Network Security

- Networked scenario:
 - Network are composed of interconnected hosts
 - Hosts provide services and store information
 - Users access services and exchange/store information

- In such a distributed scenario it is important to assure communication and application security in terms of:
 - privacy/confidentiality
 - Integrity/consistency
 - availability
 - etc.

Security Service

- Is something that enhances the security of the systems and the information transfer
 - intended to counter security attacks
- Make use of one or more security mechanisms to provide the service
- Replicate functions normally associated with physical objects/documents
 - eg. signatures, dates, proof of reception, notarization, recording, etc.

Security Services (X.800 and RFC 2828)

- ITU-T Recommendation X.800 (Security Architecture for OSI)
 - defines a systematic way of defining and providing security requirements
 - a useful abstract overview of security concepts
- X.800 defines Security Service as
 - a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers
- IETF RFC 2828 (Internet Security Glossary) defines Security Service as
 - a processing or communication service provided by a system to give a specific kind of protection to system resources
 - security services implement security policies, and are implemented by security mechanisms
Security Services (X.800)

X.800 defines 5 major categories

- **Authentication** - assurance that the communicating entity is the one claimed
- **Access Control** - prevention of the unauthorized use of a resource
- **Data Confidentiality** - protection of data from unauthorized disclosure
- **Data Integrity** - assurance that data received is as sent by an authorized entity
- **Non-Repudiation** - protection against denial by one of the parties in a communication

Security Services (RFC 2828)

- **Access control**
- **Audit**
- **Data origin authentication**
- **Peer entity authentication**
- **Availability**
- **Data confidentiality**
- **Data integrity**
- **System integrity**
- **Non-repudiation**

Security Services (RFC 2828) (cont.)

- **Access control service**
 - a security service that protects a system against an entity using a system resource in a way not authorized by the system's security policy
 - in short, protection of system resources against unauthorized access
- **Audit service**
 - a security service that records information needed to establish accountability for system events and for the actions of system entities that cause them
- **Authentication service**
 - a security service that verifies an identity claimed by or for an entity
 - in a network, there are two general forms of authentication service:
 - i) peer entity authentication service
 - ii) data origin authentication service

Security Services (RFC 2828) (cont.)

- **Peer entity authentication service**
 - a security service that verifies an identity claimed by or for a system entity in an association
 - this service is used to confirm the identity of one entity to another, thus protecting against a masquerade by the first entity
 - unlike data origin authentication service, this service requires an association to exist between the two entities
- **Data origin authentication service**
 - a security service that verifies the identity of a system entity that is claimed to be the original source of received data
 - this service is provided to any system entity that receives or holds the data
 - this service is usually bundled with connectionless data integrity service (and does not previously requires a peer entity authentication service)
 - (See: data integrity service)
Security Services (RFC 2828) (cont.)

- Data integrity service
 - data integrity is the property that data has not been changed, destroyed, or lost in an unauthorized or accidental manner
 - deals with constancy of and confidence in data values, not with the information that the values represent
 - data integrity service protects against unauthorized changes to data, including both intentional change or destruction and accidental change or loss, by ensuring that changes to data are detectable
 - a data integrity service can only detect a change and report it to an appropriate system entity; changes cannot be prevented unless the system is perfect (error-free) and no malicious user has access
 - however, a system that offers data integrity service might also attempt to correct and recover from changes
 - although data integrity service is defined separately from data origin authentication service and peer entity authentication service, it is closely related to them

- Data confidentiality service
 - data confidentiality is the property that information is not made available or disclosed to unauthorized individuals, entities, or processes (i.e., to any unauthorized system entity)
 - in short, data confidentiality service protects data against unauthorized disclosure

- System integrity service
 - the system integrity is the quality that a system has when it can perform its intended function
 - system integrity service protects system resources in a verifiable manner against unauthorized or accidental change, loss, or destruction

- Availability service
 - a security service that protects a system to ensure its availability
 - this service addresses the security concerns raised by denial-of-service (DoS) attacks

Non-repudiation service

- a security service that provide protection against false denial of involvement in a communication
- there are two basic kinds of non-repudiation service:
 - i) "non-repudiation with proof of origin" - this service can be viewed as a stronger version of a data origin authentication service, in that it proves authenticity to a third party
 - ii) "non-repudiation with proof of receipt" - protects the originator against an attempt by the recipient to falsely deny receiving the data
- does not prevent an entity from repudiation; it provides evidence that can be stored and later presented to a third party

Security Mechanisms (X.800)

- Security services are provided by means of different security functions/mechanisms
 - they can be included in appropriate communication layer

- Examples of security mechanisms are
 - enciphering
 - digital signature
 - data integrity check
 - notarization (third-party authentication)
 - authentication exchange
 - access control
 - traffic padding
 - routing control
 - etc.
Classification of Security Attacks

Passive attacks (eavesdropping on, or monitoring of transmissions):
- **Interception (snooping)**
 - obtain message contents (attacks confidentiality)
- **Traffic analysis**
 - monitor traffic flows (attacks confidentiality)

Active attacks (modification of data stream):
- **Spoofing**
 - fabrication of messages with a fake source entity (attacks authenticity)
- **Tampering**
 - modify of message content (insert, cancel, modify data) (attacks integrity)
- **Replay/Reflection**
 - replay previous messages to/from the same of different entity (attacks authenticity)
- **Repudiation**
 - deny having sent or received a message (attacks Non-reputation)
- **Denial of Service (DOS)**
 - Interruption of a network or application service (attacks availability)

Mechanisms: Relationship Between Security Services and Mechanisms

<table>
<thead>
<tr>
<th>Service</th>
<th>Encipherment</th>
<th>Digital signature</th>
<th>Access control</th>
<th>Data integrity</th>
<th>Authentication-exchange</th>
<th>Traffic padding</th>
<th>Routing control</th>
<th>Notarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer entity authentication</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data origin authentication</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access control</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidentiality</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic flow confidentiality</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data integrity</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-reputation</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network security: The ideal world

- Secure communications
- Strong authentication of both services and users
- Reliable authorization/access control, and effective abuse control
- Flawless protocols, operating systems, and applications
- Perfect policy, perfect policy enforcement
- Every user is a secure expert

The real world

- Effective security protection are not deployed
- Sites do not install vendor patches
- Sites do not use sufficient AAA for remote access
- Sites do not monitor restrict access to their internal hosts
- Sites do not dedicate staff or sufficient resources to improve and maintain security
- Sites do not implement policies
- ...

Network security is related to

- Strumenti matematici (teoria dei numeri, crittografia)
- Protocolli (protocolli di rete, autenticazione, etc)
- Architetture di rete e relative funzioni (nodi, gateway, etc.)
- Servizi
- Software utilizzati (algoritmi, OSs, middleware, bachi)
- Hardware utilizzato, aspetti di elettronica, elettromagnetismo, ottica, biomedica, etc.
- Aspetti sociali (comportamentali e stimoli esterni)
- Legislazione e politica
- etc.