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Abstract—In this paper, we describe a new effective technique
for the adaptive adjustment of the control parameters of any struc-
ture of polarization-mode dispersion compensator, such as, e.g.,
those based on a cascade of polarization controllers and polar-
ization-maintaining fibers. This technique is based on the mean
square error between the photodetected signal and the decided
symbol and allows us to obtain fast convergence and a lower outage
probability with a very limited complexity.

Index Terms—Adaptive equalizers, compensation, optical fiber
communication, polarization-mode dispersion (PMD).

I. INTRODUCTION

I N OPTICAL transmission systems at the speed of 40 Gb/s
and beyond, one of the most challenging impairments is

represented by the signal distortions produced by polarization-
mode dispersion (PMD). Due to the coherence time of the PMD
phenomenon of the order of minutes or even longer, sequences
of errors may be actually generated. These bursts of errors
cannot be corrected by using forward-error correction (FEC)
schemes. In fact, the relevant error distribution is not random
and cannot be made as such, since a sufficient interleaving
is totally impractical to realize. Therefore, specific PMD
compensators must be adopted.

In the technical literature, several solutions, ranging from
first- [1]–[3] to higher-order compensators exploiting planar
lightwave circuits (PLCs) [4], [5] or cascaded polarization
controllers (PCs) coupled with polarization-maintaining fibers
(PMFs) or delay lines [6]–[9], have been proposed. The adap-
tive adjustment of the compensator parameters is often based
on criteria aimed at the reconstruction of the undistorted trans-
mitted waveform, by using either the degree of polarization,
the orientation of the PMD vector, or the electrical spectrum
of the signal at the photodetector output [1]–[3], [6]–[11]. The
complexity of the resulting compensator driver can be high due
to the needed error signals.

Since the goal of PMD compensation is lowering the bit-error
rate (BER), the best control strategy would be based on its min-
imization. Due to the complexity of a BER measurement, this
is not feasible, but it is intuitive to use a quantity closely related
to the BER in order to perform this task. This quantity is the
mean square error (MSE) between the quantized and unquan-
tized signal sample and can be used to control the parameters
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of a PMD compensator, irrespective of its physical structure. In
this paper, we describe a simple and effective technique based
on the minimization of the output MSE [12], where no optical or
electrical filters are needed and the error signal is simply based
on the photodetector output [13]. This technique allows us to
obtain fast convergence, high stability, and a lower outage prob-
ability with a very limited complexity.

The paper is organized as follows. In Section II, we describe
the structure of a possible PMD compensator and the parameters
that must be controlled to perform the adjustment of the com-
pensator. In Section III, the MSE criterion is described, along
with two possible algorithms to implement it. Numerical results
are presented in Section IV, and, finally, conclusions are drawn
in Section V.

II. THE PMD COMPENSATOR

PMD compensation can be achieved both in optical or elec-
tronic domain, but optical compensation should be preferred, be-
cause, from a theoretical point of view, PMD causes a linear dis-
tortion of the optical signal, which can be more effective to com-
pensate than the nonlinear distortion in which it manifests after
photodetection. For illustration purposes, we consider the com-
pensator shown in Fig. 1, but the extension to any other com-
pensator structure is also possible. The compensator consists of
a cascade of some optical devices. The first optical device is a PC
which allows us to modify the polarization of the optical signal at
its input. We then have in this example three PMFs separated by
two other PCs or optical rotators. A PMF introduces a differential
group delay (DGD) between the components of the optical signal
on the twoorthogonal states ofpolarization (SOP)corresponding
to its slow and fast axes. The PMD compensator in Fig. 1 gener-
ates a polarization dispersion vector that combines with the one
generated by the fiber in order to reduce the overall distortion. In
order to be able to follow the fiber dispersion vector evolution,
the DGD introduced by each PMF should be properly optimized,
and the functional form of this delay was chosen to be, and

, where and are design parameters. As
the length of the dispersion vector generated by the compensator
depends on , seemingly this parameter should be chosen on the
basis of the fiber mean DGD, but we will see that this may not be
true, depending on the control strategy and compensator struc-
ture (i.e., when using PCs or optical rotators).is a flexibility
parameter introduced a priori in the structure to allow for one
more degree of freedom in shaping the optical transfer function
of the compensator. We will see that, in practice, turns
out to be the best in the generality of cases.

We denote by and the components ofany two
orthogonal SOP of the signal at the compensator input, whereas,
similarly, and are corresponding components of the
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Fig. 1. Structure of the adaptive compensator.

optical signal at the compensator output. Signals and
are sent to the input of the photodetector, which produces the
signal , given by

(1)

Notice that the output signal remains unchanged irre-
spective of the reference SOP’s choice. This signal may be fil-
tered by means of a postdetection filter. Without loss of gener-
ality, we may assume that this filter is not present—the presence
of this filter produces straightforward modifications in the adap-
tive adjustments of the compensator parameters.

We will describe the input/output behavior of each optical
device through its Jones transfer matrix [14], which is a
2 2 matrix characterized by frequency-dependent components.
Denoting by and , the Fourier transforms of the
components of the optical signal at the device input, the Fourier
transforms and of the components of the optical
signal at the device output are given by

(2)

The Jones transfer matrix of theth PC (or optical rotator) is1

(3)

where and are frequency-independent and satisfy the
condition . Denoting by the rotation
angle about the axis in Stokes’ space, for an optical rotator,
we have that and , i.e., ,
are real quantities, whereas for a PC, they are complex quanti-
ties depending on at least two parameters. Thus, only one pa-
rameter for each optical rotator and two (or more) parameters
for each PC must be controlled, depending on the implemen-
tation (e.g., the relative angles between waveplates, for wave-
plate-based PCs). Denoting by and these control pa-
rameters (in general some voltages) for theth PC, and
are a function of these parameters. The detailed analytical ex-
pression depends on the considered PC.

The Jones transfer matrix of a PMF with DGD may be
expressed as , where

(4)

1In the following,(�) denotes the complex conjugate, whereas(�) denotes
“transpose.”

Fig. 2. Equivalent model of the PMD compensator(� = 1� �).

and is a frequency-independent unitary rotation matrix ac-
counting for the SOP’s orientation. Without loss of generality,
this matrix may be taken as the identity matrix.

As shown in Fig. 1, in order to control the PMD compensator,
we need a controller supplied with the quantities necessary to
update the compensator parameters. These quantities will be ex-
tracted form the signals at the compensator input and/or the sam-
ples at the photodetector output.

An important interpretation upon which we build up our con-
trol technique is that the compensator in Fig. 1 is equivalent to a
two-dimensional transversal filter using some tapped delay lines
(TDLs) combining together the signals on two orthogonal SOP
[15]. This equivalent model is shown in Fig. 2, where

(5)
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We denote by the vector whose components are thein
(5). Note that the tap coefficients of the four TDLs are not
independent from each other. Indeed, given four of them, the
others are completely determined by (5).

The controller will operate by following the criterion de-
scribed in Section III and will use one of the two algorithms
described in Sections III-A or III-B. In order to illustrate the
algorithms for the adaptive adjustment of the PMD compen-
sator, we collect the control parameters of the PCs in a vector

defined as

Being that the PMD is a slowly varying phenomenon, the
adjustment of the compensator parameters will be performed
at a rate lower than the transmit symbol rate . We assume
that this adjustment is performed at the discrete-time instants

, where . We denote by

the value of the compensator parameters after theth update.

III. T HE MEAN SQUARE ERRORCRITERION

In the MSE criterion, the compensator parametersare ad-
justed to minimize the mean square value of the error [12], [16]

(6)

where is the transmitted information symbol in theth
symbol interval. This error is a function ofthrough . We

explicit this dependence by defining . Therefore,
the performance index to be minimized is the mean value of

.
The update rules that we use to control the parameters of the

th PC are the following [16]

(7)

where denotes “expectation,” and is a scale factor
that controls the amount of adjustment. In vector notation, this

means that the vector of the compensator parameters is updated
by adding a new vector with its norm proportional to the norm
of the gradient of and with opposite direction, i.e., all of
its components have the sign changed, as follows:

(8)

In this way, we are sure to move toward a relative minimum of
the functional .

Three variations of the basic updating algorithm (7) are ob-
tained by using only sign information contained in the error
and/or in the partial derivative. Hence, the three possible varia-
tions are (considering, as an example, the updating rule related
to )

sign

(9)

sign (10)

sign

sign (11)

The following two algorithms illustrate how to compute the
gradient of the functional of .

A. First Algorithm

Let us consider the updating rule in vector notation (8). In
order to simplify this rule, in the error , we sub-
stitute the transmitted information symbol with the corre-
sponding decision (not necessarily correct), i.e., we sub-
stitute the error with the estimated error defined as

(12)

i.e., the difference between the unquantized and quantized
sample at the photodetector output. When an accurate charac-
terization of each PC is available, the updating rules may be
expressed as a function of the estimated error and the signals
on two orthogonal polarizations at the compensator input.

By using thestochastic gradientalgorithm [16] and by sub-
stituting in (7) the error with the corresponding estimated
error , the updating rule of the parameters of theth PC
becomes

(13)
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In vector notation, the algorithm (8) becomes

(14)

Recalling the equivalent model of the compensator, the partial
derivatives of , which appear in (14), may be expressed
as a function of the components on two orthogonal SOPs of the
signal at the compensator input at some proper instants. As can
be inferred from Fig. 2, the output sample may be written
as2

(15)

where the Hermitian matrix is given by

(16)

with vectors and defined by

(17)

By computing the gradient of , the algorithm (8) becomes

(18)

where

...
...

...
...

...
...

(19)

is the Jacobian matrix of the transformation
When the control parameters are different from those

assumed in this paper, we will have different relationships
between these control parameters and coefficients. For
instance, if the PC is controlled by means of some other
voltages, given the relationship between these voltages and the
coefficients and which appear in (3), we will be able to
express, by using equations (5), the coefficientsas a function

2(B) denotes the transpose conjugate of the matrixB.

of these new control parameters. As a consequence, in the
computation of the gradient of , the only modification
we must take into account will be the expression of the Jacobian
matrix , which has to be modified accordingly.

Finally, note that when this algorithm is used, the controller
must receive the optical signals at the compensator input and the
estimated error .

B. Second Algorithm

In this case, the expected value of the gradient of is
estimated by a trial-and-error procedure. In fact, the controller
tentatively updates the compensator parameters, one by one by
a fixed step size, and computes the corresponding gradient com-
ponents by averaging a given number of values of the estimated
error. It will be shown that, in this case, the relationship between
the control parameters of each PC and the corresponding Jones
matrix is not needed to compute the gradient components.

Defining , the updating rule (8) be-
comes

(20)

The partial derivatives of for can be computed
by using the following seven-step procedure:

• Step 1: Find the value at iteration .
In the time interval an estimate

of is computed through time averaging,
i.e., by averaging values of the square estimated error

(21)

• Step 2 : Find the partial derivative
at iteration .

In order to do this, parameter ( , and
) is temporarily set to the value ,

whereas the other parameters are left unchanged. The cor-
responding value of , denoted by , is computed
as in Step 1 in the time interval ( ,

).
The estimate of the partial derivative of with re-

spect to is computed as

(22)

After the gradient estimation has been completed, the definitive
parameter update is performed.

Note that, in this case, it is not necessary to know the relation-
ship between the control parameters of each PC and the corre-
sponding Jones matrices. In fact, the partial derivatives of the
functional with respect to the compensator control parameters
are computed without knowledge of this relationship.

Finally, note that when this algorithm is used, the controller
must receive the estimated error only.
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Fig. 3. Eye diagrams and MSE evolution.

IV. NUMERICAL RESULTS

We simulated the system in Fig. 1 in order to test its dynam-
ical behavior. A Gaussian-shaped optical filter with 3-dB band-
width equal to 1.875 times the bit rate and a fifth-order Bessel
postdetection filter with 3-dB bandwidth equal to 0.75 times the
bit rate were used. The DGD of the three PMFs in the compen-
sator was taken equal to, and , respectively, i.e.,
parameter was chosen equal to 0.5, as we have verified that
the MSE performance is best forin the range of 0.4 and 0.6
and not sensitive to the actual value. Choosing gener-
ates equal delays in the equivalent model of Fig. 2, making it
easier to deal with the equivalent fractionally spaced adaptive
filter, with no loss of generality. In Fig. 3, the uncompensated
and compensated eye diagrams are shown for , being
the bit time, fixed PMD such that the second-order parameters
[fiber DGD , DGD derivative , and principal states of
polarization (PSP) rotation rate] are , ,

, respectively, and there is equal signal power split-
ting among the PSP. The compensator adjustment is performed
by using the second algorithm described in Section III-B. Also
reported in Fig. 3 is the MSE evolution as a function of the
number of PMD compensator parameters iterations, showing
the convergence from the uncompensated to the compensated
eye diagram.

The compensator parameters are updated after a number of
signal samples sufficiently high to obtain a good estimate for the
MSE. We found that 100 samples are more than enough, if
is the number of compensator parameters. Since we can take into
account, as an example, only one of every four signal samples, at
40 Gb/s, the compensator could react in 500100 4 25 ps
5 s toanyPMD change and thus is only limited by the PC
speed.

The results shown in Fig. 3 were obtained by using a nearly
truly random bit sequence (pseudorandom sequence with a pe-
riod of ) and show the compensator effectiveness when
using our control algorithm. However, the ultimate figure of
merit is the outage probability. The outage probability is de-
fined here as the probability that the BER exceeds , given
3-dB sensitivity penalty with respect to the case of PMD ab-
sence. A -bit de Bruijn sequence [17] was chosen in order to
account for the intersymbol interference (ISI) due to four adja-
cent bits for the BER evaluation, performed by taking into ac-
count the exact postdetection noise statistics [18]. The outage
probability was evaluated through a Monte Carlo approach by
using the random waveplate model for the fiber. An extensive
optimization was carried out in the case of one PC and two ro-
tators, and it turned out that the optimum value for parameter
is about for both MSE and Stokes’ parameters criterion.
As an example, we show in Fig. 4, the outage probability as a
function of for a fixed mean DGD.

We report in Figs. 5 and 6 the results of two different con-
figurations for the compensator, corresponding to and

. The case was chosen because it is a special
case, as explained subsequently. Fig. 5 refers to the case of one
PC and two optical rotators, while Fig. 6 is relative to the case
of three PCs. For comparison, in Figs. 5 and 6, the outage prob-
abilities for the uncompensated (dash-dotted) and compensated
(dashed line) system are shown. Also for comparison, another
controlling strategy (solid line), based on the constancy with the
frequency of the signal Stokes’ parameters, is considered. This
strategy corresponds to the strategy of aligning the overall PMD
vector with the signal SOP, according to

(23)



2002 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 12, DECEMBER 2002

Fig. 4. Outage probability as a function of� for � = 0:5 and compensator
with one PC and two optical rotators.

Fig. 5. Outage probability for compensator with one PC and two optical
rotators.

Fig. 6. Outage probability for compensator with three PCs.

Following this criterion, we apply the stochastic gradient algo-
rithm to find the minimum of a suitable functional [19]. The
functional we use is based on the fact thatvectors are par-
allel when the sum of the squared modulus of the difference of
all possible couple of vectors is minimum, as follows:

(24)

where and are the signal SOPs at frequenciesand , ,
, respectively. These frequencies are chosen to be

equally spaced by , and it turns out that there is a minimum
value of and a maximum value of , giving the asymptotic
behavior for and . In practice, it suffices to
consider a small number of equispaced frequencies (57) in a
narrow bandwidth (about half the signal bandwidth) around the
optical carrier.

It can be seen that the MSE criterion gives a lower outage
probability in both cases and and that it is
much less sensitive to the value than the other criterion in
the case of one PC and two rotators. In this case, the sensitivity
of the Stokes’ parameters criterion to thevalue is explained
by the fact that, given the particular compensator structure, the
compensator PMD vector magnitude is not independent from its
orientation, and thus directions exist for which the compensator
DGD cannot be less than, for example. This means that for
some overall PMD vector components due to the fiberand
signal SOP , the compensator may not be able to generate the
needed dispersion vector such that is aligned
with , and this happens with higher probability whenis sig-
nificatively greater than the fiber mean DGD. The MSE criterion
is less sensitive to the value because it is a criterion aiming
at the maximization of the eye opening, regardless of the signal
waveform, which is allowed to be different from the undistorted
transmitted one. In the case of three PCs, the criterion outper-
forms the Stokes’ criterion, as expected, for , because
the increased number of parameters also increases the degree of
freedom for the tap coefficients, and the structure in Fig. 2 is
equivalent to a fractionally spaced equalizer with spacing,
a structure which is known to perform very well [12] as it is able
to combine the operations of matched filtering and equalization
of ISI into a single filter.

By comparing Fig. 5 and Fig. 6, we can also see that when
using a criterion whose goal is the inversion of the channel Jones
matrix, such as the Stokes’ parameters criterion, the improve-
ment in the outage probability obtainable by using three PCs
instead of one PC and two optical rotators, is very limited. On
the contrary, the MSE criterion is able to take advantage from
the increased number of degrees of freedom.

As a final note, notice that the stochastic gradient algorithm
can only guarantee the reach of a local minimum and not a
global one. Nevertheless, whichever PC structure we tried, all
local minima turned out to be almost equivalent, and the use of
algorithms that are able to reach a global minimum (such as the
simulated annealing algorithm) produce nearly equal results in
terms of outage probability.

V. CONCLUSION

In this paper, a new simple and effective technique for the
adaptive adjustment of the parameters of a PMD compensator
has been presented. This technique is based on the minimiza-
tion of the MSE between the photodetector output and the cor-
responding symbol decision. Two algorithms based on this cri-
terion have been proposed. The first one needs an accurate char-
acterization of the optical compensator but is faster and more ac-
curate. On the contrary, the second algorithm does not require
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the knowledge of the relationship between the control parame-
ters and the Jones matrices of the compensator components. In
any case, the resulting compensator is able to react to any PMD
change and is only limited by the speed of the compensator’s
physical components.

With respect to other algorithms for the adaptive control of
PMD compensators, with the proposed algorithm, the resulting
compensator is characterized by a better convergence speed
and steady-state behavior with a lower complexity as only the
squared difference between the unquantized and quantized
signal sample is needed.
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