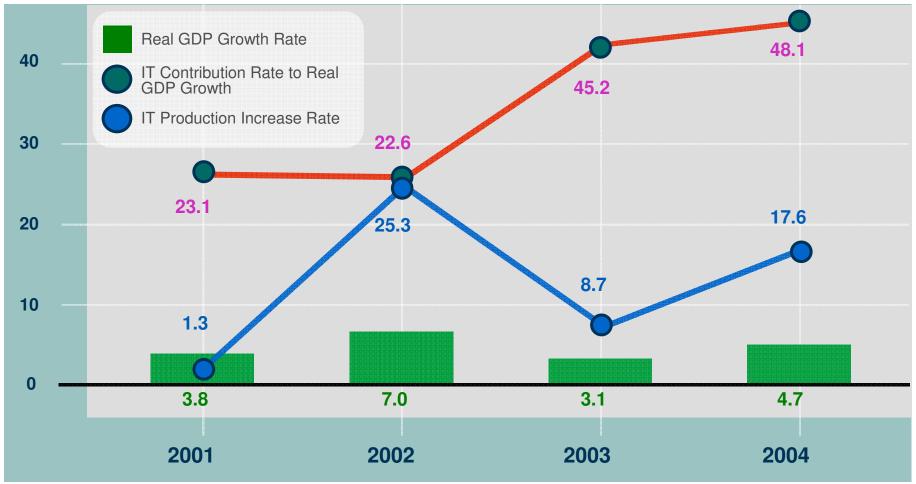



#### Agenda




- ICT, economic growth and the environment
- The effect of bandwidth growth
- Optointegration progress and high speed coherent systems
- Conclusions

## ICT: a catalyst for social changes

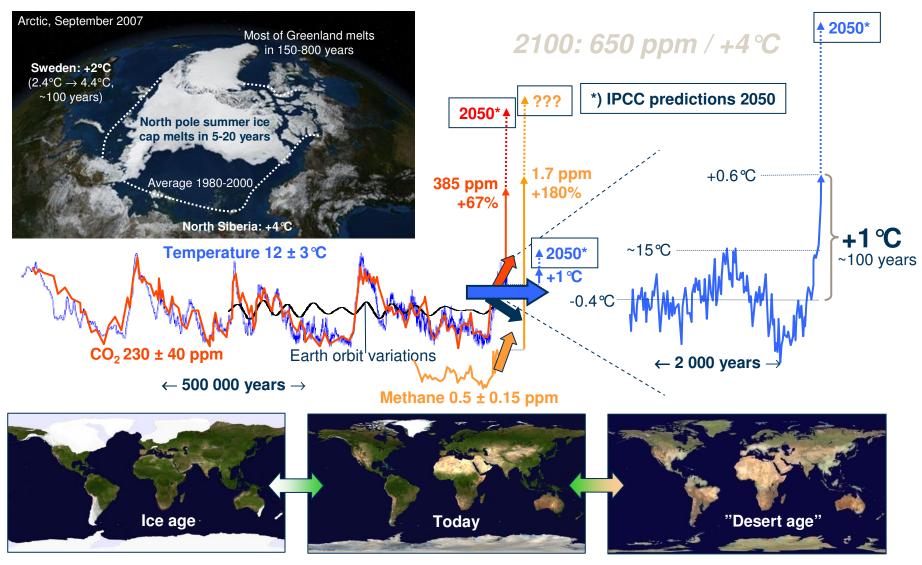


# ICT and GDP growth

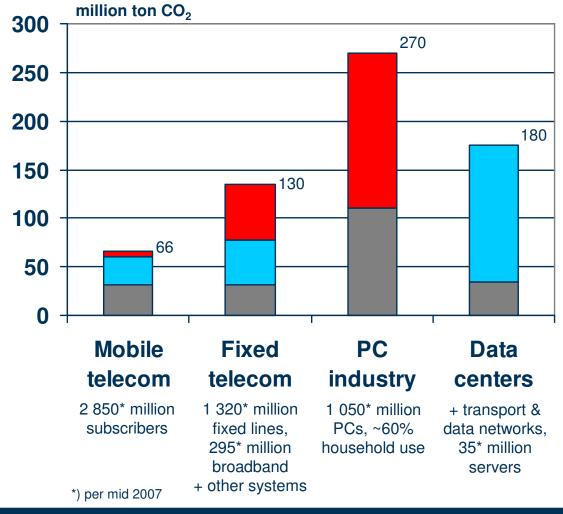
#### Growth rate indicators in S. Korea



Source: Bank of Korea, Ministry of Information and Communication


# ICT, CO<sub>2</sub> footprint and the environment

"The JPCC has unequivocally affirmed the warming of our climate system, and linked it directly to human activity (greenhouse gas emissions)."


Ban Ki-moon, UN Secretary-General

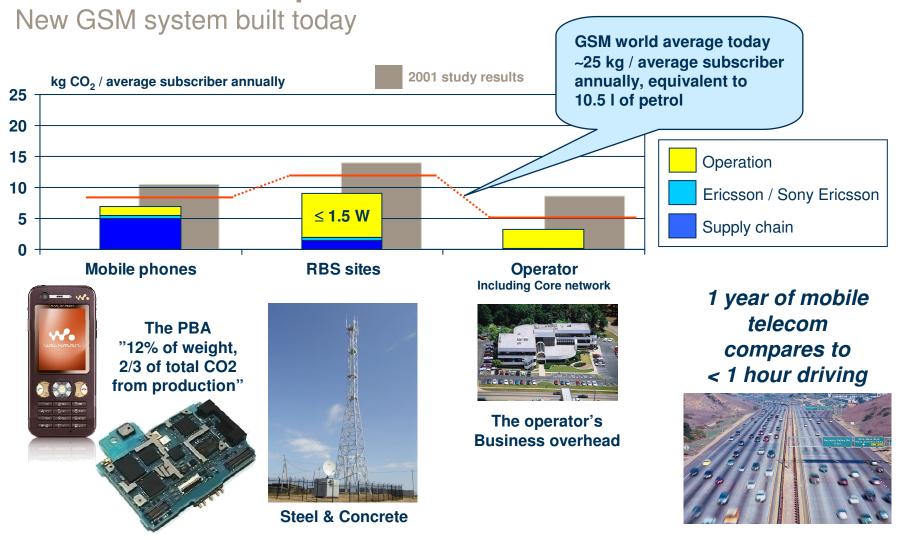


# Global Warming / Climate Change



### CO<sub>2</sub> emissions from ICT in detail




- User equipment operation (field studies)
- Network operation (operator studies)
- Manufacturing & business overhead (LCAs, div. reports)
- ICT growth
- Improvements per unit
  - Laptop, LCD and power management trends for PCs
  - DC virtualization, cooling and power efficiency
  - "Moore's law", stand-by

ICT runs on electricity (0.6 kg CO<sub>2</sub>e / kWh)

ICT total (the carbon footprint):

~1.5% of global CO<sub>2</sub>e

#### Carbon footprint of mobile telecom



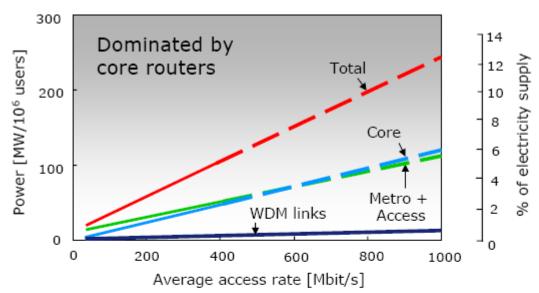
Mobile telecom total: 0.2% of global CO<sub>2</sub>

### Latest reports with a global focus

- Gartner (2007) estimates ICT's own carbon footprint to about
  1.5% of total CO<sub>2</sub>e)
- GeSI (2008) estimates ICT's own global carbon footprint to 2% of total CO<sub>2</sub>e in its recent Smart 2020 report
  - Include printers and overestimate telecom by about +50%, otherwise only smaller differencies to Ericsson/Gartner
  - Uses a lower figure for total CO<sub>2</sub>e compared to IPCC
- GeSI / Smart 2020 further estimates ICT's reduction potential in 2020 to be 15%
  - Structural changes from ICT use somewhat downplayed
  - Emphazis is on efficiency gains in logistics, production and building management systems
  - Smart grids is believed to ba able to make a large positive impact already in 2020 (not in line with other studies)
- WWF and partners has also issued a report with nearly the same figures: 2% from ICT itself, but with a reduction potential of 3%-12%-22% in a low-medium-high use scenario for ICT in 2030

2% impact with 5%-20% overall reduction potential




# If the world needs ICT ICT needs bandwidth

"In 2015 five billion people will be connected permanently via telecommunication networks. The data transport will increase by a factor of 100 compared to 2007"

> Simon Beresford-Wylie, CEO NSN, Die Welt, April 7th,2007

#### Trends and challenges

#### The energy challenge - Power consumption



If 33% of the world's population were to obtain broadband access:

| Access rate                                      | 1Mbit/s | 10Mbit/s |
|--------------------------------------------------|---------|----------|
| Power consumption                                | 100GW   | 1TW      |
| Percentage of world's<br>2007 electricity supply | 5%      | 50%      |

#### Need to reduce total power consumption

Sources: Jayant Baliga, COIN-ACOFT-07, Stephan Rettenberger, IIR-WDM Cannes 2008

### The underlying issue

Market price we pay for services

Telephony

$$\frac{\$0.05}{\text{min}} \times \frac{1 \text{ min}}{60 \text{ s}} \times \frac{1 \text{ s}}{64 \times 10^3 \text{ bits}} = 13,000 \text{ p$/bit}$$

Web Browsing 
$$\frac{\$20}{mo} \times \frac{1 \text{ mo}}{30 \text{ d}} \times \frac{1 \text{ d}}{3 \text{ h view}} \times \frac{1 \text{ hr}}{60 \text{ min}} \times \frac{1 \text{ min}}{6 \text{ pages}} \times \frac{1 \text{ page}}{5 \times 10^6 \text{ bits}} = \frac{1,250 \text{ p}}{5 \times 10^6 \text{ bits}} = \frac{1,25$$

Video Rental

$$\frac{\$3/\text{movie}}{6x10^6 \text{ bit/s}} \times \frac{1 \text{ hr}}{3600 \text{ s}} \times \frac{1 \text{ movie}}{2 \text{ hr}} = \frac{70 \text{ p\$/bit}}{3600 \text{ s}}$$

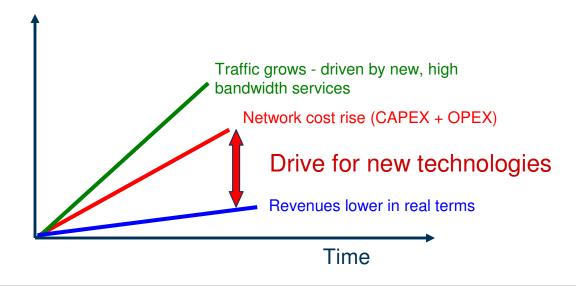
TV viewed

$$\frac{\$20}{\text{mo}} \times \frac{1}{30 \text{ d}} \times \frac{1 \text{ d}}{7 \text{ h view}} \times \frac{1 \text{ view}}{2 \text{ ch} \times 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{5 \times 10^6 \text{ bit/s}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ s/hr}} \times \frac{1 \text{ ch}}{5 \times 10^6 \text{ bit/s}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ p\$/bit}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} \times \frac{1 \text{ ch}}{30 \text{ ch}} = \frac{2.5 \text{ ch}}{30 \text{ ch}} =$$

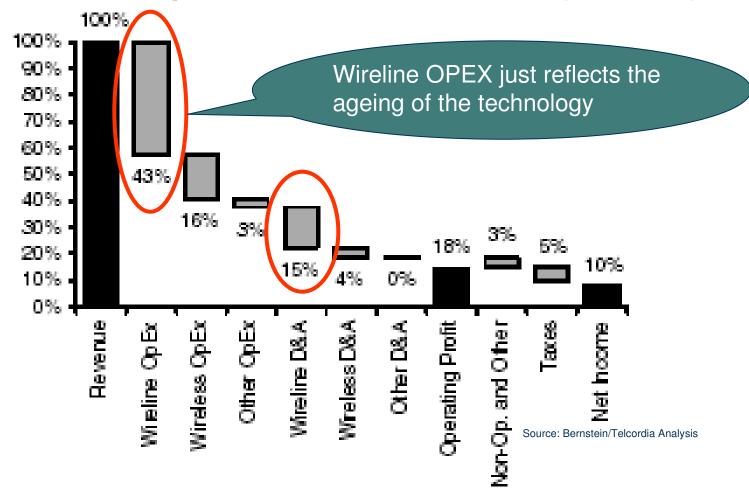
TV to home

$$\frac{\$30}{\text{mo}} \times \frac{1 \text{ mo}}{30 \text{ d}} \times \frac{1 \text{ d}}{24 \text{ h syc}} \times \frac{1 \text{ svc}}{100 \text{ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{5 \times 10^6 \text{ bit/s}} = \frac{0.02 \text{ p\$/bit}}{100 \text{ ch s/s}}$$

UHDV to home

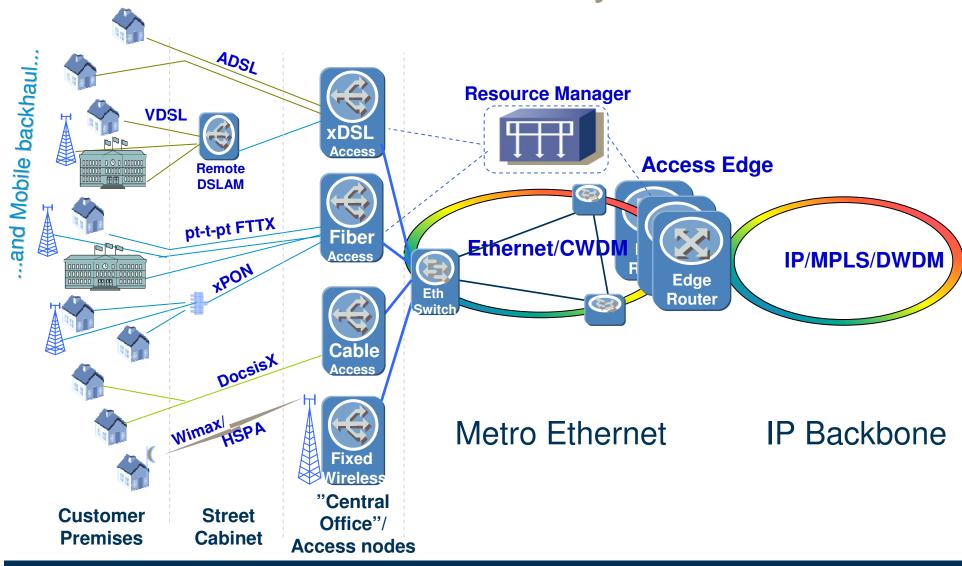

$$\frac{\$30}{\text{mo}} \times \frac{1 \text{ mo}}{30 \text{ d}} \times \frac{1 \text{ d}}{24 \text{ h svc}} \times \frac{1 \text{ svc}}{100 \text{ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{25 \times 10^6 \text{ bit/s}} = \frac{0.004 \text{ p\$/bit}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times \frac{1 \text{ ch}}{100 \text{ ch x } 3600 \text{ s/hr}} \times$$

7 orders of magnitude!


Note: p\$ =  $10^{-12}$ \$

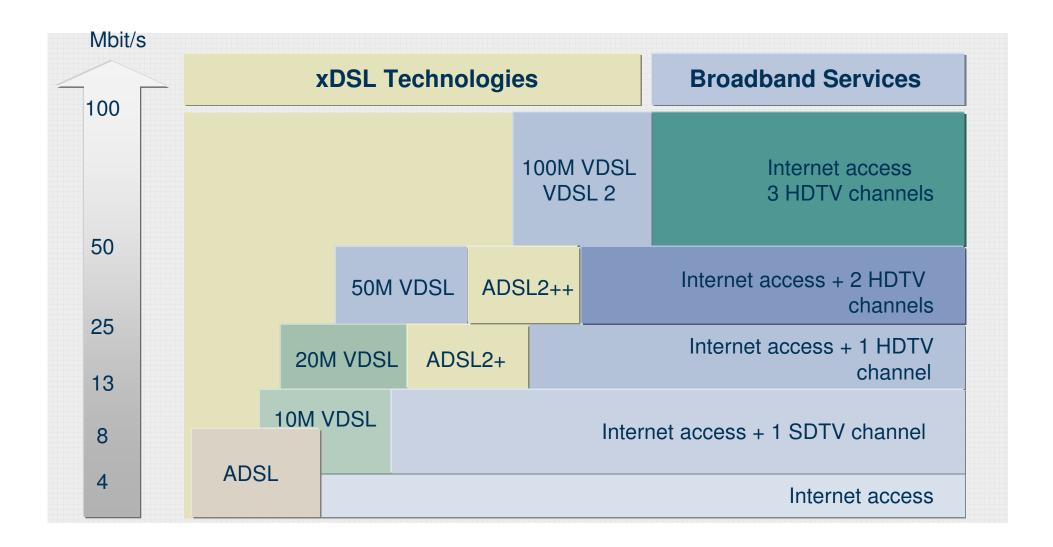
#### ... and its implication

- Greater bandwidth needed for new revenues
- ...but cost rises faster
- …and margins reduce

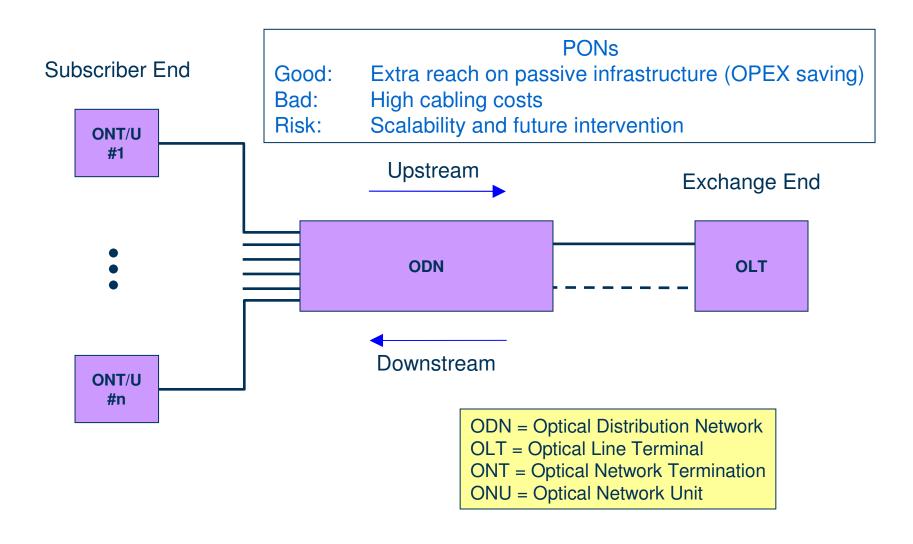



## RBOCs expense structure (2003)




- □ Competition complicates matters further when it costs money to operate a high customers churn i.e.:
- □ Loosing a customer means spending MORE to connect and reconnect the wire!

#### Broadband architecture: today's scenario




Several technologies with different degree of maturity define the starting point

## Today services map



#### Fiber in access is inevitable



# Current solutions: PONs comparison

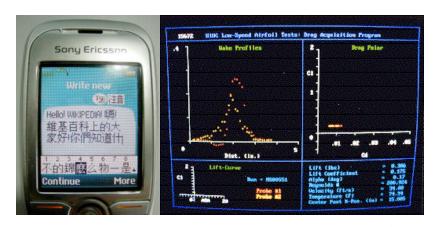
|                                                       |                                                     |                                                         | <u></u>                                   |
|-------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------|
| PON Type:                                             | ITU-T BPON                                          | ITU-T GPON                                              | IEEE EPON                                 |
| Downstream data rate<br>(Mbit/s)                      | down: 1244, 622, 155<br>19 - 38 Mbps per subscriber | down: 2488, 1244<br>19 - 38 Mbps per subscriber         | down: 1250<br>39 - 78 Mbps per subscriber |
| Upstream data rate (Mbit/s)                           | up: 622, 155<br>9 - 19 Mbps per subscriber          | up: 2488, 1244, 622, 155<br>19 - 38 Mbps per subscriber | up: 1250<br>39 - 78 Mbps per subscriber   |
| Line coding                                           | NRZ (+ scrambling)                                  | NRZ (+ scrambling)                                      | 8b/10b                                    |
| Minimum split (on TC layer)                           | 32                                                  | 64                                                      | 16                                        |
| Maximum split (on TC layer)                           | 64                                                  | 128                                                     | not specified                             |
| Maximum logical reach supported by TC layer           | 20 km                                               | 60 km (with 20 km differential between ONTs)            | 10 km, 20 km                              |
| Layer 2 protocols                                     | ATM                                                 | Ethernet, TDM over GEM (GPON Encapsulation Mode),       | Ethernet                                  |
| Standards documents                                   | ITU-T G.983 series                                  | ITU-T G.984 series                                      | IEEE 802.3ah                              |
| TDM support                                           | TDM over ATM                                        | native TDM, TDM over ATM,<br>TDM over Packet            | TDM over Packet                           |
| Typical downstream capacity (for IP data throughput)  | 520 Mbit/s<br>(for 622 Mbit/s line rate)            | 1170 Mbit/s<br>(for 1.244 Gbit/s line rate)             | 910 Mbit/s                                |
| Typical upstream capacity<br>(for IP data throughput) | 500 Mbit/s<br>(for 622 Mbit/s line rate)            | 1160 Mbit/s<br>(for 1.244 Gbit/s line rate)             | 760-860 Mbit/s                            |
| OAM                                                   | PLOAM + OMCI                                        | PLOAM + OMCI                                            | Ethernet OAM (+ optional SNMP)            |
| Downstream security                                   | ìChurningî or AES                                   | AES (counter mode)                                      | not defined                               |

#### Is all this good enough?

Deployment cost is mostly due to laying fiber cables □ The fiber medium offers about 200x125 gHz = 25,000 gHz of useable bandwidth Current pons offer on average no more than 2.5 GHz of bandwidth shared among 32 users ☐ Not much different than xdsl technologies 4 It is as efficient as we were to drive ~ 500,000 Hp cars Can optical systems and devices allow significant better use of the expensive infrastructure?

#### Back to the issue

#### Let's assume that:


• Networks and ownership costs must reduce over time while delivering increasingly higher bandwidth services

#### Then

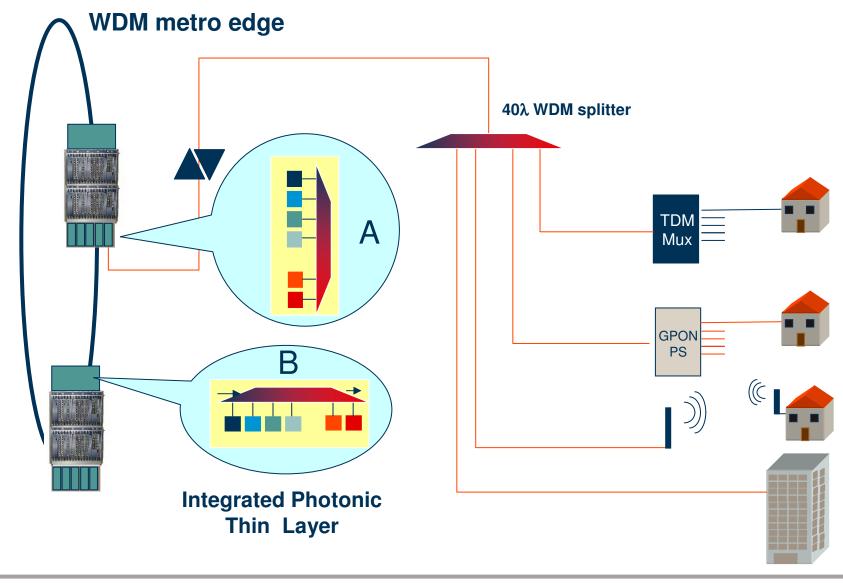
- More bandwidth and less equipment is required to cover the same area
  So
- (Bandwidth x Distance) <u>product</u> must increase for the access infrastructure And
- A wise use of photonics in the access network is the only likely sensible answer!










#### Future key focus

# Opto integration

### Scalability

Infrastructures

#### The end point reference network



#### Optical Integrated Technology

- This is key to support the telecom evolution
- Opto-integration technology is <u>already</u> mature for market
  - Claims of more than 10,000 cards deployed in transport networks employing 10x10Gb/s integrated modules with <u>130 Mhours</u> of life traffic without failures
  - 10x40 Gb/s and 40x10 Gb/s have beeen demostrated in research
  - Commercial products also exists for multiple transceivers employing <u>Silicon monolithic</u> opto-electronic devices manufactured using conventional CMOS process
  - Several traditional devices employed in conventional DWDM & R-OADM systems also have impressive level of integration

## IC vs Silicon Photonics Integration

#### **Electronics**

- Large economy of scale
- Wafer scale integration
- Only two basic structures (transistor and interconnect)
- Focus on one material (Silicon)
- Miniaturization
- Packaging cost!
- Support the ASIC model
  - Pull from volume markets
  - Pull from different applications
  - Protect design differentiation

#### **Photonics**

- Too many degree of freedom
- Material types
- Many Component types
- Too many wavelength ranges

#### So:

- No generic platform to support different applications
- Relatively limited volume

#### Not an industry yet!



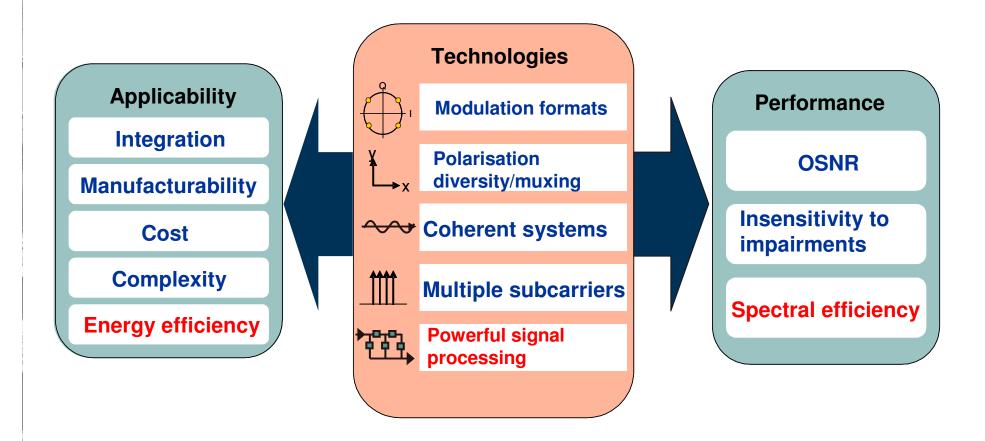
#### Recent Technology Progress is Impressive

- Low loss waveguides (IMEC, IBM, NTT...)
- Compact wavelength routers (IMEC...)
- Utra-compact high Q microcavities (U. Kyoto...)
- 10-40 Gb/s receivers (LETI...)
- 10-40 Gb/s modulators (INTEL, Luxtera, Cornell...)
- Raman silicon laser (INTEL...)
- All-optical switching + λ-conversion (NICT+IMEC, Cornell, U. Karlsruhe…)
- Integration with CMOS (Luxtera...)
- Hybrid InP-SOI laser (UCSB and INTEL)
- InP microlaser on SOI (IMEC+LETI+INL)

# Access networks will increase further the bandwidth race

- With xDSL and mobile broadband each user will handle some 1-10 Mb/s of bandwidth
- With current PON this will rise to some 2.5 Gb/s of bandwidth 50 to 150Mb/s
- With NG PON (DWDM-PON) we will reach 100 Mb/s to 1Gb/s per user and 10Gb/s per SOHO
- This calls for pretty powerful and high density network elements in terms of transport and switching capacity for metro and core networks

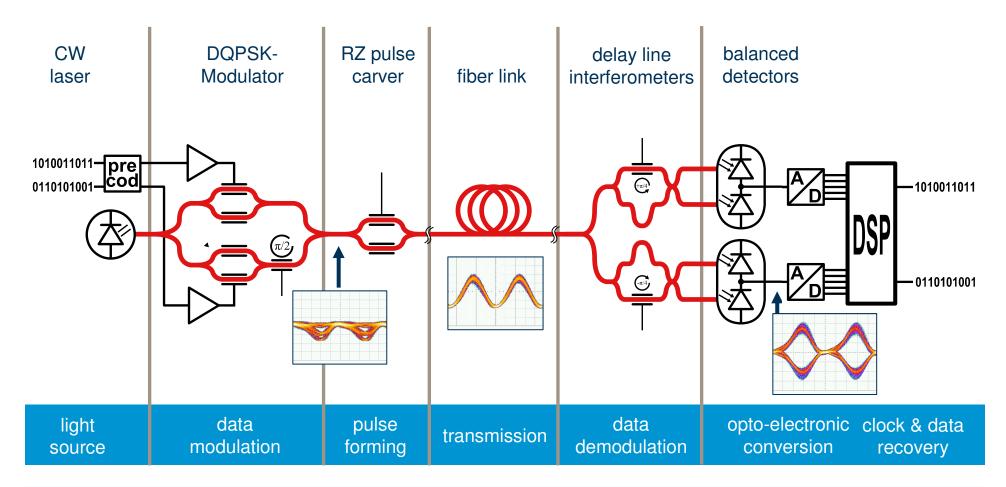
# So where do coherent systems fit in all of this?




# Answer 1 - (No brainer)

# There is a call for high speed and advanced transmission techniques



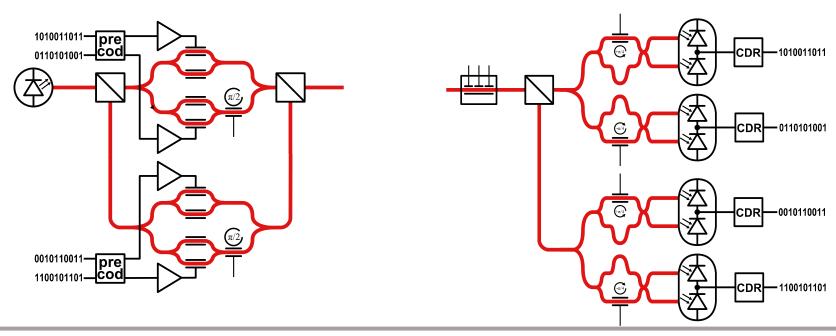

#### New tecnology map for high speed transport



Today needs are toward a lean signal format using lean digital processing

#### Example: RZ-DQPSK

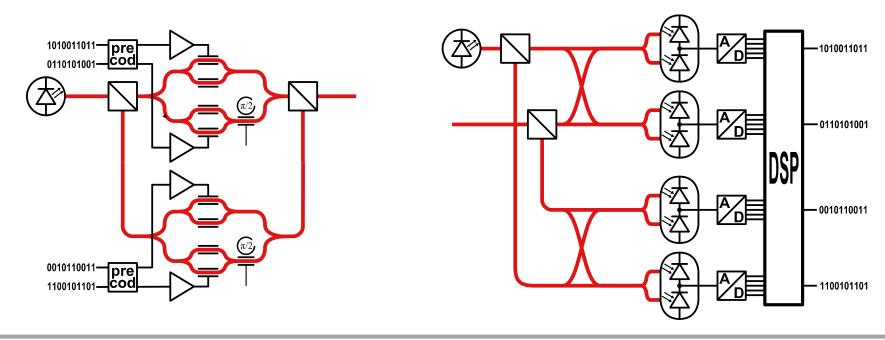
#### Modulation and interferometric detection



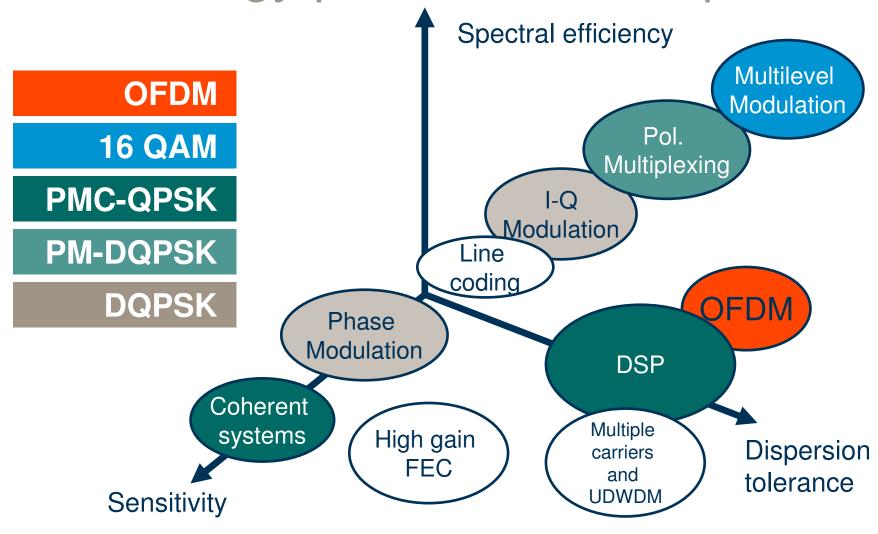

Penalities from unbalanced receiver tolerances and linear and non-linear phase noise can be mitigated using digital post processing

#### Implementation complexity is blurring

Example: DQPSK with Polarisation Multiplexing....


- Popular scheme (only useable once)
- Low baud rate (~28GBaud for 40 Gb/s) but price on polarisation multiplexing complexity
- Compatibility with DWDM sistems on 50GHz ITU-Grid
- Better tollerance to chromatic dispersion and PMD
- Sensitivity to PDL and polarisation crossmodulation.




#### Implementation complexity is blurring

... and the same employing coherent processing

- Key: Coherent & DSP
- Low bit rate at the price of **complex high speed electronics**
- Compatible with DWDM sistems on a 50GHz ITU grid
- Requires high linearity fornt end (for linear parameters compensation)
- Very sensitive to non linearities in fibre especially for ULH systems



#### Tecnology performance map

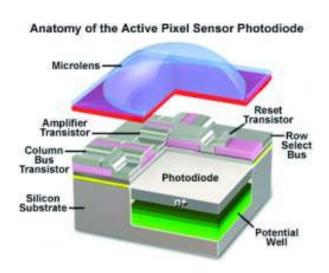


Several methods can be joined together

#### Is there more?

Can we use the optical integration and reborn system concepts to help designing new switching architectures?




#### Conclusions

- ICT is a strong catalyst for social changes and a cornerstone for developing low carbon economies
- Novel high bandwidth services are key, but do pose serious constraints to the existing infrastructures
- Efficient use of fiber in access is essential and inevitable to maintain and grow a stable service and value chain business model
- This will stretch further Metro and Core networks, requiring fewer but very powerful and integrated <u>very</u> high speed networks elements
- Power consumption is now a key performance parameter. Integrated photonics technology can allow for integrated opto and electronics functionalities and enabling new efficient digital processing schemes
- New generation coherent system, opto-integration and DSP processing are likely to be key in >100Gb/s transmission systems
- Can this technology offer more?

#### Impossible?

- Well, never answer a question with another question but...
- ...what ever happened to film photography?





