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Abstract— We consider continuous phase modulations (CPMs)
and their transmission over a typical satellite channel affected
by phase noise. By modeling the phase noise as a Wiener process
and adopting a simplified representation of anM -ary CPM signal
based on the principal pulses of its Laurent decomposition, we
derive the MAP symbol detection strategy. Since it is not possible
to derive the exact detection rule by means of a probabilistic
reasoning, the framework of factor graphs (FGs) and the sum-
product algorithm is used. By pursuing the principal approach to
manage continuous random variable in a FG, i.e., the canonical
distribution approach, two algorithms are derived which do not
require the presence of known (pilot) symbols, thanks to the
intrinsic differential encoder embedded in the CPM modulator.

I. I NTRODUCTION

Continuous phase modulations (CPMs) form a class of
signaling formats that are efficient in power and bandwidth [1].
Moreover, the recursive nature of the CPM modulator makes
them attractive in serially concatenated schemes to be decoded
iteratively [2], [3].

Several decomposition approaches for CPM signals were
presented in the literature. One of the most appealing, from
a detection point of view, is the Laurent decomposition [4],
[5] in which a CPM signal is expanded as a sum of linearly
modulated components. This decomposition has been used
in [6] to simplify the receiver front-end and the number
of trellis states in maximum a posteriori (MAP)sequence
detection based on the Viterbi algorithm [6]. More recently,
by using factor graphs (FGs) and the sum-product algorithm
(SPA) [7], this result has been also extended to MAPsymbol
detection schemes suitable to be used in coherent iterative
detection/decoding [8].

Although several soft-input soft-output (SISO) detection
algorithms suitable for iterative detection/decoding have been
recently designed for linear modulations transmitted over
channels affected by a time-varying phase (see for example
[9]–[11] and references therein), less attention has been de-
voted to CPM signals. An exception is represented by [12]
where, based on the approach in [10], joint detection and phase
synchronization is performed by working on the trellis of the
CPM signal or on an expanded trellis and usingmultiplephase
estimators in a per-survivor fashion.

In this paper, we adopt a Bayesian approach, i.e., the
channel phase is modeled as a stochastic process with known
statistics. In particular, we model the phase noise as a Wiener
process. By using the FG/SPA framework, we derive the
exact MAP symbol detection strategy under the simplified
representation of a CPM signal as sum of the principal pulses
of its Laurent decomposition.1 We analyze the properties of
this detection strategy finding that it can be implemented
by using asingle forward-backward estimator of the phase
probability density function, followed by a symbol-by-symbol

1As shown in [8], a coherent receiver designed according to this simplified
representation entails only a minor performance degradation.

completion to produce the a posteriori probabilities of the
information symbols. Then, by using the canonical distribution
approach [13] we develop a couple of practical schemes to
implement the forward-backward estimator. The resulting al-
gorithms obviously work in a joint demodulation/phase track-
ing fashion, do not require the insertion of pilot symbols, and
may be used as SISO blocks for iterative detection/decoding
in concatenated schemes.

The remainder of this paper is organized as follows. In
Section II we provide the signal model and briefly review the
Laurent decomposition. By means of the FG/SPA framework,
the exact MAP symbol detection strategy is derived in Sec-
tion III. The practical implementation of this exact strategy is
discussed in Section IV, and a couple of algorithms proposed.
The relevant performance, is assessed in Section V and finally,
some conclusions are drawn in Section VI.

II. SIGNAL MODEL AND LAURENT DECOMPOSITION

The complex envelope of a CPM signal has the form [1]

s(t,α) =

√
2ES

T
exp{j2πh

N−1∑
n=0

αnq(t− nT )} (1)

in which ES is the energy per information symbol,T is
the symbol interval,h = r/p is the modulation index (r
andp are relatively prime integers), the information symbols
{αn} are assumed independent and take on values in theM -
ary alphabet{±1,±3, . . . , ±(M − 1)}, α = {αn} denotes
the information sequence, and finallyN is the number of
transmitted information symbols. The functionq(t) is the
phase-smoothing responseand its derivative is thefrequency
pulse, assumed of durationLT .

Based on Laurent representation, the complex envelope of
a CPM signal may be exactly expressed as [5]

s(t,α) =
Qlog2 M (M−1)−1∑

k=0

∑
n

ak,npk(t− nT ) (2)

in which M is assumed to be a power of two to simplify the
notation,Q

∆= 2L−1, and the expressions of pulses{pk(t)}
and symbols{ak,n} as a function of the information symbol
sequence{αn} may be found in [5] (see this reference for the
general case ofM non-power of two). By truncating the sum-
mation in (2) considering only the firstK < Qlog2 M (M − 1)
terms, we obtain an approximation ofs(t, α):

s(t,α) '
K−1∑

k=0

∑
n

ak,npk(t− nT ) . (3)

Most of the signal power is concentrated in the firstM − 1
components, i.e., those associated with the pulses{pk(t)} with



0 ≤ k ≤ M − 2, which are denoted asprincipal components
[5]. As a consequence, a value ofK = M − 1 may be used
in (3) to attain a very good tradeoff between approximation
quality and number of signal components and in fact, in [6]
and [8] it was shown that MAPsequenceor symboldetection
receivers only based on principal pulses practically attain the
performance of the corresponding optimal detector. A nice
feature of the principal components is that their symbols
{ak,n}M−2

k=0 may be expressed as a function of the information
symbolαn and of symbola0,n−1. As an example, symbola0,n

can be recursively computed as [5]2

a0,n = a0,n−1e
jπhαn . (4)

Symbols {a0,n} take on p values [5]. They belong to the
alphabetAo = {ej2πhm,m = 0, 1, . . . , p− 1} whenn is odd,
or to the alphabetAe = {ejπhej2πhm,m = 0, 1, . . . , p − 1}
whenn is even.3

III. MAP SYMBOL DETECTION

We now consider the transmission of a CPM signal over a
typical satellite channel affected by phase noise plus the ad-
ditive white Gaussian noise (AWGN). The complex envelope
of the received signal can be modeled as

r(t) = s(t,α)ejθ(t) + w(t) (5)

wherew(t) is a complex-valued white Gaussian noise process
with independent components, each with two-sided power
spectral densityN0, and θ(t) is the phase noise introduced
by the channel. We model the phase noiseθ(t) as a time-
continuous Wiener process with incremental variance over a
signaling interval equal toσ2

∆. The assumption on the phase
noise model will be relaxed in the numerical results. We also
assume that the channel phaseθ(t) is slowly varying such that
it can be considered constant over the duration of the pulses
{pk(t)}. In other words we assume that

∫ +∞

−∞
r(t)pk(t− nT )e−jθ(t) dt

= e−jθn

∫ +∞

−∞
r(t)pk(t− nT )ej[θn−θ(t)] dt

' e−jθn

∫ +∞

−∞
r(t)pk(t− nT ) dt = e−jθnxk,n (6)

having definedθn = θ(nT ) andxk,n = r(t) ⊗ pk(−t)|t=nT ,
where⊗ denotes “convolution”. Hence, under this hypothesis,
the output, sampled at the symbol rate, of a bank of filters
matched to the pulses{pk(t)} is a set of sufficient statistics for
this detection problem (see also [6]). Since most of the signal
power is concentrated in the principal components, we use a
simplified set represented by the output of a bank of filters
matched to the corresponding pulses{pk(t)}M−2

k=0 . From (6),
only the samples ofθ(t) at discrete-timenT are significant.
These samples satisfy the discrete-time Wiener model:

θn+1 = θn + ∆n (7)

where{∆n} are real independent and identically distributed
Gaussian random variables with zero mean and standard
deviationσ∆,4 andθ0 is uniformly distributed in[0, 2π).

2Since in the next section the transmission over a channel affected by phase
noise will be considered, we may assume that the initial symbola0,−1 is
unknown to the receiver due to the initial channel phase uncertainty.

3Whenr is even,Ao andAe coincide.
4Note that, since the channel phase is defined modulo2π, the probability

density function (pdf)p(θn+1|θn) can be approximated as Gaussian only if
σ∆ ¿ 2π.

µn µn+1

pf,n(µn) pb,n+1(µn+1)

αn

P (αn)

p(µn+1|µn, αn)Gn(αn, µn)

Pu(αn)

Fig. 1. Factor graph for the considered problem.

We now derive the MAPsymboldetection strategy. To this
purpose we first compute the joint distribution5 p(α,a, θ|x)
wherex = {xn}, with xn = {xk,n}M−2

k=0 , a = {an}, with
an = {ak,n}M−2

k=0 , andθ = {θn}. Its expression is

p(α,a, θ|x)
∼∝ P (α)P (a|α)p(θ)

∏
n

Gn(αn, a0,n−1, θn)

(8)
where [6], [8]6

Gn(αn, a0,n−1, θn) = exp

{
1

N0
Re

[
e−jθn

M−2∑

k=0

xk,na∗k,n

]}

(9)
and symbol

∼∝ has been used to denote an approximate
proportionality relationship. The approximation here is related
to the fact that we are considering the principal components
only. We can further factor the termsP (α), P (a|α), andp(θ)
in (8) as

P (α) =
N−1∏
n=0

P (αn) (10)

P (a|α) = P (a0,−1)
N−1∏
n=0

I(a0,n, a0,n−1, αn) (11)

p(θ) = p(θ0)
N−1∏
n=1

p(θn|θn−1) (12)

whereI(a0,n, a0,n−1, αn) is an indicator function, equal to 1
if αn and the pseudo-symbolsa0,n−1 anda0,n respect the con-
straint (4), and to zero otherwise, andp(θn|θn−1) is a Gaussian
pdf in θn with meanθn−1 and varianceσ2

∆. In the following,
we will denote a Gaussian pdf in the variablex, with mean
η and varianceρ2, asg(η, ρ2; x). Substituting (10), (11), and
(12) into (8), clustering [7] the variablesθn anda0,n−1, i.e.,
definingµn = (a0,n−1, θn), we obtain the FG in Fig. 1, where
we definedp(µn+1|µn, αn) = p(θn+1|θn)I(a0,n, a0,n−1, αn).
Since this FG does not contain cycles, the application to it of
the SPA with anon-iterativeforward-backward schedule pro-
duces the exact a posteriori probabilitiesP (αn|x) necessary to
implement the MAPsymboldetection strategy. In the figure,
we definedPu(αn) as the extrinsic a posteriori probability
of αn, i.e., Pu(αn) = P (αn|x)/P (αn). With reference to
the messages in the figure, the resulting forward–backward
algorithm is characterized by the following recursions and

5We still use the symbolp(.) to denote a continuous pdf with some discrete
probability masses.

6Due to the above mentioned property of the principal components,Gn
is a function ofαn, a0,n−1, and θn only. We omitted the dependence on
{xk,n} since these samples are known to the receiver.



completion:

pf,n+1(a0,n, θn+1) =
∑
αn

P (αn)
∫

pf,n(ǎ0,n−1, θn)

·Gn(αn, ǎ0,n−1, θn)g(θn, σ2
∆; θn+1)dθn (13)

pb,n(a0,n−1, θn) =
∑
αn

P (αn)Gn(αn, a0,n−1, θn)

·
∫

pb,n+1(ˇ̌a0,n, θn+1)g(θn, σ2
∆; θn+1)dθn+1 (14)

Pu(αn) =
∑
a0,n

∫∫
pf,n(ǎ0,n−1, θn)pb,n+1(a0,n, θn+1)

·Gn(αn, ǎ0,n−1, θn)g(θn, σ2
∆; θn+1)dθndθn+1 (15)

where in (13) and (15)̌a0,n−1 = a0,ne−jπhαn , whereas in
(14) ˇ̌a0,n = a0,n−1e

jπhαn , and with the following initial con-
ditions: pf,0(a0,−1, θ0) = 1/(p2π) and pb,N (a0,N−1, θN ) =
1/(p2π).

A proof of the following properties is omitted for a lack of
space:
Property 1: for each` = 0, . . . , p− 1,

pf,n(a0,n−1e
j2πh`, θn) = pf,n(a0,n−1, θn + 2πh`) (16)

pb,n(a0,n−1e
j2πh`, θn) = pb,n(a0,n−1, θn + 2πh`) (17)

Property 2: The extrinsic information in (15) is given by the
sum ofp terms (one for each value ofa0,n). All these terms
assume the same value, i.e., they do not depend ona0,n, for
each givenαn.

From the first property it follows that it is not neces-
sary to evaluate and store all pdfspf,n(a0,n−1, θn) and
pb,n(a0,n−1, θn) for different values ofa0,n−1. Defining

ān =
{

1 n odd
ejπh n even (18)

it is sufficient to evaluatēpf,n(θn) = pf,n(a0,n−1 = ān−1, θn)
and p̄b,n(θn) = pb,n(a0,n−1 = ān−1, θn). From the second
property, it follows that only one term in (15) needs to be
evaluated. The MAP symbol detection strategy can therefore
be simplified as follows:

p̄f,n+1(θn+1) =
∑
αn

P (αn)
∫

p̄f,n(θn − 2πhγn)

·Gn(αn, āne−jπhαn , θn)g(θn, σ2
∆; θn+1)dθn (19)

p̄b,n(θn) =
∑
αn

P (αn)Gn(αn, ān−1, θn)

·
∫

p̄b,n+1(θn+1 + 2πhγn)g(θn, σ2
∆; θn+1)dθn+1 (20)

Pu(αn) ∝
∫∫

p̄f,n(θn − 2πhγn)p̄b,n+1(θn+1)

·Gn(αn, āne−jπhαn , θn)g(θn, σ2
∆; θn+1)dθndθn+1 (21)

whereγn = (αn+1)/2, if n is odd, andγn = (αn−1)/2, if n
is even, and with the following initial conditions:̄pf,0(θ0) =
1/2π andp̄b,N (θN ) = 1/2π. Hence, we have a single forward-
backward estimator of the phase probability density function
and a final completion.

This exact MAP symbol detection strategy involves inte-
gration and computation of continuous pdfs, and it is not
suited for direct implementation. A solution for this problem
is suggested in [13] and consists of the use ofcanonical

distributions, i.e., the pdfs̄pf,n(θn) andp̄b,n(θn) computed by
the algorithm are constrained to be in a certain “canonical”
family, characterized by some parameterization. Hence, the
forward and backward recursions reduce to propagating and
updating the parameters of the pdf rather than the pdf itself.
In the next section, two low-complexity algorithms based on
this approach will be described.

IV. L OW-COMPLEXITY ALGORITHMS

A. First Algorithm
A very straightforward solution to implement (19) and (20)

is obtained by discretizing the channel phase [9], [11]. In
this way, the pdfs̄pf,n(θn) and p̄b,n(θn) become probability
mass functions (pmfs) and the integrals in (19), (20), and (21)
become summations. When the numberD of discretization
levels is large enough, the resulting algorithm becomes optimal
(in the sense that its performance approaches that of the exact
algorithm).7 Hence, it may be used to obtain a performance
benchmark and will be denoted to as “discretized-phase algo-
rithm” (dp-algorithm).

B. Second Algorithm
By observing that the Tikhonov distribution ensures a very

interesting performance with a low complexity when used as a
canonical distribution in detection algorithms for phase noise
channels [11], pdfs̄pf,n(θn) and p̄b,n(θn) are constrained to
have the following expressions

p̄f,n(θn) =
p−1∑
m=0

q
(m)
f,n t

(
zf,n; θn − 2π

p
m

)
(22)

p̄b,n(θn) =
p−1∑
m=0

q
(m)
b,n t

(
zb,n; θn − 2π

p
m

)
(23)

where, for each time indexn, {q(m)
f,n ,m = 0, 1, . . . , p − 1}

({q(m)
b,n ,m = 0, 1, . . . , p−1}) andzf,n (zb,n) are, respectively,

p real coefficients and one complex coefficient, andt (z; θ) is
a Tikhonov distribution with complex parameterz defined as

t (z; θ) =
eRe[ze−jθ]

2πI0(|z|) (24)

I0(x) being the zero-th order modified Bessel function of the
first kind. Note that

∑p−1
m=0 q

(m)
f/b,n = 1 in order to obtain pdfs.

Three approximations are now introduced in order to derive
a low complexity detection algorithm:8

i. the convolution of a Tikhonov and a Gaussian pdf is still a
Tikhonov pdf, with a modified complex parameter [11], i.e.,

∫
t(z; x)g(x, ρ2; y)dx ' t

(
z

1 + ρ2|z| ; y
)

(25)

ii. since, for large arguments,I0(x) ' ex, we approximate

eRe[ze−jθ] ' 2πe|z|t(z; θ) (26)

iii. let z be a complex number,{um,m = 0, 1, . . . , p − 1}
a set of complex numbers, and{qm,m = 0, 1, . . . , p − 1} a
set of real numbers such that

∑
m qm = 1, then the following

approximation holds, especially when|z| is sufficiently larger

7As a rule of thumb (confirmed by the results in [9]), the number of
discretization levels must be at leastD = 8p in order to avoid any
performance loss.

8A justification of these approximations is represented by the excellent
performance of the resulting algorithm and by its very low complexity.



than each|um| or when there is am such that qm À
qm, ∀m 6= m:

∑
m

qmt
(
zej 2π

p m + um; θ
)
'

∑
m

qmt
(
wej 2π

p m; θ
)

(27)

wherew = z +
∑

` q`u`e
−j 2π

p `.
In order to illustrate the derivation of the proposed al-

gorithm, we consider the case of a binary modulation, i.e.,
M = 2, and henceK = 1, although the generalization
to the non-binary case is straightforward from a conceptual
viewpoint. In this case

1
N0

K−1∑

k=0

xk,na∗k,n =
1

N0
x0,na∗0,n (28)

and we defineyn = x0,nā∗n
N0

. We now derive the reduced-
complexity forward recursion. Substituting (9) in (19), assum-
ing that p̄f,n−1(θn−1) has the canonical expression (22), and
using approximation (25), we obtain

p̄f,n+1(θn+1) =
∑
αn

P (αn)
p−1∑
m=0

q
(m)
f,n

∫
g(θn, σ2

∆; θn+1)

·t
(

zf,n; θn − 2π

p
(rγn + m)

)
eRe[yne−jθn ]dθn . (29)

By now changing the first summation index iǹ = m +
rγn, using (25) and (26), discarding irrelevant multiplicative
factors, and neglecting|yn| with respect to|zf,n|, we have

p̄f,n+1(θn+1) =
∑

`

[∑
αn

P (αn)q(`−rγn)
f,n

]

·e
ŕŕŕŕzf,n+yne

−j 2π
p

`
ŕŕŕŕ
t

(
zf,nej 2π

p ` + yn

1 + σ2
∆|zf,n| ; θn

)
(30)

This resulting p̄f,n+1(θn+1) is not in the constrained
form (22). However, by applying the approximation (27), we
obtain the following updating equations for the parameters of
the canonical distribution (22)

q
(`)
f,n+1 ∝

[∑
αn

P (αn)q(`−rγn)
f,n

]
e

ŕŕŕŕzf,n+yne
−j 2π

p
`
ŕŕŕŕ (31)

zf,n+1 =
zf,n + yn

∑
m q

(m)
f,n+1e

−j 2π
p m

1 + σ2
∆|zf,n| . (32)

It is worth noticing that, before the evaluation of the
coefficient zf,n+1, the p real coefficientsq(`)

f,n+1 evaluated
through (31) have to be normalized so that their sum is 1.
Since there is no a priori knowledge of the initial phase or
of the initial symbola0,−1, the following initial values of the
recursive coefficients result

q
(`)
f,0 = 1/p

zf,0 = 0 .

In addition, since at the first step of the forward recursion the
approximation (27) does not hold, we use the folliwing values
for the recursive coefficients at timen = 1:

q
(`)
f,1 = δ`

zf,1 =
y0

1 + σ2
∆|y0|

whereδ` represents the Kronecker delta.
Similarly, it is also possible to find the backward recursive

equations. Due to the lack of space, we report here only the
final expressions

s(`) =
∑
αn

P (αn)q(`+rγn)
b,n+1 e

ŕŕŕŕz′b,n+1+yne
−j 2π

p
(`+rγn)

ŕŕŕŕ

zb,n = z′b,n+1 + yn

∑

i

s(i)e

ŕŕŕŕz′b,n+1+yne
−j 2π

p
i
ŕŕŕŕ
e−j 2π

p i (33)

q
(`)
b,n =

s(`)

∑
m s(m)

(34)

wherez′b,n+1 = zb,n+1

1+σ2
∆|zb,n+1| and coefficientss(`) have been

introduced to simplify the notation (they do not need to be
stored, since they are not involved in the completion stage).
The initial values of the backward coefficients are (assuming
that N is even)

q
(`)
b,N = 1/p

zb,N = 0

q
(`)
b,N−1 =

{
P (αN−1 = −1) ` = 0
P (αN−1 = +1) ` = p− r
0 else

zb,N−1 = yN−1 .

Finally, substituting (22) and (23) into (21) and discarding
irrelevant constants, the extrinsic information is evaluated as

Pu(αn) ∝
∑

`

∑
m

q
(`)
f,nq

(m)
b,n+1

·I0
(∣∣∣zf,n + z′b,n+1e

j 2π
p (m−`−rγn) + ynej 2π

p (`+rγn)
∣∣∣
)

. (35)

In summary, this detection algorithm is based on three
steps: a forward recursion in which, for each time epoch
n, p real and one complex coefficients are evaluated based
on (31) and (32), a backward recursion, based on (32) and
(33), which proceeds similarly, and finally a completion (35),
which consists of the sum ofp2 terms.9 This algorithm entails
a minor complexity increase with respect to the known-phase
MAP symboldetector [8] and will be denoted to as “algorithm
based on Tikhonov parameterization” (Tikh-algorithm).

V. NUMERICAL RESULTS

The performance of the algorithms described in the previous
section is assessed by computer simulations in terms of bit
error rate (BER) versusEb/N0, Eb being the received signal
energy per information bit. The proposed algorithms are used
as SISO blocks for iterative detection/decoding in serially
concatenated CPM schemes

In Fig. 2 we consider the serial concatenation, through an
interleaver, of a convolutional code (CC) and the minimum
shift keying (MSK) modulation (i.e., a binary modulation with
h = 1/2 and a rectangular frequency pulse of durationT ).
The outer code is a 4-state rate-1/2 CC with generators(5, 7)
(octal notation) and the interleaver has size2048. A maximum
of 10 iterations is allowed and the phase noise affecting the
channel is modeled as a Wiener process withσ∆ = 5 degrees.
In the figure the performance of the proposed algorithms is
shown along with that of the algorithm proposed in [12]

9We would like to point out that the coefficientsq(m)
f,n and q

(m)
b,n can be

evaluated and stored in the log-domain which is a convenient representation
for practical hardware realizations.
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Fig. 2. Performance for the MSK system.

and based on per-survivor processing (curve labeled ZKS).
D = 16 discretization levels have been used for thedp-
algorithmand no performance improvement has been observed
for larger values ofD. The ideal curve related to the perfect
knowledge of the channel phase is also shown for comparison.
It can be observed that, at a BER of10−6, the loss of the
optimal dp-algorithmwith respect to the known-phase case is
approximately 0.25 dB, while the loss of the low complexity
Tikh-algorithm is about 0.5 dB. More than 1 dB is gained
with respect to the algorithm in [12], although this was, up to
now, the most robust algorithm available in the literature. The
increased robustness of our solutions is due to the Bayesian
approach which requires the knowledge of parameterσ∆.
However, this value can be easily estimated and is not critical,
in the sense that even if not perfectly estimated, the resulting
performance loss is negligible.

In Fig. 3 we consider a system employing the same CC and
the same interleaver but a different CPM signal. In particular,
we consider a binary CPM modulation with raised-cosine
frequency pulse of duration2T (2-RC) and withh = 1/4.
A different phase noise model is assumed, namely the DVB-
S2 compliant phase noise model assuming a baud rate of 10
MBaud [11]. Although the Wiener model does not apply to
this case, the proposed algorithms work well with a properly
optimized value ofσ∆ = 0.5 degrees.D = 32 discretization
levels have been used for thedp-algorithm. Despite the model
mismatch, both the proposed algorithms exhibits very good
performance (with a loss of theTikh-algorithmof less than 0.5
dB), even if, as well known, for increasingL and decreasing
h the resulting CPM modulation has a much higher sensitivity
to phase noise.

VI. CONCLUSIONS

In this paper, the problem of MAPsymbol detection for
CPM signals transmitted over a channel affected by phase
noise has been faced. The algorithm has been derived based
on factor graphs and the sum-product algorithm and using
the Laurent representation of a CPM signal as sum of lin-
early modulated components. In particular, only the principal
components have been considered, since neglecting the other
components only a minor degradation results. A simplified,
although exact, version of the algorithm has been derived
based on a forward-backward single estimation of the phase
probability density function and a final completion. For the
practical implementation of the forward-backward estima-
tor, two algorithms have been proposed. The first one is
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Fig. 3. Performance for the system employing a binary 2-RC modulation
with h = 1/4.

based on the phase discretization and becomes optimal for
a large enough number of discretization levels. To reduce
the computational complexity, some approximations have been
introduced in order to derive a new algorithm which exhibits
a very good performance and a very low complexity.
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