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Abstract

In this paper we show that it is possible to describe exactly the field intensity distorted by
polarization mode dispersion (PMD) at the output of a single-mode fiber, without resorting to the
principal states of polarization (PSPs). Such description is based on the eigenmodes of what we
call theextracted matrices,for which we establish relationships with the PSPs, e.g., by showing their
alignment with the PSPs when these are not depolarized over the signal bandwidth. We also show that
the eigenmodes of the extracted matrices are less depolarized than the PSPs, and are thus the most
convenient frame of reference to express the output field and intensity for high bit rate transmitted
signals. We thoroughly investigate the properties of a recently introduced fiber model, which we
refer to as therotation model,based on the rotation of the extracted eigenmodes, which extends the
intuition of Bruyère’s PSPs rotation model (1996) to the most stable frame of reference, and hence
is expected to give the most accurate description of the PMD fiber for large bandwidth signals. We
finally provide a novel eye closure penalty (ECP) formula based on the extracted eigenmodes, and
show its relation with the currently available ECP formulas. The accuracy of the novel ECP formula
is tested against simulation results of transmission through a fiber synthesized by the rotation model.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The literature on polarization mode dispersion (PMD) is dominated by the use of the
principal states of polarization (PSPs) introduced by Poole et al. [1], and their associated
Stokes vector, called the PMD vector, as the main tool for the analysis of the received
field [2], its statistics [3–6], and its intensity as it affects the system bit-error rate [7,8].
The PSP approach has also a great value to the purpose of PMD compensation, because
of the simple PSP concatenation rule for a cascade of optical components [9] and its
visualization on the Poincaré sphere [3,10]. As the bandwidth of the transmitted signal
increases, the PMD vector cannot be treated as a constant, as in a PMD analysis to the
first-order in frequency and the so-called higher-order PMD has to be taken into account.
Using the field expansion given in [2], and the joint statistics of the PMD vector and
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of its derivative [4], it is possible to numerically compute the system outage probability
with second-order PMD [11]. An alternative approach to deal with higher-order PMD is
provided by the frequency-averagedPSPs [12,13], which lead to an exact pulse-broadening
formula [12]. Such formula allows simple approximate expressions of the system penalty
[14] that have a strong appeal to the purpose of compensation. Another approach is that
of Bruyère [15], followed by [16,17], based on the empirical observation that the PSPs
depolarize by following circular trajectories. Yet another approach to higher-order PMD is
that of Eyal and coworkers [18] based on a decomposition of the Jones Matrix as an infinite
product of exponential matrices.

All these works heavily rely on the concept of PSPs. To quote an expression by Haus,
it seems that “there is little that one can add to the mathematical framework developed by
Poole et al.” [19].

Our view is that the single-mode fiber affected by PMD is a complex linear dynamical
system, for which many alternative descriptions exist, and no single description seems to
be capable of capturing all its features. It is thus important to be able to switch among
different descriptions, knowing their relations and their value in highlighting specific
system features.

Aim of this paper is to show that there exist several alternativeexactdescriptions of the
output field and of its intensity, which are not based on the PSPs, and that there exists an
alternative frame of reference that is more stable than the PSPs and is thus more suitable
to model the fiber over larger bandwidths.

Our approach uses the spectral decomposition of the fiber Jones matrix, i.e., its
eigenvalues and eigenmodes. The key tool in all the analysis is the extensive use of the
decomposition of the fiber Jones matrix in its Pauli coordinates, and the treatment of the
coordinates vector, called thePauli vector,in the Stokes domain. The paper is organized as
follows.

In Section 2 we provide three alternative expressions of the fiber Jones matrix along with
the corresponding exact expressions of the output field intensity, and give for comparison
an approximate expression based on the PSPs.

Unfortunately, when using the eigenmodes of the fiber Jones matrixU(ω), one finds that
they are more depolarized than the PSPs. We recently found that the correlation bandwidth
of the fiber eigenmodes is

√
2/3 that of the PSPs [20,21], which implies they decorrelate

in frequency a little more quickly than the PSPs on average. However, one can write

U(ω)=U0Ur(ω) (1)

as the product of the Jones matrix at the reference frequencyU0 and of the right-
extracted matrixUr(ω). In Section 3 we spectrally decompose such matrix and show that
its eigenmodes, in the limitω → 0, are aligned with the input PSPs, and depolarize in
frequency athalf the speedof the PSPs. In other words, they “are” the input PSPs when
these do not vary with frequency over the signal bandwidth, and are frequency independent
over a larger bandwidth than the PSPs: they are thusthe novel candidate frame of reference
to express the output field when the signal has a bandwidth comparable to that of the PSPs.
Similarly one can write

U(ω)=Ul(ω)U0 (2)

and we will see that the eigenmodes of theleft-extracted matrixUl(ω) are aligned in the
limit ω→ 0 with theoutputPSPs. As an instructive example, we show in Appendix B that,
whenever the extracted eigenmodes are frequency-independent (and thus so are the PSPs),
the fiber eigenmodes describe a great circle on the Poincaré sphere asω varies.
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In Section 4 we investigate the properties of a novel fiber model [22,23] that postulates
that, asω varies, the extracted eigenmodes rotate around a fixed axis. We call this the
rotation model.As in Bruyère’s model [15], the idea is here to approximate the extracted
eigenmodes’ trajectory, traced on the Poincaré sphere asω varies, with its osculating
circle atω = 0, i.e., that circle intersecting the trajectory at three coincident points. The
bandwidth over which such approximation is valid is clearly the range of frequencies
centered atω= 0 for which the osculating circle is close to the actual trajectory. We believe
the rotation model to be the model that more closely emulates the frequency behavior of
single-mode fibers affected by PMD over bandwidths exceeding the PSPs bandwidth. For
such model, using the intensity expressions of Section 2, we provide the explicit waveform
of the output intensity for varying model parameters, given an isolated input pulse. We
provide plenty of details on the decomposition of the output intensity in its elemental
building blocks. We will learn for instance several details on the shape of the well-known
overshoot on one edge of the pulse due to higher-order PMD.

In Section 5 we first provide a unifying survey of the available eye-closure penalty
(ECP) formulas for first-order PMD, and then extend the method proposed in [8] to get
a generalized Chen formula (GCF) that provides the ECP for all-order PMD. We provide
a thorough analysis of the ECP versus input state of polarization (SOP) surface for the
rotation model, to check the combined effect of the differential group delay (DGD), the
rotation speed, the aperture of the eigenmode circle, and the chirp of the pulse that may be
present at the input or induced by common-mode group velocity dispersion (GVD). In so
doing, we also check the range of model parameters for which our all-order GCF formula is
accurate. We finally show that our GCF formula can also be derived from the small-signal
intensity-to-intensity modulation (IM/IM) fiber response in [24]. We verify that the ECP
versus input SOP surfaces synthesized with the GCF well capture theshapeof the actual
ECP surfaces, even when the absolute accuracy of the ECP prediction is poor.

Section 6 summarizes our findings and contains our conclusions.

On notation. We indicate 2× 1 (Jones) complex column vectors with boldface capital
letters, e.g.,A = [A1,A2]T = [A1;A2], where the symbol T stands for transpose. The
symbol † stands for transpose conjugate. A 2× 2 complex matrix appears in capital
letter, e.g.,U . Stokes 3× 1 column vectors appear with an arrow, e.g.,	a. Unit magnitude
vectors appear with a circumphlex, e.g.,â, Â. Stokes 4× 1 column vectors appear with
an underscore, e.g.,u. The symbol× stands for vector cross product, while· for scalar
product. The symbols�[z] and
[z] indicate the real and imaginary parts of a complex

numberz, andj is the imaginary unit. The symbol
�= means “equal by definition.” The

symbol⊗ denotes convolution. The symbolF indicates the Fourier transform andF−1 the
inverse transform. In this paper we will use the engineering notation for Fourier transforms,
and the sign conventions for Jones and Mueller matrices, consistently with the reference
paper [25].

2. Expressions of the output intensity

A linear lossless single-mode optical fiber can be described by the 2× 2 Jones matrix
T (ω)= e−j φ̄(ω)U(ω), whereω is the offset from the reference frequency,φ̄(ω) is the phase
due to common mode GVD, andU(ω) is a unitary matrix with det[U ] = 1 [25].

Assume the input field is completely polarized:Ei(t) = Ei(t)Ĵ where Ĵ = [J1;J2]
is the input SOP (ISOP) Jones vector andEi(t) is the complex scalar amplitude. Let

Eo(t)
�= F−1[e−j φ̄(ω)Ei(ω)] be the common-phase filtered input amplitude. The output
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field, in the frequency domain, is�Eo(ω)Ĵo(ω), whereĴo(ω)=U(ω)Ĵ. Starting from three
forms of the Jones matrixU , we now provide three alternative exact expressions of the
fiber output intensity, i.e., of the received current in an optical transmission system.

2.1. First form

A unitary matrix with unit determinant can in general be expressed through the
Cayley/Klein (CK) form [1,25]

U =
[
U1 U2

−U∗
2 U∗

1

]
, (3)

where the complex scalar entries are such that|U1|2 + |U2|2 = 1.
The output SOP is straightforwardly obtained from (3) as

Ĵo(ω)=
[
J1U1(ω)+ J2U2(ω)

]
ê1 + [−J1U

∗
2 (ω)+ J2U

∗
1 (ω)

]
ê2,

whereê1,2 represent the Jones unit reference axes. If we now define the impulse responses

U1(t)
�= F−1[U1(ω)] and U2(t)

�= F−1[U2(ω)], then we express the received field
intensity as

I (t)= ∣∣[J1U1(t)+ J2U2(t)
] ⊗Eo(t)

∣∣2 + ∣∣[−J1U
∗
2 (−t)+ J2U

∗
1 (−t)

] ⊗Eo(t)
∣∣2,

where each term is the magnitude of the projections of the field on the twoorthogonal and
ω-independentreference axes. Although such expression accurately predicts the output
intensity, it requires that the full frequency dependence ofU(ω) is measured, giving little
analytical insight on the impact of first- and higher-order PMD onI (t).

2.2. Second form

A second form of the output SOP is obtained from the spectral decomposition (SD) of
U [26]

U = B
[

e−j�φ/2 0
0 ej�φ/2

]
B†, (4)

whereB(ω)
�= [B̂s, B̂f] is a unitary matrix whose columns are the unit-norm orthogonal

eigenmodeŝBs(ω) and B̂f(ω), and�φ(ω) is the retardation angle, chosen such that
�φ(0)� 0. This choice justifies the subscript s for thesloweigenmode and f for thefast
one.

From (4), the output SOP is

Ĵo(ω)=
[

B̂s(ω), B̂f(ω)
] [

e−j�φ(ω)/2 0
0 ej�φ(ω)/2

][
cs(ω)

cf(ω)

]
= (
cs(ω)e

−j�φ(ω)/2)B̂s(ω)+
(
cf(ω)e

j�φ(ω)/2)B̂f(ω)

being cs
�= B̂†

sĴ and cf
�= B̂†

f Ĵ the projections of the ISOP onto theω-dependent
eigenmodes. Hence by defining

Es(ω)=
[
cs(ω)B̂s(ω)e

−j�φ(ω)/2]�Eo(ω),

Ef(ω)=
[
cf(ω)B̂f(ω)ej�φ(ω)/2

]�Eo(ω) (5)
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the field components projected onto the fast and slow eigenmodes, finally, we get

I (t)= ∣∣Es(t)+ Ef(t)
∣∣2 = ∣∣Es(t)

∣∣2 + ∣∣Ef(t)
∣∣2 + 2�{

E†
s(t)Ef(t)

}
. (6)

We note that the two field components are two (vector) filtered versions of the output
scalar field�Eo(ω), and if�φ(ω) = ωC1 is linear inω with �φ(0)= 0, they represent a
retarded (slow) and an accelerated (fast) filtered version of the input field. If�φ(0) �= 0,
such constant phase term cancels in (6), so that we can neglect it in the analysis of the
output current. The existence of a beat term in (6) is evidence that the eigenmodes are
ω-dependent. When the eigenmodes are frequency independent, the fieldsEs(t) andEf(t)

are orthogonal for everyt , and from (6) and (5) we easily get

I (t)= γ ∣∣F−1[e−j�φ(ω)/2�Eo(ω)
]∣∣2 + (1− γ )∣∣F−1[ej�φ(ω)/2�Eo(ω)

]∣∣2, (7)

whereγ
�= |cs|2 is the power splitting factor. Note that such result is known from the

literature when reasoning in terms of PSPs, when these are frequency independent [27].
Both interpretations are correct. However, it is way more likely that the PSPs are constant
over the signal bandwidth, rather than the global eigenmodes. An explanation of such fact
is provided in Appendix B. In Section 3 we will see that (7) is also valid when reasoning in
terms of the extracted eigenmodes. However, we will prove in Section 3 that the extracted
eigenmodes move in frequency along their trajectory at half the speed of the PSPs, and are
thus more stable than the PSPs.

This second form is very convenient when the “frame of reference” (be it the global
eigenmodes, the PSPs or the extracted eigenmodes) is fixed over the signal bandwidth. It
is also useful to highlight some effects connected to GVD, as shown next.

Expanding�φ(ω)= ωC1 + ω2C2/2 to second order in Taylor series inω, and letting

Hs(ω)
�= B̂†

s(ω)ĴB̂s(ω), Hf(ω)
�= B̂†

f (ω)ĴB̂f(ω), from (5) we get

Es(ω)= Hs(ω)e−jωC1/2
[
e−jC2ω

2/4�Eo(ω)
]
,

Ef(ω)= Hf(ω)ejωC1/2
[
e+jC2ω

2/4�Eo(ω)
]

(8)

showing that the second-order derivative of�φ(ω) has the same effect of common-mode
GVD. It addsto GVD for one eigenmode, andsubtractsfor the other eigenmode. This
well-known effect, giving a different broadening of the fast and slow signal replicas [2],
is usually attributed to the DGD derivative�τω in the literature, and called polarization-
dependent chromatic dispersion [28]. However, its exact analytical impact on the output
field cannot be derived, as in (8), unless the PSPs are frequency-independent.

2.3. Third form

We next present a third form of the output intensity, which we believe to be the most
insightful and useful for the analysis of the received current in an optical communications
system. Such representation is the one that best highlights the dependence of the received
intensity on the input SOP, and it is the one we will be most often working with in the rest
of the paper.

We start with the Pauli decomposition (PD) form [12,25] of the Jones matrixU

U = e−j (�φ/2)(b̂·	σ) = cos

(
�φ

2

)
σ0 − j sin

(
�φ

2

)(
b̂ · 	σ )

, (9)
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where 	σ is the Pauli spin vector [25],σ0 is the 2× 2 identity matrix [29], andb̂ =
[b1, b2, b3]T is the Stokes vector associated with the slow eigenmode. The derivation of (9)
from (4) is established using the relationBσ1B

† = (b̂ · 	σ). The 4× 1 vector of Pauli
coordinates of matrixU is defined as

u= [
u0; 	u] =

[
cos

(
�φ

2

)
;−j sin

(
�φ

2

)
b̂

]
(10)

so that, by definingσ
�= [σ0; 	σ ], U can be expressed asU = u · σ .

The time-domain expression of the output field is

Eo(t)=F−1[�Eo(ω)U(ω)Ĵ
] �= ∞∫

−∞
�Eo(ω)U(ω)Ĵ ejωt

dω

2π
;

hence, the intensityI (t)= E†
o(t)Eo(t) becomes

I (t)=
∞∫

−∞

∞∫
−∞

�E ∗
o (ω1)�Eo(ω2)Ĵ†U†(ω1)U(ω2)Ĵ e−jω1t ejω2t

dω1

2π

dω2

2π
. (11)

Now decompose

U†(ω1)U(ω2)=
3∑
k=0

nk(ω1,ω2)σk (12)

in its Pauli coordinatesn0 and	n= [n1;n2;n3], so that

I (t)=
3∑
k=0

Nk(t)
(
Ĵ†σk Ĵ

) =N0(t)+ 	N(t) · ĵ , (13)

whereĵ = Ĵ†	σ Ĵ is the Stokes vector associated with the ISOPĴ, and, fork = 0, . . . ,3

Nk(t)
�=

∞∫
−∞

∞∫
−∞

nk(ω1,ω2)�E ∗
o (ω1)�Eo(ω2)e

−jω1t ejω2t
dω1

2π

dω2

2π
. (14)

Expression (13) is the sought third form, which shows that the received intensity is
composed of a SOP-independent termN0, and a SOP-dependent contribution expressed
in terms of a scalar product of the ISOP Stokes vector with the vector	N . All we need
next is the explicit form ofN0, 	N . To this aim, we wish now to find the Pauli coordinates
nk for k = 0, . . . ,3. Letu(ω)= [u0(ω); 	u(ω)] be the Pauli vector ofU(ω). From (10) we
immediately have thatu∗ is the Pauli vector ofU†. Then using (A.3), in Appendix A, we
find the desired Pauli coordinates

n0(ω1,ω2)= u(ω1)
†u(ω2),

	n(ω1,ω2)= u∗
0(ω1)	u(ω2)+ u0(ω2)	u∗(ω1)+ j

(	u∗(ω1)× 	u(ω2)
)
. (15)

Substitution in (14) gives for the first element

N0(t)=
∣∣u(t)⊗ �Eo(t)

∣∣2, (16)
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where uk(t) = F−1[uk(ω)] are the Pauli impulse responses. Similarly, the remaining
components are

	N(t)= (
u0 ⊗ �Eo

)∗(	u⊗ �Eo
) + (

u0 ⊗ �Eo
)(	u⊗ �Eo

)∗ + j(	u⊗ �Eo
)∗ × (	u⊗ �Eo

)
= 2�{(

u0 ⊗ �Eo
)(	u⊗ �Eo

)∗} − j(	u⊗ �Eo
) × (	u⊗ �Eo

)∗
, (17)

where all functions are in the time domain. Such relations are valid foranyJones matrixU ,
even non-unitary. We can also derive the following useful explicit expressions:

N0(t)=
3∑
i=0

∣∣ui(t)⊗ �Eo(t)
∣∣2,

Nk(t)= 2�[(
u0(t)⊗ �Eo(t)

)(
uk(t)⊗ �Eo(t)

)∗]
+ 2
[(

uk+1(t)⊗ �Eo(t)
)(
uk+2(t)⊗ �Eo(t)

)∗] (18)

for k = 1,2,3, where we interpret the indices as modulo 3 (e.g., fork = 3, k + 1 =
(3+ 1)mod3= 1).

The third form is clearly the most complex of the three presented, but it is also the
one that gives most insight in the analytical mechanisms that determine the overall output
intensity. Although seemingly rather involved, the expressions in (18) are extremely useful
to explain the analytical reasons of the dependence of the output intensity on the ISOP, as
we will see in the next sections. We also note the key role of the Pauli impulse responses
uk(t) as key linear filtering blocks of the scalar field�Eo(t).

2.3.1. Approximate third form
While the third form is anexact expression of the intensity, we now provide an

approximatethird form forI (t) based on the PSPs, whose relationship with the Pauli vector
is provided in Appendix A. The key equation (11) contains the productU†(ω1)U(ω2)

which we now express by expanding both matrices in Taylor series around the reference
frequency

U†(ω1)U(ω2)=
∞∑
i=0

∞∑
k=0

U
(i)†

0

ωi1

i! U
(k)
0

ωk2

k! ,

whereU(i)0 is theith derivative ofU evaluated atω = 0. The zeroth order term(k+ i = 0)
is

U
†
0U0 = σ0. (19)

The first-order term(k + i = 1) is

U
†
0U

′
0ω2 +U ′†

0 U0ω1 = −j
2

( 	Ωi · 	σ )
(ω2 −ω1), (20)

where we used the defining relation (A.2) for	Ωi at ω = 0. The second-order term
(k + i = 2) is

U
†
0U

′′
0
ω2

2

2
+U ′†

0 U
′
0ω1ω2 +U ′′†

0 U0
ω2

1

2
= −�τ

2

8
(ω2 −ω1)

2σ0

− j
4

( 	Ω ′
i · 	σ )(

ω2
2 −ω2

1

)
, (21)
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where on the right-hand side we used the relations

U
′†
0 U

′
0 = �τ

2

4
σ0, U

†
0U

′′
0 = −�τ

2

4
σ0 − j

2

( 	Ω ′
i · 	σ )

,

which are straightforward implications of (A.3). Using (19)–(21) we get

Ĵ†U†(ω1)U(ω2)Ĵ = 1− �τ
2

8
(ω2 −ω1)

2 − j
2

( 	Ωi · ĵ
)
(ω2 −ω1)

− j
4

( 	Ω ′
i · ĵ )(

ω2
2 −ω2

1

) +O(
ω3), (22)

whereO(ω3) represents terms of order three or higher. The input PSP vector and its
derivative are evaluated atω= 0. Substituting (22) in (11) we get

I (t)∼= ∣∣�Eo(t)
∣∣2 + �τ

2

4

[∣∣∣∣ ∂∂t �Eo(t)

∣∣∣∣2 + �
[
�E ∗

o (t)
∂2

∂t2
�Eo(t)

]]
− ( 	Ωi · ĵ

)�[
�E ∗

o (t)
∂

∂t
�Eo(t)

]
− 1

2

( 	Ω ′
i · ĵ )
[

�E ∗
o (t)

∂2

∂t2
�Eo(t)

]
, (23)

which involves the output field and its derivatives up to the second order, and the
approximation sign∼= is due to dropping theO(ω3) terms. In such expression, it is easy to
verify that:

(i) �
[
�E ∗

o (t)
∂

∂t
�Eo(t)

]
= 1

2

∂

∂t

∣∣�Eo(t)
∣∣2;

(ii)

[∣∣∣∣ ∂∂t �Eo(t)

∣∣∣∣2 + �
[
�E ∗

o (t)
∂2

∂t2
�Eo(t)

]]
= 1

2

∂2

∂t2

∣∣�Eo(t)
∣∣2.

Hence, using (ii), we can rewrite

I (t)∼=
(

1+ �τ
2

8

∂2

∂t2

)∣∣�Eo(t)
∣∣2 −

{
	Ωi�

[
�E ∗

o (t)
∂

∂t
�Eo(t)

]
+ 1

2
	Ω ′

i 

[
�E ∗

o (t)
∂2

∂t2
�Eo(t)

]}
· ĵ . (24)

The similarity with (13) is evident: the first and second terms are thus second-order
approximations ofN0 and 	N , and from (22) and the defining relation for	Ωi we see that
they come from second-order approximations for the coefficientsnk(ω1,ω2)

n0(ω1,ω2)∼= 1− �τ
2

8
(ω2 −ω1)

2,

	n(ω1,ω2)∼= −j
2

[
(ω2 −ω1) 	Ωi + 1

2

(
ω2

2 −ω2
1

) 	Ω ′
i

]
.

For instance, if�Eo(t) is real (chirpless pulse, no GVD), then the imaginary part in (24) is
zero and using (i) we get

I (t)∼=
(

1+ �τ
2

8

∂2

∂t2
− 1

2

( 	Ωi · ĵ
) ∂
∂t

)∣∣�Eo(t)
∣∣2. (25)
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In Section 5.6 we show that this expression is related to the small-signal IM/IM fiber
response.

We remark that different approximate expressions of the output field which use the
PSP vector are known [2,11]. However, such expressions inconsistently mix delays and
derivatives of the input field, since they do not come from truly second order expansions
of matrixU .

Although such form of the intensity in terms of the PMD vector is novel, we derived it
only to show the relation with Eq. (13), and we will not investigate on its physical meaning
in this paper.

3. Extracted matrices and their properties

In (1) and (2) we defined theright- andleft-extracted(unitary) matrices. All the intensity
forms seen in Section 2 can be recast in terms of the extracted matrices, instead ofU . This
is so, since the output field can be written asEo(ω)= �Eo(ω)U(ω)Ĵ = U0Er(ω)= El(ω),

where we defineEr(ω)
�= �Eo(ω)Ur(ω)Ĵ andEl(ω)

�= �Eo(ω)Ul(ω)Ĵ0, with Ĵ0
�=U0Ĵ. Thus

the output intensity can be expressed as

I (t)= ∣∣Eo(t)
∣∣2 = ∣∣Er(t)

∣∣2 = ∣∣El(t)
∣∣2. (26)

This section is devoted to investigate the relations among eigenmodes and PSPs ofU

(already treated in Appendix A) and those of the extracted matrices.

We know thatM = e�φ[b̂×] is the Mueller matrix associated with the fiber Jones matrix
U [25]. Similarly, letM0 = e�φ0[b̂0×], Ml = e�φl [b̂l×], andMr = e�φr[b̂r×] be the Mueller
matrices associated withU0, Ul , andUr, respectively, where we used the corresponding
eigenmodes and retardation angles. The most relevant feature is that the extracted matrices
equal the identity matrix at the reference frequency:Ur(0) = Ul(0) = σ0, so that from
(10) one gets:�φr(0) =�φl(0) = 0. Also, any vector is an eigenvector atω = 0, but by

continuity we definêbr(0)
�= limω→0 b̂r(ω), and similarly forb̂l(0).

Now note that, since a similarity transformation linksUl andUr

Ul(ω)=U0Ur(ω)U
†
0 ; (27)

then the two matrices have the same eigenvalues, i.e., the same retardation angle:

�φl(ω) = �φr(ω) for any ω. Relation (27) in the Stokes domain becomes e�φl [b̂l×] =
M0 e�φr[b̂r×]M−1

0 = e�φr[(M0b̂r)×] [30], which shows that the eigenmodeb̂l is a rotated

version ofb̂r

b̂l(ω)=M0b̂r(ω). (28)

Next we note that

U ′(ω)U†(ω)=U ′
l (ω)U

†
l (ω)=U0U

′
r(ω)U

†
r (ω)U

†
0 , (29)

from which we conclude that the output PMD vector ofUl coincides with that of
U : 	Ωlo(ω) = 	Ωo(ω) because of (A.1). For the same reason, we find that the input PMD
vector ofUr coincides with that ofU : 	Ωri(ω)= 	Ωi(ω). With calculations similar to those
leading to (28) one can also prove that the PMD vector ofUl is a rotated version of that
of Ur, namely: 	Ωlo(ω)= M0 	Ωro(ω).
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Since the output PMD vectors ofU andUl coincide, we have

	Ωo(0)
�=�τ(0)q̂0(0)= 	Ωlo(0)=�φ′

l (0)b̂l(0), (30)

where the second equality comes from (A.4) atω = 0. That is:the trajectoriesb̂l(ω) and
q̂o(ω) coincide atω = 0, so thatb̂l(ω) ∼= q̂o(ω) in a neighborhood ofω = 0, thereby
justifying the approximation of the output PSPs as the eigenmodes of the left-extracted
matrix over a suitably small bandwidth aroundω= 0.1

Similarly,

	Ωi(0)
�=�τ(0)q̂i(0)= 	Ωri(0)=�φ′

r(0)b̂r(0), (31)

i.e., thetrajectoriesb̂r(ω) andq̂i(ω) coincide atω = 0, so that̂br(ω)∼= q̂i(ω) in a neighbor-
hood ofω = 0, therebyjustifying the approximation of the input PSPs with the eigenmodes
of the right-extracted matrix over a suitably small bandwidth aroundω = 0.

From (30) and (31) we also conclude that

�τ(0)=�φ′
r(0)=�φ′

l (0), (32)

i.e., when using the extracted matrices the constantC1 in Section 2.2 is exactly the DGD.
Sinceu r/l(0)= [1,0,0,0]T, using (A.7) atω= 0 yields

	u′′
r (0)= −j 	Ω ′

i (0)/2, 	u′′
l (0)= −j 	Ω ′

o(0)/2. (33)

Differentiating twice the expression of	u in (10) and plugging into (33) atω = 0, we get

	Ω ′
i (0)

�=�τ ′(0)q̂i(0)+�τ(0)	q ′
i (0)=�φ′′

r (0)b̂r(0)+�φ′
r(0)2	b′

r(0),

	Ω ′
o(0)

�=�τ ′(0)q̂o(0)+�τ(0)	q ′
o(0)=�φ′′

l (0)b̂l(0)+�φ′
l (0)2	bl(0). (34)

We can clearly spot out corresponding terms on the two sides of the equality. Now, since
b̂r is orthogonal to its derivative	b′

r, and similarly forb̂l andq̂i/o, taking the scalar product
of both sides of (34) bŷbr(0)= q̂i(0) (top row), or byb̂l(0)= q̂o(0) (bottom row), proves
that

�τ ′(0)=�φ′′
r (0)=�φ′′

l (0), (35)

which implies that,when using the extracted matrices, the constantC2 in (8) is exactly the
derivative of the DGD.Note that an instance of the results in (32) and (35) appears in [16].
Hence from (34) we establish thekeyrelation

	b′
l(0)= 	q ′

o(0)/2, 	b′
r(0)= 	q ′

i (0)/2, (36)

which states thatthe eigenmodes of the extracted matrices move at half the velocity of
the PSPs in a neighborhood ofω = 0, thus proving thatthey are more stable(i.e., less

1 Note that there is a formal coincidence between the definition of the difference rotation matrixM�(ω0)=
M(ω0 + �ω)M−1(ω0) in the Mueller matrix method (MMM) [31] and our definition of the left-extracted
Mueller matrixMl , whereω0 is the measurement frequency and�ω is the small, fixed deviation chosen in the
MMM. The purposes of the MMM is to measure	Ωo(ω0) as the eigenmode ofM�(ωo) by varyingω0, in accord
with (30), whereω0 = 0. The major novelty in our treatment ofM� ≡Ml is that we fix the reference frequency
and let the frequency deviationω freely vary.
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Fig. 1. (a)�τ (thin solid),�φ′ (dashed), and�φ′
l/r (thick) versus frequency; (b) global eigenmodeb̂(ω) (thin),

right-extracted eigen-modêbr(ω) (thick), and input PSP̂qi (ω) (thin) on the same bandwidth. The rotation axes
k̂v andk̂q of the osculating circles of̂br(ω) andq̂i (ω) atω= 0 are also shown.

depolarized) than the PSPs, and thatthe trajectorieŝbr/l(ω) and q̂i/o(ω) also have the
same tangent atω= 0.

Figure 1(a) shows a plot of�τ , �φ′, �φ′
l/r, versus frequency for a fiber synthesized

with the standard waveplate model [32], with 100 plates and an rms DGD of 20 ps. The
figure confirms the coincidence of�τ with �φ′

l/r at the reference frequency up to the
first derivative. We also note from (A.5) that the gap between�τ and�φ′ is due to the
eigenmodes depolarization, so that the two curves get close when the depolarization is
small. Figure 1(b) shows a plot of the trajectories ofb̂r(ω) and q̂i(ω) on the Poincaré
sphere, which touch each other atω= 0, with the same tangent, as well as the rotation axes
of their osculating circles atω = 0. The trajectorŷb(ω) is also shown, and it is noted that
for the selected waveplates realization the global eigenmodeb̂(ω) is way more depolarized
than the PMD vector and the extracted eigenmodes vector. This is no coincidence. In fact,
in Appendix B we prove that, on the bandwidth for which the extracted eigenmode can
be considered frequency independent (which from (36) is larger than the bandwidth over
which the PSP is frequency independent) the global eigenmode describes an arc of agreat
circle at non-uniform speed, which in the limit is zero whenb̂0 · b̂r = 1. Incidentally note
that Bruyère postulated in his rotation model [15] thatthe PSPsdescribe great circles,
which in general is not true.

For a complete statistical characterization, more fiber realizations of the above 100-
waveplate model should be considered. Clearly, when observed on a small bandwidth
aroundω = 0, both trajectorieŝbr(ω) and q̂i(ω) should for most waveplates realizations
coincide with their osculating circles, and from (36) the length of the arc described by
b̂r(ω) should be half of that described byq̂i(ω). This is checked in Fig. 2(a), which shows
the length of the trajectorŷbr(ω) versus the length of the trajectoryq̂i(ω), for 1000 fiber
samples with an rms DGD of 20 ps. The trajectories are evaluated by samplingb̂r(ω) and
q̂i(ω) at 128 frequency values in a bandwidth of±5 GHz aroundω = 0, as we did in
Fig. 1(b). All lengths are normalized to the length 2π of a great circle. We see that most
realizations lie on the straight line with slope 1/2, as we expect. However, when increasing
the rms DGD to 100 ps and observing the trajectories on the same 10 GHz bandwidth,
which now equals the inverse of the rms DGD, we note from Fig. 2(b) a much wider spread
from the straight line with slope 1/2, but still with an average slope of 0.58 and with
only a few realizations having the PSPs less depolarized than the extracted eigenmodes.
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Fig. 2. Contour lengths of̂br(ω) vs. q̂i (ω), normalized to 2π , computed on 1000 fiber samples with rms DGD
equal to (a) 20 ps, (b) 100 ps, on a 10 GHz bandwidth.

Such deviations are due to higher-order PMD terms that renderb̂r(ω)∼= q̂i(ω)/2 no longer
a good approximation when the rms DGD is longer than the bit duration.

4. The eigenmodes rotation model

The first-order PMD fiber model with frequency independent PSPs over the transmitted
signal bandwidth fails to be accurate with installed single-mode fibers already over
terrestrial fiber-optic links and bit rates of 40 Gb/s per channel. The second-order PMD
fiber model [4] comes from the Taylor expansion of the PMD vector to first order. The
assumed linear variation of the PMD vector withω gives a questionable prediction of the
actual trajectoryq̂i(ω): a great circle passing through tôqi(ω) at ω = 0. An alternative
approach to second- and higher-order PMD was taken by Bruyère [15,33], who thought
of more closely approximating the PSP trajectoryq̂i(ω) by using its osculating circle.
However, Bruyère postulated thatq̂i(ω) always follows great circles, and also confused
the PSPs with the fiber global eigenmodes. The confusion was partly clarified in [16],
where however the authors kept assuming that their modified PSPs (which actually are
our extracted eigenmodes) follow great circles on the Poincaré sphere. The first paper that
tacitly used the extracted eigenmodes, and postulated that they follow a circular trajectory,
not necessarily a great circle, by rotating around a fixed rotation axis at a constant angular
speed was [22]. We will call such fiber model therotation model[23]. The authors in
[22] well realized the difference with Bruyère PSP rotation model. A justification of their
choice can be traced back to relation (36): since the extracted eigenmode depolarizes at
half the speed of the PSP, the rotation model should give an accurate fiber description
over a bandwidth larger than that of the model of Bruyère. Experimental and simulation
evidence that the rotation model is indeed very accurate comes from the performance of
the “all-order” PMD compensator proposed in the same paper [22]. Our simulations also
confirm that most fibers synthesized with the retarded waveplate model with a given rms
DGD can be fitted by a rotation model that has a very similar frequency response over a
bandwidth of the order of the inverse of the rms DGD. However, the focus of this paper is
not on the validation of the rotation model, but on the study of its features.
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In this section we explicitly derive the rotation model in the light of what we previously
learned on the extracted matrices, and then extensively use our third form of the received
intensity to describe the characteristics of the received intensity as a function of the rotation
model parameters. Our results can be considered as generalizations of the six-pulse model
of Francia et al. [33,34] to the more general case of non-equatorial trajectories of the
extracted eigenmodes.2

Mathematically we describe the rotation model by imposing that the eigenmodes of the
right-extracted matrixUr satisfy the following:

∂

∂ω
b̂r(ω)= 2kvk̂× b̂r(ω), b̂r(0)= b̂0,

where for simplicity of notation we redefine, here and up to the end of the paper,

b̂0
�= limω→0 b̂r(ω), which should not be confused with the eigenmode ofU0. The above

equation states that the eigenmode rotates at a constant angular speed 2kv around the fixed
axis k̂, starting fromb̂0 atω= 0. The rotation is counterclockwise forω > 0, 2kv > 0. The
solution of the motion is

b̂r(ω)= e2kvω[k̂×]b̂0, (37)

which can be explicitly written as [25]

b̂r(ω)= cos(2kvω)b̂0 + 2 sin2(kvω)
(
k̂ · b̂0

)
k̂ + sin(2kvω)

[
k̂× b̂0

]
. (38)

It is possible to extend the model to the non-uniform rotation speed simply by replacing
in the above expression the term 2kvω with a termΦv(ω)= 2kvω+ δΦv(ω), the last term
taking account of higher-order terms in the Taylor expansion ofΦv(ω).

The Mueller matrix ofUr for the rotation model can be written as [30]

Mr(ω)= e�φr(ω)[b̂r(ω)×] = [
e2kvω[k̂×]]e�φr(ω)[b̂0×][e−2kvω[k̂×]].

We interpretMI
�= e�φr(ω)[b̂0×] as the Mueller matrix associated with the unitary Jones

matrix

UI(ω)= e−j (�φr(ω)/2)(b̂0·	σ) = B0

[
e−j�φr(ω)/2 0

0 ej�φr(ω)/2

]
B

†
0

corresponding to a first-order model with frequency-independent unitary eigenmode
matrix B0, whose first column is the Jones vector associated with the Stokes vectorb̂0.

We also interpretMR
�= e2kvω[k̂×] as the Mueller matrix associated with the unitary Jones

matrix

R(ω)= e−jkvω(k̂·	σ) =K
[

e−jkvω 0
0 ejkvω

]
K†,

2 Note that in [33,34], as well as in [15], the fiber Jones matrix was “spectrally” decomposed by erroneously
using the PSPs, instead of the correct decomposition (4) which uses the eigenmodes. Hence all results in [33,34]
are correct, provided that the word “PSPs” is changed in “(extracted) eigenmodes.”
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whereK is the unitary matrix whose first column is the Jones vector associated with the
Stokes vector̂k. Therefore we have

Ur =K
[

e−jkvω 0
0 ejkvω

]
F

[
e−j�φr(ω)/2 0

0 ej�φr(ω)/2

]
F †

[
ejkvω 0

0 e−jkvω
]
K†,

whereF
�=K†B0. Such structure is the foundation of the compensator proposed in [22],

which implements the inverse of such global matrix.

4.1. Expression of the output intensity

We now present the exact expression of the received intensity for the rotation model,
using our third intensity formula (13). Without loss of generality we assume a reference
frame(ŝ1, ŝ2, ŝ3) on the Poincaré sphere in which the rotation axisk̂ ≡ ŝ3, andb̂0 is in the
(ŝ1, ŝ3) plane, and letϕ be the circleaperture angle,i.e., the angle from̂k to b̂0. We refer to
the right-extracted matrix, and make the analysis most general by allowing a non-uniform
rotation speed

b̂(ω)=
cosΦv(ω)sinϕ

sinΦv(ω)sinϕ
cosϕ

 . (39)

We also account for a general retardation angle where�φ(ω) = �φ1ω + δ�φ(ω),
where δ�φ(ω)

�= ∑∞
i=2�φiω

i/i! accounts for all the higher-order terms in a Taylor
expansion, and�φ1 = �τ as per (32). Our target is to get explicit expressions for the
intensity coefficientsN0(t), . . . ,N3(t) in (18). To this aim, we now introduce the following
functions:

pf(t)
�= F−1[�Eo(ω)ejδ�φ(ω)/2

]
, ps(t)

�=F−1[�Eo(ω)e−jδ�φ(ω)/2],
and the two functions

f±(t)
�= 1

2

(
pf

(
t + �τ

2

)
± ps

(
t − �τ

2

))
.

Similarly we define

pff (t)
�=F−1[�Eo(ω)ej (δ�φ(ω)/2+δΦv(ω))

]
,

pfs(t)
�=F−1[�Eo(ω)ej (δ�φ(ω)/2−δΦv(ω))

]
,

psf(t)
�=F−1[�Eo(ω)e

j (−δ�φ(ω)/2+δΦv(ω))
]
,

pss(t)
�=F−1[�Eo(ω)e

j (−δ�φ(ω)/2−δΦv(ω))
]

and the two functions

gs(t)
�= 1

2

(
pfs

(
t + �τ

2
− 2kv

)
− pss

(
t − �τ

2
− 2kv

))
,

gf(t)
�= 1

2

(
pff

(
t + �τ

2
+ 2kv

)
− psf

(
t − �τ

2
+ 2kv

))
.
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From (10) we immediately see thatu0(t)⊗ �Eo(t)= f+(t) and

	u(t)⊗ �Eo(t)= −
[

sinϕ

2

(
gs(t)+ gf(t)

)
, j

sinϕ

2

(
gs(t)− gf(t)

)
,cosϕf−(t)

]T

.

Plug such expressions into (18) to get

N0(t)=
3∑
i=0

∣∣ui(t)⊗ �Eo(t)
∣∣2

= |f+|2 + sin2ϕ

4
|gs + gf |2 + sin2ϕ

4
|gs − gf |2 + cos2ϕ|f−|2

= |f+|2 + cos2ϕ|f−|2 + sin2ϕ

2

(|gs|2 + |gf |2
)

= ∣∣f+(t)
∣∣2 + ∣∣f−(t)

∣∣2 + sin2ϕ

( |gs(t)|2 + |gf(t)|2
2

− ∣∣f−(t)
∣∣2) � 0 (40)

and such quantity is always positive. Moreover, from (18) we get

N1(t)= sinϕ�[−f ∗+(t)
(
gs(t)+ gf(t)

) + cosϕf ∗−(t)
(
gs(t)− gf(t)

)]
,

N2(t)= sinϕ
[
f ∗+(t)

(
gs(t)− gf(t)

) − cosϕf ∗−(t)
(
gs(t)+ gf(t)

)]
,

N3(t)= −2 cosϕ�[
f ∗+(t)f−(t)

] − sin2ϕ

2

(∣∣gs(t)
∣∣2 − ∣∣gf(t)

∣∣2). (41)

These are our target expressions. It is useful to note alternative forms of some of their terms

∣∣f+(t)
∣∣2 + ∣∣f−(t)

∣∣2 = 1

2

(∣∣∣∣pf

(
t + �τ

2

)∣∣∣∣2 +
∣∣∣∣ps

(
t − �τ

2

)∣∣∣∣2), (42)

2�[
f ∗+(t)f−(t)

] = 1

2

(∣∣∣∣pf

(
t + �τ

2

)∣∣∣∣2 −
∣∣∣∣ps

(
t − �τ

2

)∣∣∣∣2). (43)

Equations (40) and (41), along with (13), are the generalizations of Francia’s six-pulse
model, but they refer to the receivedintensity,for a most general non-equatorial trajectory
with aperture angleϕ �= 90◦.

Special cases

Case 1 (Φv(ω) = 0: First-order PMD model). Here we havegs = gf = f−. Hence from
(40)–(43) we get

N0(t)= 1
2

(∣∣∣∣pf

(
t + �τ

2

)∣∣∣∣2 +
∣∣∣∣ps

(
t − �τ

2

)∣∣∣∣2),
N1(t)= −sinϕ

2

(∣∣∣∣pf

(
t + �τ

2

)∣∣∣∣2 −
∣∣∣∣ps

(
t − �τ

2

)∣∣∣∣2),
N2(t)= 0,

N3(t)= − cosϕ
2

(∣∣∣∣pf

(
t + �τ

2

)∣∣∣∣2 −
∣∣∣∣ps

(
t − �τ

2

)∣∣∣∣2).
Thus, if the ISOP is aligned witĥb0 ≡ [sinϕ,0,cosϕ]T we get: I (t) = N0 + j1N1 +
j3N3 = |ps(t −�τ/2)|2, as it should.



272 A. Bononi, A. Vannucci / Optical Fiber Technology 8 (2002) 257–294

Case 2 (ϕ = π/2: Equatorial trajectory for the eigenmode). If also the auxiliary functions
f±, gs, gf are real, then from (40), (41) we get

N0(t)= f+(t)2 + 1
2

(
gf(t)

2 + gs(t)
2), N1(t)= −f+(t)

(
gf(t)+ gs(t)

)
,

N2(t)= 0, N3(t)= 1
2

(
gf(t)

2 − gs(t)
2). (44)

This occurs for instance when the input field is real (chirpless), no GVD is present, and
�φr(ω)=�τ ω (linear retardation),Φv(ω)= 2kvω (constant rotation speed). In this case

pff = pss= psf = pfs = pf = ps
�= p is the input pulse, andf±(t) = 0.5[p(t +�τ/2)±

p(t −�τ/2)], gs(t)= f−(t − 2kv), gf(t)= f−(t + 2kv).

Figure 3 shows a graph off+, gs, andgf for a perfectly rectangular (NRZ) input pulse
p(t) of durationT . The graphs are slightly offset to ease the reading of the figure. From
such figure and (44) we note that the received intensity can spread at most by�τ/2+ 2kv
on each side of the original NRZ pulse, which determines the intersymbol interference
(ISI) depth due to such model of PMD. We are in the case�τ/2< 2kv, typical of a small
DGD fiber.

For such building functions, Fig. 4, leftmost column, shows the received intensity for
three distinct ISOPs:

(i) ĵ = b̂0 ≡ ŝ1 corresponding to the case of “transmission over a PSP” [35], i.e.,
alignment of the ISOP with the input PSP at the reference frequency, or in our terms,
alignment with the right-extracted eigenmode atω = 0. The output intensity (13)
in such case isI (t) = N0 + N1. We note the well-known overshoot and dip in the
received pulse [17,33,34], both of duration�τ . From (44) and Fig. 3 we see that, at
the overshoot, we haveN1 = 1·(0.5+0)= 0.5 andN0 = 12+0.5[0.52+02] = 1.125,
so that at the peak the intensity is 1.125+ 0.5= 1.625. Similarly the value at the dip
is 1.125− 0.5 = 0.625. We note thatthe intensity is mostly distorted in this case of
transmission over a PSP,and the overshoot is at thetrailing edgewhen the ISOP
is aligned with theslow eigenmode. Such observations partly explain the results in
[17, Fig. 4], although in such reference GVD is also present, whose effects will be
discussed in Section 5.5.

(ii) ĵ = 	b′(0)/|	b′(0)| ≡ ŝ2 corresponding to an ISOP in the direction of the derivative of
	b(ω) at ω = 0, i.e., the direction of the tangent to the trajectory at such point. The

Fig. 3. Building functionsf+(t), gs(t), and gf(t) for an input NRZ pulsep(t) of duration T , with
�φ′

r(0)=�τ = 0.1T , 2kv = 0.25T . Graphs are slightly offset for clarity.
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Fig. 4. Rotation model witĥk = ŝ3, b̂0 = ŝ1 (ϕ = π/2),�τ/2< 2kv. Left column: intensity for three orthogonal
ISOPs,�τ/T = 0.1, roll-off 0.0. Center and right columns: same, but with roll-off 0.2, and 2kv/T = 0.25 and
0.125, respectively.

output intensity in such case isI (t)=N0(t), sinceN2 = 0, and is an even function of
time.

(iii) ĵ = k̂ ≡ ŝ3, corresponding to an ISOP aligned with the rotation axis. HereI (t) =
N0 +N3.

The three plots in the center column in Fig. 4 show the same graphs as those in the
leftmost column, but when the input pulse has a raised cosine shape (in power) with
roll-off 0.2. The effect of a pulse smoother than a squared NRZ is to smooth out the
discontinuities, so that mainly the peaks and dips emerge, and the level of the overshoot
is less than 1.625, and gets smaller and smaller as the roll-off increases. The three plots in
the rightmost column show the case�τ/T = 0.1, 2kv/T = 0.125, i.e., a smaller rotation
speed, still with roll-offα = 0.2, where we note that the overshoot level is smaller and
the dip does not appear, since it falls on the flank of the pulse, being the DGD and the
rotation speed too small. Note that long strings of consecutive ones in a digital on off
keying (OOK) NRZ transmission look like a single pulse, with a roll-off much smaller
than that of the single pulse. To guess the effect of PMD on such strings, one can refer to
the single pulse deformation, and rescale the values�τ/T and 2kv/T by the duration of
the string. We can thus see thatsmoothing the single pulse by using a larger roll-off has
the effect of smoothing the deformations due to PMD on the isolated pulse, the overshoots
reappearing on blocks of consecutive marks of sufficient length.Hence, given a sufficient
number of consecutive ones, the overshoot will reach the peak value 1.625.

Finally, here is an argument to explain why the intensity is quite similar in the cases
ĵ = ŝ2 and ĵ = ŝ3, and is different in the casêj = ŝ1. From Fig. 3 we note that
1
2(gf(t)

2 + gs(t)
2) and 1

2(gf(t)
2 − gs(t)

2) are small with respect tof+(t)2. Hence in (44)

we can approximateN0(t) ∼= f 2+(t), N3(t) ∼= 0, so that both when̂j = ŝ2 and ĵ = ŝ3 we
haveI (t)∼=N0(t)∼= f 2+(t). What really makes the difference in the caseĵ = ŝ1 is thebeat
termf+(t)(gf(t)+ gs(t)) which is non-negligible sincef+ is large.
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Fig. 5. Same as in Fig. 4, but now�τ/2> 2kv.

Let’s move to the case�τ/2> 2kv, in which DGD dominates over the eigenmode
rotation, a typical situation in non-compensated fibers. When 2kv = 0 and 	j is aligned
with the slow eigenmode we get an undistorted delayed replica of the pulse, as we saw in
special Case 1.

Figure 5, leftmost column, shows the received intensity for the same three ISOPs as
before.

We see that, when̂j = b̂0, the effect of the rotation 2kv is to create a blip on the flat
part of the pulse, and to smear the flanks of the NRZ pulse. The top level of the blip is still
1.625, and the bottom level 0.625. Increasing 2kv further has the effect of enlarging the
blip and increasing the smearing of the flanks. We note thatwhen the ISOP is aligned with
the eigenmodêb0 the pulse in this case is an essentially undistorted, delayed version of the
NRZ pulse, while broad pulse smearing is present for the remaining ISOPs, the dominant
effect being first-order PMD, i.e., the pulse-splitting effect of the dominant�τ .

The three plots in the center column in Fig. 5 show the same graphs as those in the
leftmost column, but when the input pulse has a raised cosine shape (in power) with roll-
off 0.2, where the blips are smoothed out. The three plots in the rightmost column show
the effect of doubling 2kv, still with roll-off 0.2, and we note that the blip is more marked.

In Fig. 6 we report the four intensity componentsN0, . . . ,N3 for the rotation model
with k̂ = ŝ3, b̂0 = ŝ1, �τ/T = 0.4, 2kv/T = 0.5, for an OOK modulated input field. The
first row reports the output intensity|�Eo(t)|2 we would get in the scalar filtering case
e−j φ̄(ω). The left column showsN0 throughN3 in the case without GVD(φ̄(ω) = 0)
while the right column gives the values in the presence of GVD, which we quantify in
terms of the bit-rate independent factorβ2L/T

2 = L/LD, beingL the link length,β2

the dispersion parameter, andLD
�= T 2/β2 the dispersion length [36]. We note the main

feature in the absence of GVD, namely thatN2 = 0. Such condition implies that the same
intensity is obtained when the azimuth of the ISOP changes sign, i.e., whenj2 is changed
in −j2.

We note that an even inputEi(t) with GVD gives an even�Eo(t), so that for an
interpretation of the above results we can again use the time symmetry properties of
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Fig. 6. The four intensity components vs. normalized time, for a rotation model withk̂ = ŝ3, b̂0 = ŝ1,
�τ/T = 0.4, 2kv/T = 0.5. The first row reports the intensity|�Eo(t)|2, while the left column showsN0 through
N3 in the case without GVD, and the right column for GVD parameterL/LD = 0.1.

N0, . . . ,N3. For instance, take the 101 pattern. TheN0, N2 terms contributed by the two
marks on the space in the middle tend to add up, since they are even with respect to the
position of the marks, while theN1, N3 terms tend to cancel, since they are odd. Thus
the space level in the 101 sequence is the one determined by theN0 terms when the ISOP
hasj2 = 0, while it is mostly enhanced or depressed whenj2 = ±1 andj1 = j3 = 0, as
evidenced by the bottom two graphs in the right column of Fig. 6. The “critical” ISOPs
ĵ = ±ŝ2 will be further discussed in Section 5.5.

We remark that all the above results refer to the caseϕ = π/2, i.e., to a rotation axis at
right angles withb̂0, as done in [33,34]. In the general case, we verified that, for given 2kv,
the pulse distortion is smaller than in the caseϕ = π/2, where for the same rotation angle
the eigenmodes describe a longer arc, and there is thus more polarization dispersion of the
spectral components of the signal.

In the next section we will thoroughly explore the ECP performance of an optical
transmission over a fiber that follows the rotation model.
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5. Eye closure penalty

In this section we derive a simple approximate formula of the ECP applicable to any
single-mode fiber whose Jones matrix Pauli vector is known. The formula extends the
elegant and simple method presented by Chen [8] to the general case of all-order PMD.
Before deriving such generalized Chen’s formula (GCF), we first recall Chen’s formula
for first-order PMD, and link it to other well-known formulas for the ECP available in the
literature.

We then test the accuracy of the GCF against simulation results for the fiber rotation
model, over a reasonable range of its parameters. In so doing, we test the combined effect
of PMD and GVD/chirp of the input pulse.

Finally, we show that the GCF coincides with an ECP formula already known in the
literature [24], although the assumptions in the derivation are different.

5.1. Chen’s formula for first-order PMD

The method considers only the penalty on the periodic bit sequence. . .1010. . . , which
is the one that most contributes to the eye closure penalty in presence of first-order PMD,
since long strings of ones and zeros are little affected by DGD.

In absence of PMD, considering that the electrical lowpass filter will pass only the first
harmonic of the 1010 sequence, the first harmonic of the received scalar field, taking into
account a non-zero extinction ratio, can be expressed as

�Eo(t)= k
(
1+ a cos(ω0t)

)
, (45)

whereω0
�= π/T . The photodetected current3 contribution of this term is [8]

I (t)=
(

1+ 1− r
1+ r cos(ω0t)

)
Pavg,

wherePavg
�= k2(1 + a2/2) and 2a/(1 + a2/2) = (1 − r)/(1 + r), where the extinction

ratio r is the ratio of the average power on zeros to the power on ones. In the presence of
first-order PMD, the power splits on the two input PSPs (i.e., the frequency-independent
right-extracted eigenmodes atω→ 0), so that the output intensity is

I (t)=
[
1+ 1− r

1+ r Y cos
(
ω0(t − δ)

)]
Pavg, (46)

where

Y =
√

cos2
(
π�τ

2T

)
+ sin2

(
π�τ

2T

)
[1− 2γ ]2

)
=

√
1− 4γ (1− γ )sin2

(
π�τ

2T

)
(47)

being�τ the DGD andγ the power splitting factor, and the second form appears in

[37,38]. Obviously, the ECP in dB evaluated on the 1010 sequence is: ECP
�= −10 LogY ,

while a more complete expression of the Q-factor includingY is given in [8] and allows

3 We assume for simplicity a responsivity of the photodiode equal to one, so that the field intensity is equal to
the photodetected current.
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the evaluation of the bit-error rate in the standard Gaussian approximation in the presence
of amplified spontaneous emission noise. Whenγ = 0.5, we have the worst case penalty

ECP= −10 Log

∣∣∣∣cos

(
π�τ

2T

)∣∣∣∣. (48)

Moreover, forπ�τ/2T � 1, we can linearize to get: ECP∼= A(�τ/T )2γ (1 − γ ), with
A ∼= 21.4 which is quite close to the well-known approximation based on the pulse
broadening [7]. It is shown in [39, p. 136] that indeed the coefficientA varies with pulse
shape and receiver characteristics.

5.2. Generalized Chen’s formula for all-order PMD

We generalize here Chen’s formula to all-order PMD. We start from the very general
expression (13) of the output intensity, which is based on the Pauli vectoru(ω) of U(ω),
whose entries are made explicit in (10). Assume, as in Chen’s work, that the common-phase
distorted field in formula (13) is thereal sinusoidal term given in (45). Then

u0 ⊗ �Eo = k
[
cos
�φ(0)

2
+ a

2
ejωot cos

�φ(ω0)

2
+ a

2
e−jωot cos

�φ(−ω0)

2

]
and

uk ⊗ �Eo = −jk
[
sin
�φ(0)

2
bk(0)+ a

2
ejωot sin

�φ(ω0)

2
bk(ω0)

+ a
2

e−jωot sin
�φ(−ω0)

2
bk(−ω0)

]
, for k = 1, . . . ,3.

As already noted, expression (13) also holds when instead of the Pauli vectoru(ω) ofU(ω)
we use thatu r(ω) of Ur(ω), sinceU†(ω1)U(ω2) = U†

r (ω1)Ur(ω2). However, the above
terms greatly simplify when usingUr instead ofU because of the property�φr(0) = 0.
Hence from now on we will work withUr, although we will omit the subscript for
simplicity of notation. Substituting the above terms in (16), (17), andignoring the “double-
frequency” terms at2ω0, we get for the low-frequency (lf) components

{
N0(t)

}
lf = k2

[
1+ a

2

2
+ a

(
cos
�φ(ω0)

2
+ cos

�φ(−ω0)

2

)
cos(ω0t)

]
,

{ 	N(t)}lf = k2a

(
sin
�φ(ω0)

2
b̂(ω0)− sin

�φ(−ω0)

2
b̂(−ω0)

)
sin(ω0t),

since the vector product(	u ⊗ �Eo) × (	u ⊗ �Eo)
∗ in (17) has only double-frequency

components when�φ(0)= 0. Finally, from (13) we get the low-pass filtered photodetected
current as in (46), where

Y =
([

cos(�φ(ω0)/2)+ cos(�φ(−ω0)/2)

2

]2

+
[
ĵ · sin(�φ(ω0)/2)b̂(ω0)− sin(�φ(−ω0)/2)b̂(−ω0)

2

]2)1/2

(49)

gives the eye reduction on the 1010 sequence, and is thus the sought generalization of

Chen’s formula. By defining the four-dimensional vectoruR(ω)
�= (u(ω) + u∗(−ω))/2,
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representing the Fourier transform of the real partuR(t) of the time-impulse response
vectoru(t)= uR(t)+ juI(t), the GCF formula can be written very compactly as

Y (ω0)=
∣∣uR(ω0) · j

∣∣. (50)

5.3. Sanity checks

5.3.1. First-order model
Assume a first-order model (B.2) for the right-extractedUr. Then from (49) we get

Y =
√

cos2
(
π�τ

2T

)
+ sin2

(
π�τ

2T

)(
b̂ · ĵ)2

. (51)

If 2θ is the angle between̂b and the ISOP̂j , from [27] we know that

γ
�= ∣∣B̂†

s Ĵ
∣∣2 = 1+ (b̂ · ĵ )

2
= 1+ cos2θ

2
= cos2 θ,

hence(b̂ · ĵ )2 = (2γ − 1)2 and thus the formula forY checks with Chen’s (47).

5.3.2. Rotation model
We specialize here the penalty formula to the rotation model described in Section 4.
From (38), and assuming a linear phase�φ = ω�τ we get the following expression

for Y

Y =
√

cos2
(
�τω0

2

)
+ sin2

(
�τω0

2

)[	a · ĵ]2
, (52)

where, by defining cosϕ
�= (k̂ · b̂0), we built the vector

	a �= b̂(ω0)+ b̂(−ω0)

2
= (

cos(2kvω0)b̂0 + (
1− cos(2kvω0)

)
cosϕk̂

)
, (53)

which is the average of the eigenmodes at±ω0, whose squared magnitude isa2 =
sin2ϕ cos2(2kvω0)+ cos2ϕ, and whose direction̂a represents the best ISOP, the one that
gives theminimumpenalty

ECPm = −5 Log
[
cos2(�τω0/2)+ sin2(�τω0/2)a2].

Conversely, the worst ISOPs are those lying on the great circle orthogonal toâ, resulting in
a worst-case penalty coinciding with expression (48). This means that,as far as the1010
sequence is concerned,a rotation model for the extracted matrix has the worst-case penalty
coinciding with that of a first-order PMD model.

The locus of ISOPs that have the same ECP is composed of the two circles on the
Poincaré sphere centered atâ, obtained by the intersection of the sphere with the cone
having axisâ and given aperture, as shown in Fig. 7. Hence we can think that the ECP
maps on the Poincaré sphere of ISOPs in circles centered at the pointâ, with the ECP
increasing from the (degenerate) circle atâ, up to a maximum value on the great circle
orthogonal to it.
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Fig. 7. Locus of ISOPs on Poincaré sphere having the same ECP, according to (52).

We can also find the penalty in the case of PSP transmission [35], i.e., one in which the
ISOP is aligned with the right-extracted eigenmode at the central frequency:ĵ = b̂0. We
find in this case

ECP= −5 Log

[
cos2

(
�τω0

2

)
+ sin2

(
�τω0

2

)[
2 sin2(kvω0)cos2ϕ + cos(2kvω0)

]2
]
.

The best ISOP̂a is in some sense the point closer to the trajectoryb̂(ω) in the range
[−ω0,ω0]. It coincides withb̂0 only when there is no rotation,kv = 0. When the rotation
on the above range is a half circle(2kvω0 = π/2), the best ISOP is aligned with the rotation
axis k̂, as per (53). When the rotation is an entire circle, the best ISOP is diametrically
opposed tôb0 on the trajectory.

5.4. Numerical verifications

We tested our analytical GCF formula against the exact ECP obtained by propagating
a pseudo-random binary sequence (PRBS) of 27 − 1 bits through a fiber synthesized by
the rotation model of its right-extracted matrix, with the rotation axisk̂ aligned withŝ3.
The supporting mark pulses are raised cosine in power, with roll-off 0.8. The extinction
ratio is infinite. The received intensity is lowpass filtered with a fourth-order Bessel filter
of bandwidth 0.65 the bit-rate.

The analytical GCF is based on the assumption of a purely sinusoidal signal (at the
“1010” frequency equal to half the bit rate, e.g., 5 GHz for a 10 Gb/s signal) being
transmitted along the fiber. Hence we expect that, whenever the “1010” sequence is the
main eye-closing sequence, the GCF gives results close to the correct ECP. Since the exact
pulse shape is not taken into account, we expect discrepancies due to such effect.

Initially, we consider an equatorial circle for the extracted eigenmodes, by setting
b̂0 = ŝ1, so thatϕ = π/2 and no common-mode GVD is present.

For a set of given values of relative DGD�τ/T , we swept the values of the (ω-
independent) relative angular rotation speed 2kv/T , and recorded the ECP after the
lowpass electrical filter. The solid curves in Fig. 8 show the ECP versus 2kv/T for
fixed �τ/T = 0.05, 0.1, 0.2, 0.4, when the ISOP iŝj = b̂0. This corresponds to PSP
transmission [35], for which we already observed the maximal pulse deformation caused
by the eigenmodes rotation in Section 4. We therefore expect the maximal discrepancy
between the analytical ECP and the simulated one. Similar ECP curves were already
reported in [34]. It is interesting to observe the oscillatory behavior of the ECP, with
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Fig. 8. ECP versus normalized angular rotation speed in rotation model(k̂ = ŝ3, b̂0 = ŝ1), for normalized DGD as
a parameter (from top to bottom:�τ/T = 0.4, 0.2, 0.1, 0.05). Solid: simulated PRBS; dashed: theoretical GCF.
ISOPĵ = b̂0.

a first local maximum around 2kv/T ∼= 0.6. The local maxima are repeated at intervals
of 1 from each other. Note that, since 2kvω0 = (2kv/T )π is the rotation angle between
the eigenmode at the reference frequency and the eigenmode at frequencyω0, a value
2kv/T = 1 corresponds to a very large rotation of±π of the eigenmode at frequency±ω0

with respect tob̂0, i.e., a complete circle is described by the extracted eigenmodes over
the bandwidth[−ω0,ω0]. The shown range of 2kv/T is therefore unrealistically large, and
in practice it makes sense to observe the ECP only in the range 2kv/T < 1. Moreover,
care must be taken in reading out the results of the figure, since it has been shown that
in standard fibers there is a strong statistical correlation between DGD and PSP rotation
speed, so that large rotation speed values correspond usually to very low DGD values and
vice versa [17,40].

In the same figure, we reported in dashed lines, and in dB, the analytical GCF (49),
which here specializes to the rotation model case (52). We observe a good numerical match
only for low values of the rotation speed 2kv/T < 0.25. The analytical ECP captures the
oscillatory behavior of the ECP, with almost the correct location of maxima and minima,
but the actual values of ECP are quite off for large rotation speed 2kv/T . In particular, the
analytical ECP is bounded by the limiting formula (48), which is also the worst case of the
first order model.

The next question is how such ECP curves change when we use the orthogonal ISOP
ĵ = −b̂0. It can be proven that if we use a time-reversed inputEi(−t) and a reversed ISOP
ĵ = −b̂0 we obtain a time-reversed output intensityI (−t), and therefore, if the PRBS is
sufficiently long, we should obtain the same ECP curves as in Fig. 8. The simulated ECP
however slightly differs from thêj = b̂0 case, by less than half a dB. The reason is that the
impulse response of the Bessel filter is not symmetric in time. Thus even with very long
PRBS sequences we should not expect exactly the same ECP when reversing the ISOP.

Let’s continue to investigate specific ISOPs. Figure 9 shows the smooth transition of
the simulated ECP-vs.-2kv curves when the ISOP is rotated on the equator, starting from
ĵ = ŝ2 up to ĵ = ŝ1 with azimuth decreasing from 90◦ to 0◦ in steps of 15◦, as shown
in the inset. We observe thatĵ = ŝ2 gives the smallest penalty when the rotation speed
exceeds the critical value 2kv/T ∼= 0.33 through which—very surprisingly—essentially
all ECP curves pass. Very similar ECP curves are obtained when rotating the ISOP on
the (ŝ1, ŝ3) plane starting from̂s3 and ending on̂s1. Hence we conclude thatfor rotation
speeds2kv/T < 0.33 the best ISOP is the one aligned with±b̂0 (PSP transmission), while
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Fig. 9. Simulated ECP vs. angular rotation speed, for rotation model (k̂ = ŝ3, b̂0 = ŝ1) with fixed�τ/T = 0.4,
when the ISOP slides on the equator, moving fromĵ = ŝ2 to ĵ = ŝ1 with azimuth decreasing from 90◦ to 0◦ in
steps of 15◦ , as shown in the inset.

for rotation speeds exceeding0.33 the best ISOPs are those orthogonal(on the Poincaré
sphere) to b̂0, i.e., those aligned with±	b′(0) [17]. Finally, the horizontal dashed line is
the theoretical ECP predicted by the GCF (52) for the caseĵ = ŝ2. We note that the GCF
slightly overestimates the ECP for increasing rotation speed up to 2kv/T ∼= 0.6, but overall
the estimation error is much smaller than the caseĵ = ŝ1.

The above figures give an idea of how the ECP varies with the rotation model parameters
for some selected ISOPs. We tested more thoroughly how the simulated ECP varies as a
function of the azimuthθ and ellipticityε of the ISOP in the graphs in Fig. 10, where the
shown range of(θ, ε) spans the whole Poincaré sphere. The figure refers to the simulated
ECP with PRBS input sequence, for a rotation model withk̂ = ŝ3, b̂0 = ŝ1 (ϕ = π/2),
with fixed �τ/T = 0.4 and rotation speed increasing from top to bottom graphs. First
concentrate on the graphs in the left column. In the top left graph the rotation speed is
small. We note one central point of minimum ECP, corresponding toĵ = b̂0, and two side
minima corresponding tôj = −b̂0. The great circle orthogonal tôb0 maps into the two top
rails on the surface atθ = ±π/4, which show maximal ECP, as predicted by the GCF (52).
Note also the perfect symmetry inθ , which comes from the fact thatN2 = 0 in the absence
of GVD, as already noted in (44), and the approximate symmetry inε, due to the fact that
N3 ∼= 0 in this case, as already noted in Section 4.1. As the rotation speed increases, the
“good” ISOPsĵ = ±b̂0 deteriorate, while the “bad” ISOPs(θ = ±π/4) become those with
lowest ECP, with an intermediate case at 2kv/T ∼= 0.33 with a global flattening of the ECP
surface, which we partly already observed in Fig. 9.

One of the most interesting results coming from the theoretical GCF (52) in the rotation
model is the mapping of the ECP on the Poincaré sphere of ISOPs, which shows circular
symmetries around the axis determined by the optimal ISOPâ, as already noted in Fig. 7.
Clearly, the theoretical GCF only considers what happens to a purely sinusoidal input
power. In Fig. 10,right column,we tested how such symmetries carry over when a PRBS
sequence is applied to the input. We rotated the axes, so that nowâ is aligned withŝ3
and k̂ = ŝ1, and thus all circles around̂a are the loci of constant elevation on the new
(θ, ε) plane. Note that in our case(ϕ = π/2) we have from (53):̂a ≡ b̂0 for all rotation
speeds 2kv. We see from the top right plot(2kv/T = 0.1) that indeed the∧-shaped surface
reflects such circular symmetry predicted by (52), and also the ECP values are in agreement
with the GCF. As we increase the rotation speed to the special value 2kv/T = 0.33, we
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Fig. 10. ECP vs. ISOP azimuthθ and elevationε for PRBS input sequence. Left column: rotation model
(k̂ = ŝ3, b̂0 = ŝ1) with fixed �τ/T = 0.4, increasing 2kv/T top to bottom. Right column: same model, with
axes reoriented so thatâ ≡ b̂0 = ŝ3, k̂ = ŝ1.

note the ECP “tent” surface flattens out, again indicating that there is circular symmetry
aroundâ, although the numerical ECP values predicted by the theory (52) start to be less
accurate. There is a small breakup of the symmetry between the hemisphere centered at
â and that at−â due to the asymmetric electrical filter response, as previously discussed.
As we further increase 2kv we see that the∨-shaped ECP surface preserves the circular
symmetry around̂a, although the numerical predictions of the GCF are completely off.

The important message to get is that,in the case of̂k at right angles witĥb0, although the
numerical predictions of theoretical ECP(52)are correct only at small rotation speed, its
prediction of circular symmetry around̂a holds surprisingly even at large rotation speed.

We finally tested the effect of changing the aperture angleϕ betweenb̂0 and k̂. In the
case of a small apertureϕ < 10◦, and by symmetry> 180◦−10◦, the surface remains close
to the∧-shaped “tent” for all rotation speeds, since the system essentially behaves like
a first-order model, which also displays the same “tent” surface. We can intuitively say
that in this case all ISOPŝj on the sphere “see” an essentially fixed eigenmodeb̂r(ω),
except possibly for those ISOPs very close to the trajectoryb̂r(ω). We verified that the
ECPsymmetries around̂a substantially diminishfor increasing rotation speedwhenb̂0 is
not orthogonal tok̂. Such asymmetries are most evident whenϕ = 45◦ or ϕ = 180◦−45◦,
and in this case we observed that the symmetry axis for large rotation speed becomesb̂0,
a fact that isnot accounted for by the theoretical axis formula (53).
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Fig. 11. Rotation model (̂k = ŝ3, b̂0 = ŝ1, �τ/T = 0.4) at increasing rotation speed (first row: 2kv/T = 0.1;
second row: 2kv/T = 0.33; third row: 2kv/T = 0.5) andL/LD = 0.1 (left column);L/LD = −0.1 (right
column). Center column: difference of ECP (dB) betweenL/LD = 0.1 andL/LD = 0.

5.5. Effect of GVD

We now concentrate on the effect of the chirp induced by common-mode GVD on
the ECP surfaces. We start with a first-order model, one with zero rotation speed. We
numerically verify that in the absence of rotation, GVD preserves the ECP shape, the only
effect being an upward shift of the whole ECP surface.

The symmetry inθ is broken more and more by GVD as the rotation speed is increased.
The simulated ECP surfaces in Fig. 11 show the case of a rotation model withk̂ = ŝ3,
b̂0 = ŝ1, �τ/T = 0.4 for increasing rotation speed (first row: 2kv/T = 0.1; second row:
2kv/T = 0.33; third row: 2kv/T = 0.5). The first column gives the ECP surfaces for GVD
L/LD = 0.1, while the second column gives the ECP difference with respect to the case
without GVD. We note that the asymmetry inθ increases with the rotation speed. We also
note the presence of a particular ISOP, aligned with	b′(0), which we denote aŝj = b̂′

0 (= ŝ2
in this case) for which the penalty (as seen in the central column) is actually reduced with
respect to the case without GVD: in this case we have a fruitful interaction between PMD
and GVD which opens the eye. For instance, at large rotation speed there is a small region
aroundb̂′

0 at which the ECP is negative. While the best ISOP isb̂′
0, the worst ISOP is−b̂′

0.
A plot of the time waveform of the received intensity for both the best and the worst ISOPs
with GVD was already shown in Fig. 6, bottom two graphs on the right column, where the
most evident feature is the strong closure of the zeros in the 1010 sequences for the worst
ISOP, and the “cleaning” of the zeros for the same 1010 sequences for the best ISOP, with
respect to the case of zero GVD.

The third column in Fig. 11 shows the ECP in the caseL/LD = −0.1. We note that
inverting the sign of GVD amounts to a mirror image of the ECP surface with respect to
the center line, which corresponds to the great circle in the plane(k̂, b̂0), which is thus the
locus of ISOPs which are unaffected by a change in sign of GVD. The locus of maximal
ECP variation is instead the equatorial circle, the one on which the eigenmodes rotate,
where the best and worst ISOPs (b̂′

0 or −b̂′
0 according to the sign of dispersion) lie. From
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Fig. 12. Rotation model (̂k = ŝ3, b̂0 = ŝ1, �τ/T = 0.4) at increasing rotation speed (first row: 2kv/T = 0.1;
second row: 2kv/T = 0.33; third row: 2kv/T = 0.5) and (left column)L/LD = 0.05; (center column)
L/LD = 0.1; (right column)L/LD = 0.1375.

the ECP surfaces we note that the best ISOP moves fromb̂0 at small rotation speed towards
±b̂′

0 as the rotation speed increases. The ISOP domains of best performance centered at the
best ISOP, which we here define as the ones for which the ECP remains below 0.5 dBs, is
fairly large:±10◦ in θ and±30◦ in ε at a large 2kv/T = 0.5 rotation speed, and for GVD
L/LD = 0.1.

For the same rotation model, Fig. 12 highlights the effect of increasing the amount of
GVD from the left to the right column on the shape of the ECP surfaces. In particular we
note the change in shape of the ISOP domains of best performance. We see that, while at
low rotation speed (first row) such best ISOP domains first shrink and then disappear as
GVD increases and the ECP surface shifts upwards, at larger rotation speed they remain
almost unchanged for increasing GVD.

5.6. Relation with small-signal baseband frequency response

Noé et al. [24] studied the frequency response of the small-signal IM/IM conversion in a
fiber with PMD. If the input field is a CW with a small amplitude modulation, the photode-
tected intensity modulation at the receiver is linearly related to the amplitude modulation
at the transmitter through a (scalar) baseband filter

HIM (ω)= 1

2
Ĵ†(e−jδφ̄(ω)U†

0U(ω)+ ejδφ̄(−ω)U†(−ω)U0
)
Ĵ, (54)

where as usual̂J is the ISOP associated with the four-dimensional Stokes vectorj = [1; ĵ],
andδφ̄(ω)

�= φ̄(ω)− φ̄(0), being the fiber matrixT (ω)= e−j φ̄(ω)U(ω). We want to prove
here such result, which is given in [24] neglecting the GVD termδφ̄(ω), and strengthen it
by showing that

HIM (ω)=wR(ω) · j, (55)
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where

w(ω)
�= e−jδφ̄(ω)u r(ω);

wR(ω)
�= w(ω)+w

∗(−ω)
2

, w I(ω)
�= w(ω)−w

∗(−ω)
2i

(56)

beingu r the Pauli vector of the right-extracted matrixUr. Hence,HIM (ω0) is the filter
whose magnitude is ourY (ω0) function (50).

The proof goes as follows.

Proof. Let the input field beEi(t) = Ei(t)Ĵ, with Ei(t) = √
P (1 + (a/2)cosω0t) and

|a| � 1. Thus the input intensity isIi(t) ∼= P(1 + a cosω0t) = P(1 + (a/2)(ejω0t +
e−jω0t )). The output field in the frequency domain is

Eo(ω)=Ei(ω)e−j φ̄(ω)U(ω)Ĵ

= √
P

[
δ(ω)U0 e−j φ̄(0)Ĵ + a

4

(
δ(ω−ω0)e−j φ̄(ω0)U(ω0)

+ δ(ω+ω0)e−j φ̄(−ω0)U(−ω0)
)
Ĵ
]
.

Taking the inverse Fourier transform, we build the output intensityIo(t) = E†
o(t)Eo(t).

Neglecting the small terms ina2 we get

Io = P
{

1+ a
2

Ĵ†
(

e−jδφ̄(ω0)U
†
0U(ω0)+ ejδφ̄(−ω0)U†(−ω0)U0

2
ejω0t + tc

)
Ĵ
}
,

where tc is shorthand for the transpose conjugate of the first term in the bracket. In
other terms, the response to the input intensity modulation signal ejω0t is HIM (ω0)ejω0t

(including the caseω0 = 0 for whichHIM (0)= 1), where the filter expression is given in
(54), thus confirming its interpretation as the small-signal IM/IM frequency response.

Now we move to the second part of the proof.
Since for anyω1, ω2 it is: U†(ω1)U(ω2)=U†

r (ω1)Ur(ω2), we can work with the right
extracted matrix instead ofU . Hence

HIM (ω)= 1
2 Ĵ†(e−jδφ̄(ω)Ur(ω)+ ejδφ̄(−ω)U†

r (−ω)
)
Ĵ (57)

and decomposingUr in its Pauli vectorur we immediately get the sought result (55).✷
The fact that|HIM (π/T )| in (55) coincides with our GCF formula (50) (which we could

have extended to include GVD) should not surprise. In the GCF, the field modulation depth
a can be large, but in the output intensity expression we eliminate the double frequency
terms, proportional toa2, invoking the action of the low-pass electrical filter. Here instead
the double frequency terms are neglected on the assumption of smalla. The justifications
being different, we reach the same result.

However, this last point of view is more helpful in thinking what happens if the input
intensity is expanded in Fourier series, i.e., is a superposition of sinusoidal modulating
terms. According to the small-signal model, the output is just the superposition of the
individual sinusoidal intensity inputs. A similar extension in the GCF does not lead to any
insight.
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Application to a fiber with linear retardation of the extracted matrix:�φr(ω) = �τω
gives

HIM (ω)= cos

(
�τ

2
ω

)
cos

(
δφ̄(ω)

) − j sin

(
�τ

2
ω

)
	a(ω) · ĵ ,

where	a �= [e−jδφ̄(ω0)b̂r(ω) + ejδφ̄(−ω)b̂r(−ω)]/2 is in general a complex vector. For the
rotation model, the eigenmodeb̂r is the sum of an even and an odd real terms:b̂r = 	be+ 	bo

where

	be(ω)= cos(2kvω)b̂0 + (
1− cos(2kvω)

)(
k̂ · b̂0

)
k̂,

	bo(ω)= sin(2kvω)
[
k̂× b̂0

];
so that, assumingδφ̄(ω) is even, we can write	a = cos(δφ̄(ω))	be(ω)− j sin(δφ̄(ω))	bo(ω)

and thus

HIM (ω)=
[
cos

(
�τ

2
ω

)
cos

(
δφ̄(ω)

) − sin

(
�τ

2
ω

)
sin

(
δφ̄(ω)

)(	bo(ω) · ĵ
)]

− j
[
sin

(
�τ

2
ω

)
cos

(
δφ̄(ω)

)(	be(ω) · ĵ
)]

(58)

is the explicit form of the IM/IM filter for the rotation model.
In the absence of GVD(δφ̄(ω)= 0), the above becomes

HIM (ω)= cos

(
�τω

2

)
− j

2
sin

(
�τω

2

)(
b̂(ω)+ b̂(−ω)) · ĵ ,

and for smallω we can approximate the extracted eigenmode as:b̂(ω) ∼= b̂0 + 	b′
0ω and

b̂(−ω) ∼= b̂0 − 	b′
0ω. Linearizing also the sin and cos terms up to second order, and

considering that̂b0 = q̂i and 	Ωi =�τq̂i , we get a well-known approximation of the filter
in (58)

HIM (ω)∼=
[
1− �τ

2

8
ω2 − jω1

2

( 	Ωi · ĵ
)]

reported in [24]. Note the obvious relationship of such filter with the expression in (25)
obtained from the approximate intensity expression that uses the PSPs at the reference
frequency.

Figure 13 shows the GCF formula ECP= −10 Log|HIM (ω0)|, withHIM (ω) calculated
from (58), for the same rotation model whose ECP was obtained by full numerical
simulation in Fig. 12. Comparison of the two sets of figures reveals that the GCF formula
is quite effective in predicting the ECP surface in the presence of GVD. The ISOP domains
of best performance are well reproduced by the GCF, although the actual ECP values
areoverestimatedfor most ISOPs. The satisfactory match between simulation and theory
confirms that in the presence of GVD/chirping of the input pulsethe 1010 sequences
become again the main cause of eye degradation, hence of ECP penalty.

Figure 14 shows the same ECP surfaces as above, when the eigenmode trajectory in the
rotation model has an apertureϕ = 45◦. We note that the asymmetries inε found at low
rotation speed disappear with large GVD at large rotation speed, where the surfaces are
similar to the caseϕ = 90◦.
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Fig. 13. Theoretical ECP surfaces for the same rotation model simulated in Fig. 12.

Fig. 14. Theoretical ECP surfaces for the same rotation model of Fig. 13, but now withk̂ = ŝ3 andb̂0 with zero
azimuth and 45◦ elevation.

In all cases we verify that the ECP versus input SOP surfaces synthesized with the GCF
well capture theshapeof the actual ECP surfaces, even when the absolute accuracy of
the ECP prediction is poor, which justifies the use of the eye opening (as per the GCF) as
a feedback control signal in PMD compensation [41,42].

6. Conclusions

In this paper we gave evidence that the PSPs are not the most straightforward analytical
tool to describe the field intensity at the output of a single-mode fiber affected by PMD.



288 A. Bononi, A. Vannucci / Optical Fiber Technology 8 (2002) 257–294

By introducing the concept of the extracted Jones matrices, we have shown that the
eigenmodes of such matrices are more stable in frequency than the PSPs, and can also
be used to evaluate exact expressions of the output intensity. In particular, we have given a
new expression of the received intensity in terms of the Pauli vector of the right-extracted
matrix, which clearly highlights the effect of the input SOP on the received intensity, and
allows a detailed study of the signal distortion induced by PMD, which may be useful both
to evaluate system performance and to devise electrical compensation algorithms at the
receiver.

Working with the extracted eigenmodes, we have also obtained a novel eye closure
penalty formula, which we called the GCF, which is the natural extension of well-known
ECP formulas for first order PMD. We then showed that such formula can also be obtained
by reasoning in terms of the small-signal IM/IM transfer function introduced by Noé et
al. [24], thereby providing a comprehensive theoretical framework for the understanding
of the ECP formulas in use today, and for their generalization.

With the idea of approximating the extracted eigenmodes trajectory with its osculating
circle, we have obtained the rotation model, originally introduced by Mecozzi et al. [22].
We have simulation evidence that the frequency response of most single-mode fibers can
be accurately reproduced, over bandwidths of the order of the inverse of the rms DGD,
by a fitted rotation model of their right-extracted matrix, although we do not provide
details, since it is not the purpose of this paper to validate the rotation model. As a partial
validation, we refer the reader to the assessment of the compensator performance in [22].

In its simplest version, the rotation model has linear retardation and constant rotation
speed, and is thus completely described by only three parameters: (1) the DGD�τ , (2)
the angular rotation speed 2kv, (3) the apertureϕ of the eigenmodes circle. Once the joint
statistics of such parameters are known, our analytical GCF formula allows to quickly find
the statistics of the ECP and thus the system outage probability.

Thus the big task that remains to bring our approach to its full conclusion is a thorough
statistical analysis of the extracted matrices. We already investigated the statistical
properties of the eigenmodes and eigenvalues of global Jones matrix, and studied their
relation with the PMD vector [21], and extensions of such work to the extracted matrices
are under way.
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Appendix A. Relations between the PMD vector and the Pauli vector

This appendix describes the connection of matrixU with the output PMD vector	Ωo.
Such vector is obtained from the defining relation [25]

N
�=U ′U† = −j

2

[ 	Ωo · 	σ ]
, (A.1)

a prime indicating derivative with respect toω. Writing 	Ωo
�= �τq̂o in terms of its

magnitude�τ , the DGD, and its direction vector̂qo, it is apparent from (A.1) that the
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Jones vector associated withq̂o is an eigenvector of the matrixU ′U†. Similarly, the input
PMD vector ofU is defined by the equation

A
�=U†U ′ = −j

2

[ 	Ωi · 	σ ]
. (A.2)

The connection with the eigenmode	b of U is easily established from the following
theorem.

Theorem. Let P = H1H2 be the product of two Jones matricesH1 andH2, with Pauli
vectorsh1 = [h01; 	h1] andh2 = [h02; 	h2], respectively. Then the Pauli vector ofP is

p =
[
h01 	hT

1	h1 h01I + j[	h1×
]]
h2 =

[
h02 	hT

2	h2 h02I − j[	h2×
]]
h1, (A.3)

where the above matrices are block-partitioned,I is the3× 3 identity matrix, and[	h×] is
the cross-product matrix. ✷

The theorem expresses theconcatenation rulefor the Pauli vectors in a chain of linear
optical elements. Its simple proof is based on Eq. (A1-3) in [29]. It can be shown that
(A.3) has a simple geometrical interpretation in terms of spherical trigonometry [43], as
reported in Fig. 15. By recalling the definition of Pauli vector (10), we construct a spherical
triangle on the Poincaré sphere (i.e., one whose edges are portions of great circles) with
verticesb̂2 and−b̂1, and angles�φ2/2 and�φ1/2 as reported in the figure. The third
vertex and angle thus coincide with the eigenmode and half the retardation of the resulting
Jones matrixP =H1H2, i.e.,

p = [p0; 	p] =
[
cos

(
�φp

2

)
;−j sin

(
�φp

2

)
b̂p

]
.

Thus using (A.3) forU ′ andU† one gets [12]

	Ωi/o =�φ′b̂+ sin�φ	b′ ± (1− cos�φ)
(	b′ × b̂), (A.4)

Fig. 15. Spherical triangle constructed from the eigenmodesb̂1,2 and retardations�φ1,2 of matricesH1 andH2.
The eigenmodêbp and retardation�φp of matrixP =H1H2 result.
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where the plus sign applies to the input PMD vector. This is the desired connection between
eigenmode vector̂b and PMD vector. Taking the squared magnitude of both sides of (A.4)
gives

�τ2(ω)= (
�φ′(ω)

)2 + 2
(
1− cos�φ(ω)

)∣∣	b′(ω)
∣∣2, (A.5)

from which we learn that�φ′ =�τ when either�φ = 0 or 	b′ = 0, i.e., the eigenmode is
not depolarized.

The connection between the Pauli vectoru and the PMD vector is obtained by writing
U ′ =NU =UA and using (A.3)

u′ = −j
[ 	uT

uoI ± j[	u×] ] 	Ωi/o

2
. (A.6)

Such relation shows that, onceu is known,u′ is alinear transformationof the PMD vector
[20,21]. Now differentiateU a second time

U ′′ =N ′U +NU ′ =N ′U +N2U =
[
N ′ − | 	Ωo|2

4
σ0

]
U,

where we used the fact thatN2 = A2 = −(�τ2/4)σ0, as easily obtained from (A.3). The
matrix in square brackets thus has Pauli vector[−�τ2/4;−j 	Ω ′

o/2]. Using again (A.3) we
get

u′′ =
[
u0 	uT

	u u0I ± j[	u×]][ −�τ2/4

−(j/2) 	Ω ′
i/o

]
, (A.7)

where we included the corresponding result for the input PMD vector. The relation states
that, onceu is known,u′′ is a transformation of the pair[ 	Ω, 	Ω ′]. In other terms, onceu is
known, the pair[u′, u′′] is a transformation of[ 	Ω, 	Ω ′] and vice versa. In [21] we proved
that for long fibersu is statistically independent of	Ω and all its derivatives.

Appendix B. On the circular motion of the global eigenmodes

This appendix is devoted to explain why the global eigenmodes are most often
more depolarized than the PSPs and the extracted eigenmodes. We already noted in the
introduction that the correlation bandwidth of the global eigenmodes is

√
2/3 that of the

PSPs, i.e., the PSPs are less depolarized on average than the global eigenmodes. We believe
the analytical reason can be explained as follows.

From (A.4) it is obvious that, if the global eigenmodeb̂ is frequency independent, then
the PMD direction vector̂q must also be frequency independent. However, the converse
is not true: a frequency-independentq̂ implies that the global eigenmodêb(ω) describes
great circlesasω varies.

To show this fact, we start from the relation among the eigenmodes and retardations of
matricesU , U0, andUr

cos
�φ

2
= cos

�φ0

2
cos
�φr

2
− sin

�φ0

2
sin
�φr

2
b̂0 · b̂r,

sin
�φ

2
b̂= cos

�φ0

2
sin
�φr

2
b̂r + sin

�φ0

2
cos
�φr

2
b̂0 + sin

�φ0

2
sin
�φr

2
b̂0 × b̂r,

(B.1)
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which is easily obtained by expressing such unitary matrices in their form (10) and then
using (A.3).

We now build a global matrixU(ω)
�=U0Ur(ω)whose right-extracted matrixUr follows

a first order-model:

�φr(ω)=�τω, b̂r(ω)= b̂r, (B.2)

with a frequency-independent eigenmodeb̂r. Then from (A.4) we conclude that the input
and output PMD directionŝqro = q̂ri of Ur areω-independent and equalb̂r, and from what
we saw in Section 3 that they coincide with the input PMD directionq̂i of U . We have the
following results.

Proposition. If Ur follows a first order-model, the eigenmodeb̂(ω) of U(ω) is ω-
independent if and only if̂br = b̂0.

Proof. While the “if” part is trivial, the “only if” part is shown as follows. When	b′(0)= 0,
Eq. (A.4) gives that	Ω(0) is aligned withb̂0, and since	Ωr(ω) is a rotation of 	Ω(ω) around
	b0, then 	Ωr(0) = 	Ω(0) = 	Ωl(0). If also Ur is first-order, from Eq. (A.4)̂br is aligned
with 	Ωr, and therefore withb̂0. This shows that if there is no motion ofb̂ at ω = 0
(i.e., 	b′(0) = 0), then	b is frequency independent, i.e., there is no motion at allω’s, and
b̂r = b̂0. ✷
Proposition. If b̂r is not aligned withb̂0, the eigenmodêb(ω) ofU(ω) describes great(i.e.,
maximal) circles on the Poincaré sphere asω varies, in general at non-uniform speed inω.

Before providing a general proof of this result, let’s check it in the particular case
b̂r · b̂0 = 0 and�φ0/2 = π/2. Then from (B.1) we get that�φ = π , independent of
frequency, and that

b̂(ω)= cos
�τ ω

2
b̂0 + sin

�τ ω

2

(
b̂0 × b̂r

)
,

which is clearly the parametric equation of a great circle on the plane orthogonal tob̂r

and containinĝb0. Such equatorial trajectory is described at constant angular speed�τ/2.
Here is the general proof.

Proof. Let is first visualize the eigenmodes ofU on the Poincaré sphere. For fixedω, the
Mueller matrix ofU operates a rotation around the axisb̂(ω). Recalling (1) and (B.2), such
rotation is the composition of two successive rotations: a first rotation by an angle�τ ω

aroundb̂r and a second rotation by�φ0 aroundb̂0. Henceby definition the ISOP coinciding
with the eigenmodêb must be rotated by the operatorU0 so as to undo the rotation of the
operatorUr. This is shown in Fig. 16(a).4 Two circles are drawn, one aroundb̂r and one
aroundb̂0, which intersect at pointsE1 andF1. The ISOP aligned withE1 is the eigenmode
b̂ for the specific�φ0 marked in the figure, and for the specialω corresponding to the angle
�τ ω marked in the figure. The closed loop trajectory fromE1 back toE1 along the two
arcs intercepted on such circles is the effect of the two successive rotations. Once we realize
that thisis the basic pattern to recognize the eigenmodes,we understand that, once�φ0 is
given, the eigenmodeEi at the generic frequencyωi must lay on theequatorial planeat an

4 For �φ0 > 0, the Mueller matrix e�φ0[b̂0×] operates acounter-clockwiserotation aroundb̂0. Hence, in
Fig. 16 we implicitly assume�φ0 > 0 andω > 0, since rotations are all counterclockwise.
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Fig. 16. How to visualize the global eigenmode vector on the Poincaré sphere (see text).

angle�φ0/2 from the plane that includeŝb0 andb̂r, as shown in Fig. 16(b), which is a view
of the Poincaré sphere from the top ofb̂0. Here we recognize again the eigenmodeE1 of
Fig. 16(a), and we see for instance another eigenmodeE2 corresponding to a larger angle
�τ ω. Obviouslyb̂0 is the eigenmode corresponding to�τω= 0,±2π,±4π, . . . . We also
note that the pointsFi are the eigenmodes when�φ0 is changed in 2π −�φ0. Looking at
Fig. 16(b) we realize that, for a fixed plane(b̂r, b̂0), the eigenmode great circle (and hence

its rotation axisk̂, also shown in the figure) is the same for all values of cosφ
�= b̂0 · b̂r,

which only affects the rotation angular velocity.✷
The above shows that when the PSPs/extracted eigenmodes are frequency-independent,

the global eigenmode vector describes maximal circles. By observing many fiber
realizations obtained by the retarded wave-plate model [32], we found that there are also
situations in which the global eigenmode vector is almost fixed, while the PSPs and the
extracted eigenmode vector violently rotate. This seems impossible at a superficial look
of (A.4), since when the global̂b is fixed, so must be the direction ofΩ . However,
according to the PMD vector concatenation rule [25], when the many PSP vectors of the
waveplate model concatenate so as to loop back to the origin and give rise to a very small
|Ω(0)| = �τ(0) [40], its is very likely that the rotation speed 2kv(0) is very large, i.e.,
Ω(ω) is very depolarized atω = 0. In the limit of vanishing�τ , it is apparent from the
spectral decomposition ofUr(ω) thatU(ω)∼= U(0)B(ω)σ0B

†(ω)∼= U(0), i.e., we have a
global matrix which is almost frequency independent, and so are its eigenmodes, while the
extracted eigenmodes rotate at high speed (since so behave the PSPs). In such situation,
which corresponds to a vanishingly small�τ and extremely large 2kv, there is no signal
distortion.

References

[1] C.D. Poole, R.E. Wagner, Phenomenological approach to polarisation dispersion in long single-mode fibres,
IEE Electron. Lett. 22 (1986) 1029–1030.

[2] C.D. Poole, C.R. Giles, Polarization-dependent pulse compression and broadening due to polarization
dispersion in dispersion-shifted fiber, Opt. Lett. 13 (1988) 155–157.

[3] F. Curti, B. Daino, G. De Marchis, F. Matera, Statistical treatment of the evolution of the principal states of
polarization in single-mode fibers, IEEE J. Lightwave Technol. 8 (1990) 1162–1166.

[4] G.J. Foschini, C.D. Poole, Statistical theory of polarization dispersion in single mode fibers, IEEE J.
Lightwave Technol. 9 (1991) 1439–1456.



A. Bononi, A. Vannucci / Optical Fiber Technology 8 (2002) 257–294 293

[5] P. Ciprut, B. Gisin, N. Gisin, R. Passy, J.P. Von der Weid, F. Prieto, C.W. Zimmer, Second-order polarization
mode dispersion: Impact on analog and digital transmission, IEEE J. Lightwave Technol. 16 (1998) 757–
771.

[6] P.K.A. Wai, C.R. Menyuk, Polarization mode dispersion, decorrelation, and diffusion in optical fibers with
randomly varying birefringence, IEEE J. Lightwave Technol. 14 (1996) 148–157.

[7] C.D. Poole, R.W. Tkach, A.R. Chraplyvy, D.A. Fishman, Fading in lightwave systems due to polarization
mode dispersion, IEEE Photon. Technol. Lett. 3 (1991) 68–70.

[8] C.-J. Chen, System impairment due to polarization mode dispersion, in: Proc. OFC’99, 1999, pp. 77–79,
paper WE2-1.

[9] N. Gisin, J.P. Pellaux, Polarization mode dispersion: time versus frequency domains, Opt. Commun. 89
(1992) 316–323.

[10] M. Karlsson, J. Brentel, Autocorrelation function of the polarization-mode dispersion vector, Opt.
Lett. 24 (14) (1999) 939–941.

[11] H. Büllow, System outage probability due to first- and second-order PMD, IEEE Photon. Technol. Lett. 10
(1998) 696–698.

[12] M. Karlsson, Polarization mode dispersion-induced pulse broadening in optical fibers, Opt. Lett. 23 (1998)
688–690.

[13] W. Shieh, Principal states of polarization for an optical pulse, IEEE Photon. Technol. Lett. 11 (1999) 677–
679.

[14] W. Shieh, On the second order approximation of PMD, IEEE Photon. Technol. Lett. 12 (2000) 290–292.
[15] F. Bruyere, Impact of first- and second-order PMD in optical digital transmission systems, Optical Fiber

Technol. 2 (1996) 269–280.
[16] H. Kogelnik, L.E. Nelson, J.P. Gordon, R.M. Jopson, Jones matrix for second-order polarization mode

dispersion, Opt. Lett. 25 (2000) 19–21.
[17] L.E. Nelson, R.M. Jopson, H. Kogelnik, Polarization mode dispersion penalties associated with rotation of

principal states of polarization in optical fiber, in: Proc. OFC’2000, 2000, pp. 25–27, paper ThB2.
[18] Y. Li, A. Eyal, A. Yariv, Higher order error of discrete fiber model and asymptotic bound on multistaged

PMD compensators, IEEE J. Lightwave Technol. 18 (2000) 1205–1213.
[19] H.A. Haus, Group velocity, energy, and polarization mode dispersion, J. Opt. Soc. Amer. B 16 (1999) 1863–

1867.
[20] A. Bononi, A. Vannucci, Statistics of the Jones matrix of fibers affected by polarization mode dispersion,

Opt. Lett. 26 (2001) 675–677.
[21] A. Vannucci, A. Bononi, Statistical characterization of the Jones matrix of long fibers affected by PMD,

IEEE J. Lightwave Technol. 20 (2002).
[22] A. Mecozzi, M. Shtaif, M. Tur, J. Nagel, A simple compensator for high order polarization mode dispersion

effects, in: Proc. OFC’2000, 2000, pp. 192–194, paper WL2.
[23] A. Vannucci, A. Bononi, Sensitivity penalty distribution in fibers with PMD: A Novel semi-analytical

technique, in: Proc. OFC’2002, 2002, pp. 54–56, paper TuI6.
[24] R. Noe’, D. Sandel, M.Y. Dierolf, S. Hinz, V. Mirvoda, A. Scoepflin, C. Glingener, E. Gottwald, C. Scheerer,

G. Fischer, T. Weyrauch, W. Haase, Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with
various optical equalizers, IEEE J. Lightwave Technol. 17 (1999) 1602–1615.

[25] J.P. Gordon, H. Kogelnik, PMD fundamentals: Polarization mode dispersion in optical fibers, Proc. Nat.
Acad. Sci. 97 (2000) 4541–4550.

[26] K. Hofman, R. Kunze, Linear Algebra, 2nd. Ed., Prentice–Hall, Englewood Cliffs, NJ, 1971.
[27] G. De Marchis, E. Lannone, Polarization dispersion in single-mode optical fibers: A simpler formulation

based on pulse envelope propagation, Microwave Optical Technol. Lett. 4 (2) (1991) 75–77.
[28] G.J. Foschini, L.E. Nelson, R.M. Jopson, H. Kogelnik, Probability densities of second-order polarization

mode dispersion including polarization dependent chromatic fiber dispersion, IEEE Photon. Technol.
Lett. 12 (2000) 293–295.

[29] N.J. Frigo, A generalized geometrical representation of coupled mode theory, IEEE J. Quantum Elec-
tron. QE-22 (1986) 2131–2140.

[30] F. Corsi, A. Galtarossa, L. Palmieri, Polarization mode dispersion characterization of single-mode optical
fiber using backscattering technique, J. Lightwave Technol. 16 (1998) 1832–1843.

[31] R.M. Jopson, L.E. Nelson, H. Kogelnik, Measurement of second-order polarization-mode dispersion vectors
in optical fibers, IEEE Photon. Technol. Lett. 11 (1999) 1153–1155.

[32] A.O. Dal Forno, A. Paradisi, R. Passy, J.P. von der Weid, Experimental and theoretical modeling of
polarization mode dispersion in single-mode fibers, IEEE Photon. Technol. Lett. 12 (2000) 296–298.

[33] C. Francia, F. Bruyere, D. Pennickx, M. Chbat, PMD second-order effects on pulse propagation in single-
mode optical fibers, Photon. Technol. Lett. 10 (1998) 1739–1741.



294 A. Bononi, A. Vannucci / Optical Fiber Technology 8 (2002) 257–294

[34] C. Francia, D. Pennickx, Polarization mode dispersion in single-mode optical fibers: time impulse response,
in: Proc. IEEE ICC’99, Vancouver, Canada, 1999, pp. 1731–1735.

[35] T. Ono, S. Yamazaki, H. Shimizu, H. Emura, Polarization control method for suppressing polarization mode
dispersion in optical transmission systems, IEEE J. Lightwave Technol. 12 (1994) 891–898.

[36] G. Agrawal, Nonlinear Fiber Optics, Academic Press, 1989.
[37] G. Ishikawa, H. Ooi, Polarization mode dispersion sensitivity and monitoring in 40 Gbit/s OTDM and 10

Gbit/s NRZ transmission experiments, in: Proc. OFC’98, 1998, pp. 117–119, paper WC5.
[38] H. Ooi, Y. Akyiama, G. Ishikawa, Automatic polarization-mode dispersion compensation in 40 Gbit/s

transmission, in: Proc. OFC’99, 1999, pp. 86–88, paper WE5-1.
[39] I.P. Kaminow, T. Koch (Eds.), Optical fiber Telecommunications, Vol. IIIA, Academic Press, 1997.
[40] D. Pennickx, F. Bruyere, Impact of the statistics of second-order polarization mode dispersion on system

performance, in: Proc. OFC’98, 1998, pp. 340–341, paper ThR2.
[41] F. Buchali, S. Lanne, J.-P. Thièry, W. Baumert, H. Bülow, Fast eye monitor for 10 Gb/s and its application

for optical PMD compensation, in: Proc. OFC’2001, 2001, paper TuP5.
[42] F. Buchali, W. Baumert, H. Bülow, J. Poirrier, S. Lanne, A 40 Gb/s eye monitor and its application to

adaptive PMD compensation, in: Proc. OFC’2002, 2002, pp. 202–203, paper WE6.
[43] J.B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press, Princeton, NJ, 1999.


