCI	Link	VCI		
1	a	3	a		
1	b	2	a		
1	c	3	b		
1	d	2	b		
- 2		- 2			

Switching Table L				
IN		OUT		
Link	VCI	Link	VCI	
1	a	3	a	
1	b	2	a	
1	c	3	b	

Esercizio 4.6 (soluz.)

 1) Tempo complessivo necessario per inviare una UI e ricevere il riscontro

- 2) Grado di utilizzazione massimo del canale di comunicazione
 - > valore max in assenza di errori (e di ritrasmissioni)

$$\triangleright \rho = Tu/T1 = Tu / (Tu + Ta + 2Tp)$$

$$\rho = 1/(2+2Tp/Tu)$$

$$ightarrow$$
 se Tu>>Tp, $ho
ightarrow 1/2$

> se Tu << Tp,
$$\rho \rightarrow 0$$

$$\triangleright \rho = 1/(1+2Tp/Tu)$$

> se Tu>>Tp,
$$\rho \rightarrow 1$$

> se Tu << Tp,
$$\rho \rightarrow 0$$

Università degli Studi di Parma

22

Soluz. esercizi Reti TLC parte I

21

Esercizio 4.8 (soluz.)

Dipartimento di Ingegneria dell'Informazione

Esercizio 4.7 (soluz.)

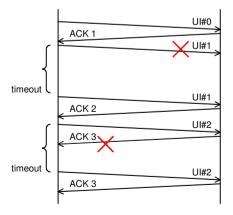
 1) Numero medio di tentativi per inviare una UI e ricevere il riscontro correttamente

> a = numero di tentativi

$$P_{a}(1) = Pr\{a=1\} = 1-p$$

$$P_a(2) = p(1-p)$$

$$P_a(k) = p^{k-1}(1-p)$$


 \rightarrow valore medio di a = E{a} = $\sum k p^{k-1}(1-p) = (1-p) \sum k p^{k-1} =$

= (1-p)
$$\sum d(p^k)/dp$$
 = (1-p) d ($\sum p^k$)/dp = (1-p) d (1/(1-p))/dp = = (1-p) / (1-p)^2 = 1/(1-p)

> tempo medio per inviare una UI = E{T} = E{a}T1 = (Tu+ta+2Tp)/(1-p)

• 2) Grado di utilizzazione medio del canale di comunicazione

$$ightharpoonup
ho = Tu / E\{T\} = (1-p)Tu/T1$$

Esercizio 4.9 (soluz.)

- \bullet Tempo complessivo necessario per inviare N UI consecutive e correttamente riscontrate, nel caso che N < W $_{\rm T}$
 - $T_N = N Tu + 2Tp + Ta = (N-1)Tu + T1$

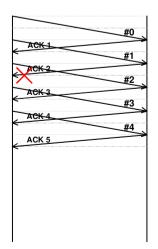
Esercizio 4.10 (soluz.)

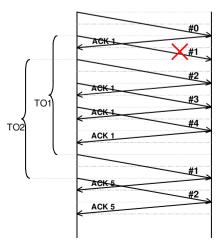
- Tempo complessivo necessario per inviare le N UI (e riceverne riscontro positivo):
 - > tempo impiegato per trasmettere una UI = Tu
 - > tempo impiegato per trasmettere 3 (W_x=3) UI = 3 Tu
 - > tempo impiegato per inviare prima UI e ricevere primo ACK = T1 = Tu + Ta + 2Tp = 6Tu
 - > tempo impiegato per trasmettere quarta UI = Tu
 - > tempo impiegato per trasmettere quinta (e ultima) UI e ricevere relativo ACK = T1
 - > tempo complessivo = T1 + Tu +T1 = 13Tu
- In generale (per gualsiasi valore di W_{τ} e N), è possibile ricavare che:
 - > se T1 ≤ W_TTu:
 - T = (N-1)Tu+T1
 - > se T1 ≥ W_TTu:
 - $T = ((N-1) \text{ div } W_T)T1 + ((N-1) \text{ mod } W_T))Tu + T1 = T1(1 + ((N-1) \text{ div } W_T)) + Tu((N-1) \text{ mod } W_T))$ con:
 - x div y = int(x/y) = parte intera di x/y x mod y = resto della divisione x/y
- Se W_T=3, N=5, T1=6Tu, si ha:
 - > T = 2T1 + Tu = 13Tu

26

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Soluz. esercizi Reti TLC parte I


25


Soluz. esercizi Reti TLC parte I

Esercizio 4.11 (soluz.)

 1) Diagramma completo dei messaggi scambiati tra i nodi A e B nell'ipotesi che si perda (o arrivi errata) l'ACK relativo alla seconda UI

 2) Diagramma completo dei messaggi scambiati tra i nodi A e B nell'ipotesi che si perda (o arrivi errata a destinazione) la seconda UI

Esercizio 4.12 (soluz.)

- L'operazione di stuffing aumenta di 1 la lunghezza di ogni occorrenza di A o di C; quindi dopo l'operazione di stuffing un carattere generico avrà lunghezza L1=
 - 1, con probabilità 254/256=1-2p
 - 2, con probabilità 2/256=2p
 - dove p=1/256 è la probabilità di occorenza dei singoli caratteri (e quindi anche di A e C)
- Da cui si ottiene il valore medio di L1:
 - \triangleright E{L1} = 1(1-2p)+2*2p = 1+2p
- Data una UI di lunghezza L, dopo l'operazione di stuffing il valore medio della sua lunghezza è:
 - ightharpoonup L' = 2 + L(1+2p)
- Mediando sulla lunghezza L si ha:
 - \triangleright E{L'} = E{ 2+L(1+2p)} = 2 + L_m(1+2p)
- Con un overhead totale rispetto alla lunghezza originaria:

$$\rightarrow$$
 OH = $(2+L_m (1+2p) - L_m)/L_m = (2+L_m 2p)/L_m$

Esercizio 4.13 (soluz.)

RT-R1	
Dest.	Next Hop
T1	T1
T2	R4
Т3	R2
T4	R2

RT-R2	
Dest.	Next Hop
T1	R1
T2	R4
T3	R3
T4	R3

/RT-R3\		
Dest.	Next Hop	
T1	R2	
T2	R2	
T3	T3	
T4	R5	

RT-T1	
Dest.	Next Hop
T1	-
T2	R1
T3	R1
T4	R1

30

Soluz. esercizi Reti TLC parte I

29

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Soluz. esercizi Reti TLC parte I

Esercizio 4.14 (soluz.)

RT-SW1			
Dest.	Output		
Α	1		
В	1		
С	3		
D	2		
E	2		

RT-SW2			
Dest.	Output		
Α	1		
В	1		
C	1		
D	2		
E	2		

Esercizio 4.15 (soluz.)

• Tabelle di istradamento di R1, R2 e R3:

RT-R1	
Dest.	Next Hop
Α	-
В	-
С	R2
D	R2
E	R2

/RT-R2\		
Dest.	Next Hop	
Α	R1	
В	-	
С	-	
D	R3	
E	R3	

/RT-R3\	
Dest.	Next Hop
Α	R2
В	R2
С	-
D	-
Ε	-

Oppure, nel caso sia possibile identificare l'unione di più reti con un unico identificativo:

RT-R1	
Dest.	Next Hop
Α	-
В	-
C+D+E	R2

RT-R2	
Dest.	Next Hop
Α	R1
В	-
С	-
D+E	R3

RT-R3	
Dest.	Next Hop
A+B	R2
С	-
D	-
Е	-

Esercizio 4.16 (soluz.)

- VCI della connessione B→C [B-SW1-SW2-C] = a,a,b
- Tabelle di switching:

∕ RT-SW1∖				
Inp	ut	Output		
Interf.	VCI	Interf.	VCI	
1 1 2	a b a	3 4 3	b b	

RT-SW3					
Inc	out	Output			
Interf.	VCI	Interf.	VCI		
1	b	2	С		

/ RT-SW2 \			
Input		Output	
Interf.	VCI	Interf.	VCI
1 2	o 0	3 4	a d
1	а	3	b

33

35

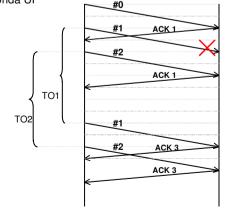
Esercizio 4.17 (soluz.)

- $L_{PDII} = 1000B + 20B = 1020B$
- Rete 1
 - > PDU1, L= 1000B+20B = 1020B
- Rete 2
 - > PDU1, L= 480B+20B = 500B
 - > PDU2, L= 480B+20B = 500B
 - > PDU3, L= 40B+20B = 60B
- Rete 3
 - > PDU1, L= 480B+20B = 500B
 - > PDU2. L= 480B+20B = 500B
 - > PDU3, L= 40B+20B = 60B

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Soluz. esercizi Reti TLC parte I

Soluz. esercizi Reti TLC parte I


34

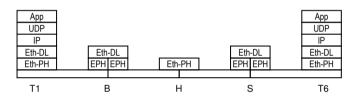
Esercizio 4.18 (soluz.)

- L_{PDII} = 1000B+20B = 1020B
- Rete 1
 - > PDU1, L= 1000B+20B = 1020B
- Rete 2
 - PDU1, L= 480B+20B = 500B
 - > PDU2, L= 480B+20B = 500B
 - > PDU3, L= 40B+20B = 60B
- Rete 3
 - > PDU1(1.1), L= 180B+20B = 200B
 - > PDU2(1.2), L= 180B+20B = 200B
 - > PDU3(1.3), L= 120B+20B = 140B
 - > PDU4(2.1), L= 180B+20B = 200B
 - > PDU5(2.2), L= 180B+20B = 200B PDU6(2.3), L= 120B+20B = 140B
 - \triangleright PDU7(3), L= 40B+20B = 60B

Esercizio 4.19 (soluz.)

• 1) Diagramma completo dei messaggi scambiati tra i nodi A e B nell'ipotesi che si perda (o arrivi errata) la seconda UI

• 2) Tempo complessivo per ricevere primo riscontro dell'ultima UI (UI#2):


$$T_{TOT} = Tu + TO + (Tu+Ta) = 6,5 Tu$$

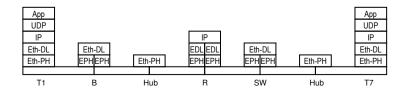
Soluz. esercizi Reti TLC parte I

Esercizio 7.1 (soluz.)

- a) Domini di collisione MAC presenti (nodi che partecipano attivamente al MAC):
 - > D1 = {T1, T2, T3, B}
 - > D2 = {B, T4, T5, S}
 - > D3 = {S, T6}
 - > D4 = {S, T7}
- b) Massimo diametro tra i domini di collisione presenti:
 - > d_{MAX} = 150m (e.g. B-T4)
- c) Architettura protocollare relativa alla comunicazione tra due applicazioni residenti nei terminali T1 e T6:

38

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione


Soluz. esercizi Reti TLC parte I

Esercizio 7.2 (soluz.)

 a) Domini di collisione MAC presenti (nodi che partecipano attivamente al MAC):

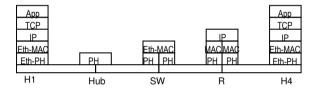
LAN

- > D1 = {T1, T2, T3, B}
- \rightarrow D2 = {B, T4, T5, R}
- > D3 = {R, S}
- > D4 = {S, T6, T7}
- b) Massimo diametro tra i domini di collisione presenti:
 - \rightarrow d_{MAX} = 170m
- c) Architettura protocollare relativa alla comunicazione tra due applicazioni residenti nei terminali T1 e T7:

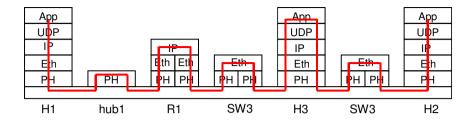
Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Soluz, esercizi Reti TLC parte I

Esercizio 7.3 (soluz.)


- Ritardo di trasferimento di un pacchetto di *L* bytes dal terminale al router:
 - $T_{TOT} = 2L/(100Mb/s) + T_{hub} + T_{sw} + (d1+d2+d3)/(200000Km/s)$
- Massima distanza possibile tra il terminale e l'hub imposta dal protocollo di accesso al mezzo CSMA/CD
 - il tempo max di propagazione da estremo a estremo deve essere inferiore al tempo di trasmissione di UI (trama) di dim minima (64B), quindi:
 - $≥ 2 (Tp+T_{hub}) < 64B/(100Mb/s)$ $⇒ (d1+d2)/c_0 + T_{hub} < 256 \ 10^{-8}s$ $⇒ (d1+d2) < c_0 \ (2,56\mu s T_{hub}) = 512m c_0 T_{hub}$ $⇒ d1 < 412m c_0 T_{hub}$
 - > esempio, se T_{hub} = 1µs, ⇒ d1 < 412m 2 108m/s 10-6s = 412m 200m = 212m

3


Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione

Esercizio 7.4 (soluz.)

- a) Domini di collisione MAC presenti, indicando per ognuno di essi i nodi che partecipano al MAC e il relativo diamentro max:
 - > D1 = {H1, H2, SW}, d=200
 - > D2 = {SW, H3}, d=100
 - > D3 = {SW, R}, d=120
 - > D4 = {R, H4}, d=70
- c) Ethernet in modalità full-duplex possibile tra:
 - ➤ SW-H3
 - > SW-R
 - ▶ R-H4
- b)Architettura protocollare relativa alla comunicazione tra due applicazioni basate su TCP/IP e residenti nei nodi H1 e H4

Esercizio 7.5 (soluz.)

