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Design and Performance of Turbo Gallager Codes
Giulio Colavolpe

Abstract—The most powerful channel-coding schemes, namely,
those based on turbo codes and low-density parity-check (LDPC)
Gallager codes, have in common the principle of iterative decoding.
However, the relative coding structures and decoding algorithms
are substantially different. This paper shows that recently pro-
posed novel coding structures bridge the gap between these two
schemes. In fact, with properly chosen component convolutional
codes, a turbo code can be successfully decoded by means of the
decoding algorithm used for LDPC codes, i.e., the belief-propaga-
tion algorithm working on the code Tanner graph. These new turbo
codes are here nicknamed “turbo Gallager codes.” Besides being
interesting from a conceptual viewpoint, these schemes are impor-
tant on the practical side because they can be decoded in a fully
parallel manner. In addition to the encoding complexity advantage
of turbo codes, the low decoding complexity allows the design of
very efficient channel-coding schemes.

Index Terms—Belief propagation (BP), iterative decoding, low-
density parity-check (LDPC) codes, turbo codes.

I. INTRODUCTION

I N RECENT years, great attention has been devoted to pow-
erful coding schemes which achieve near-Shannon limit

performance with affordable decoding complexity. In 1993,
turbo codes were first introduced [1], [2]. A turbo encoder is
the parallel concatenation of two simple constituent encoders
interconnected through an interleaver. The corresponding de-
coding process is based on an iterative algorithm in which
each component decoder takes advantage of the extrinsic in-
formation produced by the other decoder at the previous step.
This iterative decoding process usually employs soft-output
component decoders based on the algorithm by Bahl et al.
(BCJR) [3] or its simplified logarithmic versions [4]. After the
invention of turbo codes, this decoding technique was extended
to serially concatenated convolutional codes (SCCCs). SCCCs
are based on a serial concatenation, through an interleaver, of
an outer code and an inner recursive code [5].

The extraordinary success of turbo codes has stimulated the
rediscovery of another class of codes exhibiting similar perfor-
mance and characteristics [6]. These codes, called low-density
parity-check (LDPC) codes, were first introduced by Gallager
[7] in their original regular version. In terms of performance,
regular LDPC Gallager codes are only slightly inferior to par-
allel and serial concatenated convolutional codes. However, in
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their irregular version, they exhibit an impressive performance
outperforming the best known turbo codes [8]–[10].

LDPC codes are linear codes specified by a sparse
parity-check matrix. A -regular LDPC code, as orig-
inally defined by Gallager, is a binary linear code such that
every code bit participates in exactly parity-check equations,
and every check equation involves exactly code bits. In
other words, the corresponding parity-check matrix has
ones in each column and ones in each row. As originally
suggested by Tanner [11], LDPC codes are well represented by
bipartite graphs in which one set of nodes, the variable nodes,
represents the elements of a codeword, and the other set of
nodes, the check nodes, corresponds to the set of parity-check
constraints which define the code. In the following, we will
denote these bipartite graphs as Tanner graphs. Regular LDPC
codes are such that all nodes of the same type have an equal
number of edges. On the contrary, for irregular LDPC codes,
the node degree of each node in each set is not equal, but chosen
according to an optimized distribution [8]–[10].

As already mentioned, some irregular LDPC codes have
better performance with respect to turbo codes for equal code-
word length. In addition, they have other advantages over turbo
codes. In fact, belief propagation (BP), the iterative decoding
algorithm for LDPC codes which works on the code Tanner
graph, can be fully parallelized and potentially implemented at
high speed. Moreover, in [12], low-complexity decoders that
closely approximate BP in performance have been designed for
these codes, extending the original work in [7]. In the following,
all these decoders, i.e., BP and the low-complexity decoders
described in [12], will be referred to as message-passing de-
coders. On the negative side, one major drawback of LDPC
codes is represented by their high encoding complexity [13].

In this paper, we will describe and analyze two classes of
coding schemes, originally proposed in [14], which can be
easily decoded at high speed by means of message-passing
decoders. The first class is represented by single convolutional
codes with some specific algebraic properties which ensure
that message-passing decoders can operate successfully on the
code Tanner graph. In this case, a message-passing schedule,
specifically tailored for this class of codes, will be described.
Since message-passing decoding algorithms are very simple
and characterized by a decoding complexity which does not
directly depend on the code constraint length, they can be used
to decode convolutional codes with a large constraint length,
and hence, potentially characterized by a large free distance.1

1The decoding complexity of a BCJR or a Viterbi algorithm grows exponen-
tially with the code constraint length, therefore, these algorithms cannot be prac-
tically used for codes with a very large free distance.
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The second class of codes is based on code concatenation.
The resulting coding schemes and the corresponding decoding
algorithms combine the advantages of turbo codes and LDPC
codes. In fact, the coding structures are very simply based on the
parallel or serial concatenations of simple convolutional codes
through interleavers, in which the component convolutional
codes are constrained to have the above-mentioned specific al-
gebraic properties which ensure that message-passing decoders
can work successfully on the Tanner graph of the overall code.
In this way, combining the coding structure of parallel or serial
concatenated codes and the decoding algorithm for LDPC
codes, a new architecture results, which can be effectively
implemented with simple coding and decoding operations. In
terms of decoding complexity, the proposed schemes represent
a valid alternative to classical turbo codes and give a solution
to the encoding problem of LDPC codes [13].

The proposed codes are different from low-density convolu-
tional codes proposed in [15] which are time-varying, period-
ical, binary convolutional codes.

II. BACKGROUND: TANNER GRAPHS AND BELIEF PROPAGATION

Message-passing decoding algorithms for LDPC codes are
based on an iterative exchange of messages along the edges of
a code Tanner graph [7], [11], [16]. This graph, which can be
drawn by direct inspection of a parity-check matrix of the
code, is composed of two classes of nodes: variable nodes cor-
responding to the code bits, and check nodes corresponding to
the code constraints. Check nodes are connected by edges to
variable nodes on which they depend. A cycle is a closed path in
the graph, and its length is defined as the corresponding number
of path edges. The length of the shortest cycle is the girth of the
graph.

We now review the BP decoding algorithm. Let us denote by
a suitable message propagating on an edge of the code Tanner

graph. This message represents the log-likelihood ratio related
to the code bit corresponding to the variable node from which
the considered edge originates. At the th iteration, we denote
by a message sent from a variable node to a check
node, and by a message in the opposite direction. A
variable node of degree receives and processes the messages

, , and sends back to its th
neighboring check node the message [7], [12]

(1)

where is the initial message received by the considered vari-
able node as a function of the channel output corresponding to
the considered code bit. When , the variable node simply
propagates its initial received message . It may be observed
that the message in (1) does not depend on the mes-

sage previously received on the same edge, i.e.,
only extrinsic information is exchanged.

A check node of degree receives and processes the mes-
sages , , and sends back to its th

neighboring variable node the message [7], [12]

(2)

A simplified min-sum version of the updating rule (2) is de-
scribed in [17]. The decoding algorithm proceeds iteratively
until the code parity-check constraints are all verified or a max-
imum number of iterations is reached.

Although this decoding algorithm is provably optimal for bi-
partite graphs without cycles [12], in practice, it is necessary
to only avoid cycles of length up to four to attain good perfor-
mance [10]. Other message-passing algorithms can be devised
based on different types of messages, possibly taking on values
in some finite message alphabet, and different updating rules
[12]. All these algorithms can be applied to decode the codes
described in Sections III–V.

A message-passing schedule in a factor graph is the specifica-
tion of the order in which messages are updated. In general, the
so-called flooding schedule is adopted to decode LDPC codes
[18]. In this case, in each iteration, all variable nodes, and subse-
quently, all check nodes, pass new messages to their neighbors.
As can be easily understood, this schedule is well suited for a
fully parallel implementation of the decoder.

III. SINGLE CONVOLUTIONAL CODE

In this section, we describe a class of convolutional codes
which can be decoded by means of the described mes-
sage-passing algorithms. We consider a single convolutional
code truncated to a block code of a given codeword length.
Tailbiting can be used to convert the convolutional code to a
block code with no rate loss [19]. As mentioned in the previous
section, a message-passing decoding algorithm operating on a
code Tanner graph is an effective technique if the graph girth is
at least six. In the following, we analyze the conditions that a
convolutional code must satisfy in order to have a Tanner graph
without cycles of length four.2

The girth of a code Tanner graph can be easily determined by
analyzing the corresponding code parity-check matrix. In fact,
a bipartite graph has girth of at least six if and only if (iff) the
corresponding parity-check matrix has no rectangles, i.e., four
one’s in two separate rows which define the corners of a rec-
tangle. This property can be easily verified by observing that if
a rectangle is present, the row and column indexes of its corners
determine the variable and check nodes connected by a cycle of
length four.

The condition for the absence of cycles of length four can
be directly translated into a condition on the code parity-check
equations. For illustration purposes, rate- systematic

2We emphasize that in this paper, the term “Tanner graph” is used to denote a
graph directly derived from the code parity-check matrix and without the explicit
representation of hidden (state) variable nodes present in the so-called Wiberg-
type graphs [17].
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codes are considered, but the conditions being described can be
easily generalized to rate- convolutional codes.

A rate- recursive systematic convolutional (RSC)
code is described by a polynomial generator matrix of the form

(3)

where is a identity matrix, is a unit-delay operator,
and is a column vector of elements of the form

(4)

where , , and denote the feedfor-
ward and feedback polynomials, respectively. These polyno-
mials may be expressed in the form3

(5)

where , , and denote suitable integers which specify the
considered code.

We may also describe a rate- RSC code by using the
corresponding parity-check equation at discrete time . This
description has an immediate visual impact on the code Tanner
graph. The encoder for the code described by (3) receives, at
discrete time , the information bits , and
produces, assuming without loss of generality , a parity
bit given by the following parity-check equation:

(6)

where is the total number of transmitted parity bits and it is
understood that, if the lower limit of a sum is greater than the
upper limit, no terms are summed. Therefore, ,
and denote the number of information and parity bits in
each parity check, respectively. In order to simplify the no-
tation, we collect integers and in the following vec-
tors: , , and

.
The corresponding Tanner graph can be easily built. In fact,

for each discrete-time instant , we have variable nodes
corresponding to the information bits and
the parity bit , and a check node representing (6). This check
node will be connected to some variable nodes, according to (6).
For a given number of decoding iterations, the complexity of a
message-passing algorithm working on this graph depends on
the number of edges in the graph, and therefore, on

, and is independent of the code-constraint
length.

Proposition 1: For a systematic rate- convolutional
code, in order to ensure that the bipartite graph has girth at least

3In the following, we employ the usual symbols+ and to denote modulo-2
addition.

six, a necessary and sufficient condition is that the index differ-
ences ,
and are all distinct.

In particular, for a rate-1/2 code, the following proposition
holds.

Proposition 2: For a systematic rate-1/2 code:

1) if and , the bipartite
graph has no cycles;

2) if and , denoting by
and , the graph has girth four if

, six if and or ,
and otherwise the graph has girth eight;

3) if or , the graph can have cycles of at
most length six iff all differences ,
are distinct.

For a general rate- convolutional code, possibly punc-
tured, similar conditions may be derived. As an example, for
a systematic convolutional code of rate- , in the absence of
puncturing, the following proposition holds.

Proposition 3: Considering a systematic convolutional code
of rate- as the interlacing of the parity sequences of
rate-1/2 subcodes operating on the same information sequence,
the condition for the absence of cycles of length four is that the
above-mentioned index differences computed on all the rate-1/2
subcodes must be different.

The proofs of these propositions are omitted for the reasons
explained in the following Remark 1.

Example 1: Let us consider a rate-1/2 systematic recursive
code with generator matrix

(7)

In this case, and , and the code is defined by the
following two vectors: and . For this
code, the described conditions are not satisfied, because

. Hence, the Tanner graph has
girth four, as can be easily verified.

Example 2: Let us now consider a rate-1/2 systematic recur-
sive code with generator matrix

(8)

This code is characterized by , , ,
and . According to Proposition 2, the corresponding
Tanner graph has girth eight.

Remark 1: Nonrecursive systematic codes are a special case
of the codes described in this section. In this case, the con-
ditions in Propositions 1 and 3 for the absence of cycles of
length four (or, equivalently, for the absence of rectangles in the
parity-check matrix) define the so-called convolutional self-or-
thogonal codes (CSOCs) [20]–[22]. These codes form a class of
nonrecursive systematic codes adopted for satellite communica-
tions in the 1960s and 1970s since they admit simple decoding
schemes, namely, the so-called hard-input majority-logic de-
coding and soft-input threshold decoding [20], [22]. The condi-
tions in Propositions 1 and 3 were recognized as necessary for
the applicability of majority logic and threshold decoding [20],
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[21]. However, this is not surprising, since it can be shown that
threshold decoding coincides with the previously described BP
algorithm when a single iteration is performed. Similarly, it can
be shown that majority-logic decoding is related with the first
iteration of the so-called Gallager B algorithm described in [7]
and [12]. The codes described in this section may be viewed as
a generalization of CSOCs to recursive codes. Proofs of Propo-
sitions 1–3 can be obtained as a straightforward extension of
the proofs in [21] for conventional CSOCs, and are therefore
omitted.

Remark 2: The code description is not unique, nor is the
corresponding code Tanner graph. As a consequence, even if
a given generator matrix does not comply with the conditions
for the absence of cycles of length four, it could be possible to
find an equivalent code description that does. For instance, this
is the case of the code in Example 1. In fact, multiplying numer-
ator and denominator by the common factor , we obtain the
equivalent generator matrix given in (8), whose corresponding
Tanner graph has girth eight. This code and its equivalent de-
scriptions will be reconsidered in the numerical results.

Schedule: When used to decode convolutional codes, mes-
sage-passing algorithms can also adopt a schedule different
from that previously described and usually adopted for LDPC
codes. This schedule, referred to as the wave schedule, is made
possible by the fact that the parity-check matrix of a convolu-
tional code is block triangular, and by the relevant structure of
the code Tanner graph. In fact, at each iteration, after variable
and check nodes up to discrete-time have been processed,
the edges connecting “future” check nodes may be immediately
updated without waiting for the successive iteration. In practice,
each check node is “activated” when it can benefit from the
updating, at the same iteration, of the messages coming from
previous check and variable nodes. This schedule is pictorially
exemplified in Fig. 1, with reference to the Tanner graph of
a rate-1/2 systematic convolutional code with parity-check
equation . In the figure, three successive
steps of this schedule are shown under the letters (a), (b),
and (c). Although this new schedule allows a speed up of the
convergence process, it is not compatible with a fully parallel
implementation of the decoder. For high-speed communication
systems, the flooding schedule could be preferred.

IV. CONCATENATED SCHEMES

In this section, we discuss the concatenation of the convolu-
tional codes previously described. The resulting coding schemes
are classical turbo codes or serially concatenated codes, but may
be decoded as LDPC codes. For this reason, these new concate-
nated schemes are nicknamed “turbo Gallager codes” (TGCs).
More generally, code networks can be designed by concate-
nating a few convolutional component codes in mixed parallel
and serial configurations [5], [23].

TGC are based on the following two key concepts:

1) at the encoder, the use of recursive CSOCs in code net-
works as component codes;

2) at the decoder, the use of a message-passing algorithm
which works on the Tanner graph of the overall code by
adopting the flooding or the wave schedule.

Fig. 1. Wave schedule.

Fig. 2. Overall Tanner graph for a turbo code.

Let us consider the overall Tanner graph of a turbo code.
In Fig. 2, we show, as an example, the graph for a rate-1/3
code. The component codes are rate-1/2 systematic codes with

, , and, for simplicity, the code termination
is ignored. In the upper part of the graph, the information bits
and the parity bits of the first component code are connected
with the corresponding check nodes. The information bits are
also connected, in a permuted order, with the lower check nodes
related to the second component code having parity bits .
The decoding process can be performed by means of a mes-
sage-passing decoder working on the Tanner graph of the overall
code. In this case, the variable nodes of both codes, and subse-
quently, the check nodes of both codes, are activated simulta-
neously. Alternatively, a “turbo-like” decoder such as that de-
scribed in [2] could be used, in which each soft-output decoder is
based on the message-passing algorithm working on the Tanner
graph of the corresponding component code, and both decoders
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iteratively exchange soft information.4 For a given performance,
the convergence speed of a message-passing decoder working
on the Tanner graph of the overall code with the flooding or wave
schedule was observed to be greater than that of the above-men-
tioned turbo-like decoder. In fact, each component decoder of
this turbo-like scheme must perform some inner iterations in
order to pass reliable information to the other decoder. Then,
additional iterations on the overall scheme are necessary.

Note that even if the graphs of each component code have
girth six, the overall Tanner graph may have girth four, de-
pending on the interleaver used. As an example, consider a
turbo code composed of rate-1/2 convolutional codes. In this
case, a sufficient condition to avoid the appearance of cycles
of length four in a parallel concatenation is that informa-
tion symbols which differ for less than
have a distance, after the interleaver, greater than or equal to

. This may be obtained by the use of an
-random interleaver with [24].
Turbo codes based on CSOCs as component codes were pre-

viously proposed in [25], where, however, nonrecursive CSOCs
were adopted, and the decoding scheme was “turbo-like” using
threshold decoders as soft-output component decoders. The per-
formance of this scheme has a twofold limitation: 1) the use
of nonrecursive codes prevents the possibility of an interleaver
gain; and 2) the suboptimal threshold decoders further limit the
overall performance. This limitation may be overcome by the
proposed schemes based on recursive codes and a more efficient
decoding.

As a design criterion to select the component codes as
well as the type of interleaver, puncturing, and concatenation
(parallel, serial, or mixed), the method of density evolution can
be used. Density evolution is a tool for jointly analyzing the
code and the message-passing decoding algorithm, evaluating
the relevant performance when averaged over the ensemble of
codes with a common degree distribution of variable and check
nodes [10], [12]. This method, which assumes the absence
of cycles, analyzes the evolution of the probability density
functions of the messages propagating in the graph during
decoding, with the aim of determining the critical channel
parameter (the so-called threshold) which separates the region
where reliable transmission is possible from that where it is
not [12]. Notice that for TGCs, the condition of absence of
cycles for increasing codeword length is not satisfied. Hence,
no rigorous claim on the achievable iterative threshold can
be made. Nevertheless, density evolution can provide useful
information in the code design.

The degree distribution of variable and check nodes, neces-
sary for the application of the density evolution method, can be
concisely described by two polynomials and defined
in [9] and [10]. For TGCs, these two polynomials depend on the
type of concatenation, interleaver, puncturing (if any), and com-
ponent codes.

Example 3: Let us consider a rate-1/2 turbo code obtained
from two identical rate-1/2 RSC codes by means of puncturing.
Let us assume that the interleaver is odd–odd, i.e., bits in odd

4This turbo-like scheme corresponds to a particular message-passing
schedule in the overall graph. In fact, in this case, messages are exchanged in
the upper or in the lower part of the graph alternatively.

Fig. 3. BER of the convolutional code in Examples 1 and 2, by using the BCJR
and the BP algorithm.

(even) position remain in odd (even) position after the permu-
tation,5 and that the odd parity bits of the first encoder and the
even parity bits of the second encoder are punctured. When a bit
is punctured, the corresponding variable node in the graph dis-
appears, along with the neighboring check nodes and the edges
connected to them. As a consequence, by means of simple con-
siderations on the overall Tanner graph, it can be shown that the
corresponding degree polynomials are

(9)

By properly choosing the integers and , simple irregular
codes can be obtained. However, if , a regular code
results. As an example, if , a (3,6) regular LDPC
code is obtained.

V. NUMERICAL RESULTS

Computer simulations are used to assess the performance of
the proposed codes, whether concatenated or not, in terms of
bit-error rate (BER) versus , being the received signal
energy per information bit, and the two-sided noise power
spectral density. For TGCs, density evolution is used to select
the component codes. To this purpose, discretized density evo-
lution [10] is considered with 512-level quantization in the range
from 32 to 32.6 Finally, a comparison between the flooding and
the wave schedules in terms of convergence speed is reported.

Single Convolutional Code: The application of the BP al-
gorithm to a single convolutional code is first analyzed, and in
Fig. 3, the code in Examples 1 and 2 is considered (see also Re-
mark 2). In this figure, the performance of the optimal BCJR
algorithm is also given as a benchmark. For the BP algorithm,
computer simulations were performed by using early detection
of convergence, i.e., at each iteration the decoder determines if

5Examples of such an interleaver are described in [2] and [26]. A dithered
relative prime (DRP) interleaver [27] can be also odd–odd for particular choices
of the dither functions.

6We assume that the transmitted code symbols are �1.
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TABLE I
THRESHOLDS FOR A RATE-1/2 TURBO CODE WITH EQUAL COMPONENT

CODES, AN ODD–ODD INTERLEAVER AND AN ODD–EVEN PUNCTURING

checks are all satisfied, stopping decoding when they are. When
the BP algorithm is applied to the Tanner graph with girth four
derived from the generator matrix in (7), the performance does
not approach the optimal one, even for a maximum allowed
number of 50 iterations. On the contrary, on a Tanner graph
with girth greater than four, such as the graph which derives
from the generator matrix in (8) for the same code, the BP al-
gorithm has a performance which is very close to the optimal
one in two to three iterations (the relevant curve in Fig. 3 refers
to ten maximum allowed iterations). In general, when the code
Tanner graph has girth six, we observed in our simulations that
the performance of the BCJR algorithm is always reached. On
the contrary, when the code has girth four, the BER never con-
verges to the optimal performance.

Concatenated Schemes: Code Design Based on Density Evo-
lution: As a tool to perform the code design, the density evo-
lution technique was used. The threshold of the signal-to-noise
ratio (SNR), i.e., the value above which the expected fraction
of incorrect messages approaches zero, assuming absence of
cycles, is computed. As already mentioned, these threshold
values can be used to select the component codes as well as the
type of interleaver, puncturing, and code concatenation. As an
example, let us consider the case of turbo codes, such as those
described in Example 3. In this case, the threshold values are
shown in Table I for different values of , along with
the corresponding optimal values of and . It can be noted
that an optimal value of exists and corresponds to the couple

(or equivalently, ). Hence,
component codes with these values of and represent the
better choice in this case. The corresponding threshold value
is 0.797 dB, whereas the Shannon limit for binary inputs and
rate-1/2 is 0.187 dB. Lower values of the threshold (0.584
dB) may be obtained by using different component codes, i.e.,
an asymmetric turbo code, in order to make the overall code
more irregular. As a side result, we observed a significant
increase of the threshold values when the component codes
are nonrecursive, according to well-known results for turbo
codes.

As a final comment, we summarize the results we obtained by
applying the threshold analysis to serial concatenated schemes.
We found that lower threshold values are obtained for a recur-
sive inner code according to the results in [5]. As a further de-

Fig. 4. BER of the considered TGCs and comparison with regular LDPC codes
for different codeword lengths L.

gree of freedom which can allow lower threshold values, code
networks obtained by concatenating component codes in mixed
parallel and serial configurations may be considered.

Concatenated Schemes: BER Analysis: In Example 3, we
observed that, with a proper choice of component codes, in-
terleaver type, and puncturing, it is possible to obtain a TGC
which is also a (3,6)-regular LDPC code. In Fig. 4, we compare
the performance of these (3,6)-regular TGCs with that of clas-
sical (3,6)-regular LDPC codes [6], [28] for different codeword
lengths . For the proposed schemes, the component codes have

, , and we use tailbiting in both
component codes, as described in [29] for recursive codes, in
order to avoid a rate loss due to code termination. Note that
no code search was performed—the component codes are only
chosen following Proposition 3 and simple intuitive considera-
tions. Specifically, as both component codes are punctured, in-
tegers must be all even (or all odd) in order to prevent all of
the check nodes from disappearing. In addition, integers are
chosen small in order to reduce the probability of appearance of
cycles of length four due to the interleaver, whereas larger values
of the integers are chosen in order to allow the propagation
of a message to a wide region of the graph in a few iterations.

For TGCs, different codeword lengths, namely, 496,
2624, and 8000, which correspond to interleaver lengths of 248,
1312, and 4000, respectively, are considered.7 We emphasize the
simplicity in obtaining codes with different codeword lengths.
The component codes remain the same and only the interleaver
size changes. Computer simulations were performed by using
early detection of convergence. The maximum allowed number
of iterations is 400 for TGCs, as well as for (3,6)-regular LDPC
codes of length 504, 2340, and 8000, reported in Fig. 4 as a
comparison [28]. We observe that the considered TGCs perform
slightly better than classical (3,6)-regular LDPC codes, despite
their simpler construction and encoding.

In Fig. 5, we compare the performance of TGCs with that of
the original rate-1/2 turbo code by Berrou and Glavieux (B&G)

7DRP interleavers withM = 8 are used [27].
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Fig. 5. BER of the considered TGCs and comparison with the original turbo
code by B&G [2].

[2]. Unlike the code considered in Examples 1 and 2 and Re-
mark 2, it can be shown that it is not possible to rearrange the
generator matrix of the component code of the B&G turbo code
in order to obtain a bipartite graph with girth greater than four.
For this reason, we use different component codes for the con-
sidered TGCs. A symmetric TGC, such as that described in Ex-
ample 3, is considered with component codes having and

, since these values correspond to the lowest threshold.
This code is denoted TGC1 in Fig. 5. The identical component
codes have and . We also consider
an asymmetric turbo code, denoted as TGC2 in Fig. 5, which
corresponds to a threshold of 0.584 dB. In this case, one compo-
nent code has and , whereas the
second one has and . For
these three turbo codes (B&G, TGC1, and TGC2), DRP inter-
leavers with lengths 1024 or 16 000 bits are
used. For TGC1 and TGC2, the maximum number of iterations
is 200, for interleavers of length 1024, or 800, for interleavers of
length 16 000. However, as shown below, the mean number of
iterations really necessary is significantly lower. From Fig. 5, it
can be observed that, despite the lower level of decoding com-
plexity, TGC1 exhibits a performance degradation of less than
0.3 dB at a BER of . This performance loss reduces to about
0.15 dB by using TGC2.

A serial code concatenation is considered in Fig. 6, where
the performance of an overall code obtained by concatenating
a systematic outer code with and (hence,
this code in nonrecursive), and a systematic recursive inner code
with and , is shown for different
interleaver lengths. The overall rate of 1/3 is obtained by prop-
erly puncturing the inner code. Hence, the codeword length is
1.5 times the interleaver length. A density evolution analysis
showed that, corresponding to the degree distribution of this
code, the threshold is 0.697 dB. From the figure, it can be ob-
served that by increasing the interleaver length, the performance
tends to this limiting value.

Schedule: Finally, in Fig. 7, we compare the wave and
flooding schedules in terms of mean value and standard devi-

Fig. 6. BER of the considered TGCs in the case of serial concatenation.

Fig. 7. Mean and standard deviation of the number of iterations for the wave
and flooding schedules.

ation of the number of iterations until convergence versus the
SNR. The considered TGC code is TGC1 from Fig. 2 with
an interleaver length of 1024 bits. We observe that the wave
schedule reduces the number of iterations. However, as already
mentioned, this schedule is not compatible with a fully parallel
decoder implementation—it represents a viable solution for
serial implementations.

VI. CONCLUSION

In this paper, we showed that code networks, designed
by concatenating convolutional codes in mixed serial and/or
parallel configuration through interleavers, may be effectively
decoded by means of the decoding algorithm used for LDPC
Gallager codes and working on the code Tanner graph, provided
that the component codes are chosen according to proper
conditions which guarantee that the graph has girth at least
six. For RSC codes of rate and , these conditions
are explicitly given, and their analogy with the conditions
which define CSOCs were drawn. Hence, the proposed code
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networks combine the simple coding operations of turbo and
serial concatenated codes with the fully parallel decoding
implementation of LDPC codes. These codes were compared,
in terms of BER performance, with classical regular LDPC
codes and the original B&G turbo code showing that, despite
the lower overall complexity, very powerful schemes may be
obtained.
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