1976

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.7 JULY 2006

[PAPER

VLSI Design of a Fully-Parallel High-Throughput Decoder for

Turbo Gallager Codes

Luca FANUCCI'®, Member, Pasquale CIAO, and Giulio COLAVOLPE'", Nonmembers

SUMMARY The most powerful channel coding schemes, namely those
based on turbo codes and low-density parity-check (LDPC) Gallager
codes, have in common the principle of iterative decoding. However, the
relative coding structures and decoding algorithms are substantially differ-
ent. This paper presents a 2048-bit, rate-1/2 soft decision decoder for a
new class of codes known as Turbo Gallager Codes. These codes are turbo
codes with properly chosen component convolutional codes such that they
can be successfully decoded by means of the decoding algorithm used for
LDPC codes, i.e., the belief propagation algorithm working on the code
Tanner graph. These coding schemes are important in practical terms for
two reasons: (i) they can be encoded as classical turbo codes, giving a
solution to the encoding problem of LDPC codes; (ii) they can also be
decoded in a fully parallel manner, partially overcoming the routing con-
gestion bottleneck of parallel decoder VLSI implementations thanks to the
locality of the interconnections. The implemented decoder can support up
to 1 Gbit/s data rate and performs up to 48 decoding iterations ensuring
both high throughput and good coding gain. In order to evaluate the per-
formance and the gate complexity of the decoder VLSI architecture, it has
been synthesized in a 0.18 um standard-cell CMOS technology.

key words: low-density parity-check (LDPC) codes, belief propagation,
iterative decoding, VLSI architectures, parallel decoder architectures

1. Introduction

In recent years the rapid developments in the field of dig-
ital transmission systems and microelectronic technologies
have led to the discovery or rediscovery of more and more
powerful channel coding techniques like turbo codes and
low-density parity-check (LDPC) codes, which achieve near
Shannon limit decoding performance.

Turbo codes were introduced for the first time in 1993
by Berrou and Glavieux [1], [2], but the problem of an effi-
cient hardware implementation of the turbo decoder is still
open. The iterative nature of the decoding algorithm, in
fact, requires at each iteration the computation and storage
of a large amount of information so increasing the decoder
complexity. Moreover, a great number of iterations is re-
quired to obtain a high coding gain, thus it is very difficult
to satisfy the high-throughput, low-power and low-latency
requirements imposed by modern applications.

The growing interest in the field of iterative decoding,

Manuscript received June 8, 2005.
Manuscript revised October 25, 2005.
Final manuscript received March 22, 2006.
"The authors are with the University of Pisa, Dept. of Informa-
tion Engineering, Via Caruso, [-56122 Pisa, Italy.

"The author is with the Universitd di Parma, Dipartimento di
Ingegneria dell’Informazione Parco Area delle Scienze 181A, I-
43100 Parma, Italy.

a) E-mail: luca.fanucci@iet.unipi.it

DOI: 10.1093/ietfec/e89-a.7.1976

stimulated the rediscovery of the LDPC codes. LDPC codes
have a performance, in the original regular form proposed by
Gallager in 1963 [3], only slightly inferior to that of turbo
codes, and even superior in their irregular version [4], [S].
A great advantage of these codes is the absence of a serial
dependency in the decoding algorithm that can, therefore,
be fully parallelized and potentially implemented at high
speed. However, an effective hardware implementation of
a parallel decoder is still an open issue since problems of
gate complexity and especially routing congestion arise. In
order to overcome these problems the current trend is the
construction of implementation-oriented codes [6]-[10].

A new class of codes, originally proposed in [11], is
considered in this paper. These codes are based on code con-
catenation and can be easily decoded at high speed by means
of the same message-passing decoding algorithm used for
LDPC codes. The resulting coding schemes and the corre-
sponding decoding algorithms combine the advantages of
turbo codes and LDPC codes. In fact, the coding struc-
ture is simply based on parallel or serial concatenation of
simple convolutional codes through interleavers. The com-
ponent convolutional codes are constrained to have specific
algebraic properties which ensure that message-passing de-
coders can work successfully on the Tanner graph of the
overall code. In this way a new architecture results which
can be effectively implemented with simple coding and de-
coding operations. In terms of decoding complexity, this
new class of codes represents a valid alternative to classi-
cal turbo codes and give a solution to the encoding prob-
lem of LDPC codes [12]. The greatest advantage of these
codes is that they partially overcome the routing congestion
problem which is the main bottleneck of parallel decoder
VLSI implementations. In fact as classical LDPC codes,
they can be decoded using a fully parallel structure, but they
have an additional property known as locality of the inter-
connections, i.e., not all the links in the code Tunner graph
are pseudoramdom, but some regular links are present, too.
For these codes, a parallel VLSI decoder architecture that
allows obtaining a very good performance in terms of bit er-
ror rate (BER) while supporting data rate up to 1 Gbit/s, is
presented.

After this Introduction, Sect.2 briefly reviews the be-
lief propagation algorithm. Section 3 gives a description of
the code. Section 4 describes the two possible categories in
which the various hardware implementation architectures of
the decoder can be grouped. Section 5 gives a detailed de-
scription of the implemented VLSI architecture and its sub-

Copyright © 2006 The Institute of Electronics, Information and Communication Engineers

FANUCCI et al.: VLSI DESIGN OF A FULLY-PARALLEL HIGH-THROUGHPUT DECODER FOR TURBO GALLAGER CODES

blocks. In Sect. 6 the adopted design, verification flow and
relevant CMOS implementation results are presented, while
in Sect.7 a performance comparison has been carried out
with both turbo and LDPC decoders in terms of hardware
requirements. Finally conclusions are drawn in Sect. 8.

2. Belief Propagation Algorithm

A Tanner graph [13], which is a graph representation of
a generic linear code, is composed (Fig. 1) of two classes
of nodes: variable nodes (VNs) corresponding to the code
bits, and check nodes (CNs) corresponding to the code con-
straints. Check nodes are connected by edges to the variable
nodes on which they depend. The number of edges of a node
of each kind defines the degree of the node itself.

The message-passing decoding algorithms, originally
devised in [3] for LDPC codes, are based on an iterative
exchange of messages along the edges of the code Tanner
graph. This class of decoding algorithms includes the infi-
nite precision belief propagation algorithm as well as low-
complexity algorithms that closely approximate in perfor-
mance belief propagation. We now briefly review the be-
lief propagation algorithm. Denoting by L the codeword
length, by X = (x1, x2, . .., xz) the transmitted codeword and
by y = (1,2, ...,y) the received codeword, the so called
LLRs (Log Likelihood Ratios) of the codeword bits, defined
as

D

LLR(x;)) = In (M)

Pr(x; = 11y)

are estimated iteratively. The sign of the LLR corresponds
to the estimated bit, while its magnitude provides the relia-
bility of this estimate. Let us consider a Tanner graph with
variable nodes of degree d, and check nodes of degree d..
At the j-th iteration, a variable node v, processes the mes-
sages /lg’ :1)1”)(1')’ i=1,2,...,d, received from the neighboring
check nodes c,, at the previous iteration, and sends back to

them the following messages [3], [14]:

dy
- 0 v
AL =20+ AL 2
ik
where /l(ug) is the channel output corresponding to the con-

sidered codeword bit and AE;IU)I(’) = 0. At the same time, the

following estimate is produced for the LLR of the code bit

check nodes

variable nodes

Fig.1 Tanner graph representation.

1977
corresponding to the variable node v,:
d
LLR/(x,) = A0 + " ad)0 3)

i=1

The check node c,, processes messages aﬁ”ﬁ’),z =
1,2,...,d., and sends back to the neighboring variable
nodes the messages /lgj)(,f) whose sign and magnitude are
given by [3], [14]:

d.

sign(1)) = [| sign(4) @)
ki
d
0] =071 s (]12)))
k#i
where
¢(x) = log [tanh (%)] (6)

The decoding algorithm proceeds iteratively until the code
parity-check constraints are all verified or a maximum num-
ber of iterations is reached.

Although this decoding algorithm is provably optimal
for bipartite graphs without cycles [14], in practice it is only
necessary to avoid cycles of length up to 4 to obtain a good
performance [15]. Other message-passing algorithms can be
devised based on different types of messages, possibly tak-
ing on values in some finite alphabet, and different updating
rules [14]. All these algorithms can be applied to decode the
codes described in the following sections.

A message-passing schedule is the specification of the
order in which messages are updated. Usually, the so-called
flooding schedule is adopted to decode LDPC codes: in
each iteration, all variable nodes and subsequently all check
nodes, pass new messages to their neighbours. As can be
easily understood, this schedule is well suited for a fully
parallel implementation of the decoder.

3. Turbo Gallager Codes

3.1 Decoding of a Single Convolutional Code by Means
of the BP Algorithm

In this section, we describe a class of convolutional codes
that can be decoded by means of the described belief prop-
agation algorithm [11],[16], [17]. Let us consider a convo-
lutional code, truncated to a block code using tailbiting with
no rate loss [18]. As mentioned in the previous section, a
message-passing decoding algorithm is a powerful decod-
ing technique if applied to codes whose Tanner graph has
no cycles of length less than or equal to 4. In [16],[17],
the conditions a convolution code must satisfy such that the
corresponding Tanner graph has no cycles of length 4 are
derived. We can consider as a relevant case for our purposes
a rate-1/2 recursive systematic code.

1978

A rate-1/2 recursive systematic code can be described
by means of the corresponding parity-check equation. At
discrete-time m, the parity bit p,, produced by the encoder,
denoting by i,, the information bit, is given by:

Jo Ji
D= Pugy* D imeay, m=1,2...N (7)
j=2 j=1

where Ji, a; and §; are suitable integers which specify the
code and N is the total number of transmitted parity bits. It
is understood that, if the lower limit of a sum is greater than
the upper limit, no terms must be summed. Therefore, J;
and J, denote the number of information and parity bits in
each parity-check, respectively. In order to simplify the no-
tation, we collect integers «; and §; in the following vectors:
a = (a,@,...,ay) and B = (B1,B1,...,B1,). The corre-
sponding Tanner graph can be easily built. In fact, for each
discrete-time instant m we have two variable nodes corre-
sponding to the information bit iy, and the parity bit p,,, and
a check node representing Eq. (7). This check node will be
connected to some variable nodes according to (7). The re-
sulting graph is regular if J; = J5.

For the described rate-1/2 recursive systematic code the
following statements apply [16]:

1.ifJ; =1 =2)and J, = 2 (J, = 1), the bipartite
graph has no cycles;

2. if J; = 2 and J, = 2, denoting by Aa = @, — @) and
AB = B> — B1, the graph has shortest cycles of length 4
if A = AB, of length 6 if Ae # AB and Aa = 2Af or
2Aa = ApB, otherwise the graph has shortest cycles of
length 8;

3. if J1 > 2 and J, > 2, the graph can have at most cycles
of length 6 if all differences a; -, and 8, — B, (j > p,
n > m) are distinct.

3.2 Concatenated Schemes

In this section, we discuss the concatenation of the convo-
lutional codes previously described. The resulting coding
schemes are classical turbo codes or serially concatenated
codes but may be decoded as LDPC codes. For this rea-
son, these new concatenated schemes are nicknamed “turbo
Gallager codes” (TGC) [11],[16], [17].

A turbo code is the parallel concatenation of two com-
ponent codes (usually recursive systematic convolutional
codes) through a nonuniform interleaver [2]. In the litera-
ture, the decoding of these codes is based on a sub-optimal
iterative process in which each component decoder takes ad-
vantage of the extrinsic information produced by the other
decoder at the previous step. This iterative decoding pro-
cess is made possible by employing soft-output component
decoders, usually based on the BCJR algorithm [2]. More
generally, code networks can be designed by concatenating
a few convolutional component codes in mixed parallel and
serial configurations [19], [20].

TGC are based on the following two key concepts:

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.7 JULY 2006

I
| interleaver

Fig.2 Overall Tanner graph for a turbo code.

1. at the encoder, the use of the recursive convolutional
codes described in the previous section in code net-
works as component codes;

2. at the decoder, the use of a message-passing algorithm
which works on the bipartite graph of the overall code
by adopting the flooding schedule.

Let us consider the overall Tanner graph of a turbo
code. In Fig.2 we show, as an example, the graph for a
rate-1/3 code. The component codes are rate-1/2 recursive
systematic codes with parity check equation

Pm = Pm-1+ lm (8)

and, for simplicity, the code termination is ignored. In the
upper part of the graph, the information bits i, and the par-
ity bits p,, of the first component code are connected with
the corresponding check nodes. The information bits are
also connected, in a permuted order, with the lower check
nodes related to the second component code having parity
bits p;,. The decoding process can be performed by means
of a message-passing decoder working on the Tanner graph
of the overall code with the flooding schedule. In this case,
the variable nodes of both codes and subsequently the check
nodes of both codes are activated simultaneously.

Note that, even if the graphs of each component code
have shortest cycles of length 6, the overall Tanner graph
may have cycles of length 4, depending on the interleaver
used. As an example, consider a turbo code composed of
rate-1/2 convolutional codes. In this case, a sufficient con-
dition to avoid the appearance of cycles of length 4 in a par-
allel concatenation is that information symbols which differ
for less than max; j{a; — «;} have a distance, after the inter-
leaver, greater than max; j{a; —a;}. This may be obtained by
the use of an S-random interleaver with § = max; j{a; — a;}
[21].

An analysis of these coding schemes may be performed
by the method of density evolution, which may also be em-
ployed as a design criterion to select the component codes.
Density evolution is a tool for jointly analyzing the code
and the message-passing decoding algorithm, evaluating

FANUCCI et al.: VLSI DESIGN OF A FULLY-PARALLEL HIGH-THROUGHPUT DECODER FOR TURBO GALLAGER CODES

the relevant performance when averaged over the ensem-
ble of codes with common degree distribution of variable
and check nodes [14],[15]. This method, which assumes
absence of cycles, analyzes the evolution of the probability
density functions of the messages propagating in the graph
during decoding with the aim of determining the critical
channel parameter (the so-called threshold). The threshold
separates the region where reliable transmission is possible
from that where it is not [14].

The degree distribution of variable and check nodes,
necessary for the application of the density evolution
method, can be concisely described by two polynomials A(x)
and p(x) of the form [5], [15]

dy d,
AW =T py = !)
i=1 i=2

where A; and p; are the fractions of edges belonging to
degree-i variable and check nodes and d; and d, are the max-
imum degrees of variable and check nodes, respectively. For
turbo Gallager codes, these two polynomials depend on the
type of (i) concatenation, (ii) interleaver, (iii) puncturing (if
any), and (iv) component codes.

3.3 A Case Example

Let us consider, as a case example, a rate-1/2 turbo code ob-
tained from two identical rate-1/2 recursive systematic con-
volutional codes by means of puncturing. Let us assume
that the interleaver is odd-odd, i.e., bits in odd (even) po-
sition remain in odd (even) position after the permutation,
and that the odd parity bits of the first encoder and the even
parity bits of the second encoder are punctured. When a bit
is punctured, the corresponding variable node in the graph
disappears along with the neighboring check nodes and the
edges connected to them. As a consequence, by means of
simple considerations on the overall Tanner graph, it can be
shown that the corresponding degree polynomials are

J J
Ax) = 1 Ty 2yl
Ji+ Ji+ o
p(x) = X127 (10)

By properly choosing the integers J; and J, we may obtain
simple irregular codes. However, if J; = J, a regular code
results. As an example, if J; = J, = 3 we obtain a (3,6) reg-
ular LDPC code. In order to choose the component codes
and to analytically evaluate the achievable performance, the
density evolution technique is used to compute the threshold
of the signal-to-noise ratio. The threshold is defined as the
value of the signal-to-noise ratio above which the expected
fraction of incorrect messages approaches zero when the
number of iterations increases, assuming absence of cycles.
In the case of turbo Gallager codes such as those described
by (10), these threshold values are shown in Table 1, for dif-
ferent values of J = J; + J,, along with the corresponding
optimal values of J; and J,. It can be noted that, in this case,
an optimal value of J exists and corresponds to the couple

1979
Table 1 Thresholds for a rate-1/2 turbo code with equal component
codes, an odd-odd interleaver and an odd-even puncturing.
[/ L2 [2]| Eb/No@B) |
3 12) | 2(1) 10.712
4 2 2 3.277
5 23) | 312 1.078
6 24) | 40 0.797
7 20) | 52 0.863
8 2(6) | 6(2) 1.046
9 2(7) | 72 1.262
101 208 | 82 1.484

(J1,J2) = (2,4) (or equivalently (Ji, J>) = (4,2)). The cor-
responding threshold value is 0.797 dB whereas the Shan-
non limit for binary inputs and rate 1/2 is 0.187 dB. Lower
values of the threshold (0.584 dB) may be obtained by using
different component codes, i.e., an asymmetric turbo code,
in order to make the overall code more irregular.

3.4 The Implemented Code

In the previous section, we derived an optimal value of
the couple (J1,J2) = (2,4) for TGCs described by (10).
However, in order to minimize the decoder complexity we
can choose the corresponding optimal value of J = 6 and
Ji1 = J» = 3 so obtaining a (3,6) regular TGC code.
The component codes we consider, have @ = (0, 3,4) and
B =(0,14,34), i.e., the parity check equation is

DPm = P14 + Dm34 tim +ip3 +ins. (11)

We use tailbiting in both component codes, as described in
[22] for recursive codes, in order to avoid a rate loss due to
code termination. As both component codes are punctured,
integers 3; must be all even in order to avoid that all check
nodes disappear. In addition, integers «; are chosen small
in order to reduce the probability of appearance of cycles
of length 4 due to the interleaver. On the contrary larger
values of the integers §; are chosen, in order to allow the
propagation of a message to a wide region of the graph in a
few iterations.

To demonstrate the good performance of the chosen
code, we compare it with the “classical” (3,6)-regular LDPC
codes [23],[24]. For the considered TGC, different code-
word lengths, namely, L = 496, 2624, and 8000, which cor-
respond to interleaver lengths of 248, 1312, and 4000, re-
spectively, are considered. We emphasize the simplicity of
obtaining codes with different codeword lengths: the com-
ponent codes remain the same and only the interleaver size
is changed. As usual for LDPC codes, computer simula-
tions have been performed by using early detection of con-
vergence, i.e., at each iteration the decoder controls if checks
are all satisfied, stopping decoding when they are. The max-
imum allowed number of iterations is 400 for TGCs as well
as for (3,6)-regular LDPC codes [23], [24] of length L =
504, 2640, and 8000, respectively, reported in Fig.3 as a
comparison [24]. Moreover, the performance of the TGC
with the same component codes and codeword length of

1980
10°
—8&— LDPC (3,6), L =504
—B8— TGC, L =496
107! —— LDPC (3,6), L =2640
—&— TGC, L =2624
. —e— LDPC (3,6), L =8000
102 \{% —©&— TGC. L =8000
103 &C\\\Y\\ﬂ\\
¢
5 XX A§& ‘\ﬁk\
104

b p

05 1 15 2 25 3 35
Ey/N, [dB]

107 \ y
. b A
i

Fig.3 BER of the considered turbo Gallager codes and comparison with
regular LDPC codes for different codeword lengths L.

0

10 —®— UMTS code, no quant.
—©— Implem., no quant.
—H&— Implem., 4 bit
10-1 [;\\‘é* Implem., 3 bit
102 i%i\m
: \ \
m
: \
§ LR
-4
10 . Xiﬁ
e \. \
0 0.5 1 1.5 2 2.5 3
E,/N, [dB]

Fig.4 Performance comparison with the turbo code used in the third
generation (3G) universal mobile telecommunications service (UMTS).

L = 2048 bits is shown in Fig. 4. In this case, we simulated
the infinite precision belief propagation algorithm as well
as other two message passing decoding algorithms based on
a quantization with 3 and 4 bits respectively. In the figure,
the performance of a turbo code used in the third generation
(3G) universal mobile telecommunications service (UMTS)
[25] with the same codeword length and code rate is also
shown for comparison.

We may conclude that, for a given codeword length,
the considered TGCs have a performance only slight infe-
rior to that of the turbo code used in 3G UMTS but they can
be decoded in a fully parallel manner. On the other hand
they perform as well as (or slightly better than) classical
(3,6)-regular LDPC codes, despite their simpler construc-
tion and encoding. Moreover the Tanner graph of this code
is characterized by the locality of the interconnection, which
alleviates the routing congestion problem that affects the im-
plementation of parallel decoders for classical LDPC codes
[26]. For these reasons a VLSI implementation of a fully
parallel decoder for the above mentioned TGC with code-
words of length 2048 was carried out and will be described

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.7 JULY 2006

in the following sections.
4. Serial vs. Parallel Architectures

Since there is no serial dependency in the computations of
the belief-propagation algorithm, this can be accomplished
in several ways. Each node of the graph can be associated
to a different processing element (PE), resulting in a “fully
parallel” architecture. On the other hand, a PE can per-
form the functionality associated to multiple nodes of the
graph (hardware sharing/multiplexing) so obtaining a serial
or mixed serial-parallel architecture. In the following sec-
tions a brief comparison between these types of architec-
tures will be presented.

4.1 Parallel Architectures

A parallel architecture directly maps the Tanner graph in
hardware: each node of the graph is implemented by a dif-
ferent functional unit while the connectivity between them is
obtained by physical edges. Typically only one flip-flop bar-
rier is used between check and variable nodes. The greater
advantage of this kind of architecture is that it can support
data-rate greater than any other architecture for iterative de-
coding. The clock frequency can be written as follow:

Nirer

f=TLy 12

where L is the codeword lenght, r is the code rate, Ny, is the
maximum number of iterations performed by the decoder,
and 1/T is the data rate. Equation (12) shows that the clock
frequency is reduced by a factor Lr/Ny,, with respect to the
data rate. For example, for 2048 variable nodes, a rate-1/2
code and a maximum of 32 iterations, a clock frequency of
32 MHz is required for obtaining a 1 Gbit/s data rate. An-
other advantage that can be obtained using this architecture
is that the power consumption is relatively small thanks to
the reduced clock frequency and the small activity factor
[26].

Moreover, the amount of control logic is reduced to the
one used for stopping the decoding process when the algo-
rithm converges. No memory is required for the connectiv-
ity and the whole logic necessary for its access is so avoided.
The obvious disadvantages are the overall hardware com-
plexity of the decoder and especially the need of managing
a complex routing. Moreover this architecture can be used
only for the specific code for which has been designed and
so it is completely not flexible both in terms of block length
and node connectivity.

4.2 Serial Architectures

In serial or mixed serial-parallel architectures a principle
known as hardware-sharing is applied. This consists of in-
stantiating only one (as shown in Fig. 5) or a certain number
of working units for each different functional node that must
be implemented.

FANUCCI et al.: VLSI DESIGN OF A FULLY-PARALLEL HIGH-THROUGHPUT DECODER FOR TURBO GALLAGER CODES

Check to
Bit

Fig.5 Serial architecture.

This kind of solution is totally flexible and character-
ized by a relatively small hardware complexity. However,
it suffers from the opposite problems with respect to the
parallel solution: smaller data-rate and higher power con-
sumption and complexity of the control logic. Moreover,
it requires a great amount of memory to ensure the correct
connectivity between check and variable nodes, since all the
messages at each iteration have to be stored.

For mixed solutions another problem arises. If more
PEs are instantiated for each node, it can easily happen that
during one iteration more than one working unit tries to ac-
cess the same memory bank (a collision happens) even if the
total memory is split in more banks. This problem is known
as “collision problem” and can be solved designing a code
intrinsically collision-free or optimising the memory access
independently from the code. The first solution causes a
loss of flexibility, while the second one causes performance
degradation in terms of latency, area complexity or memory
size.

5. VLSI Architecture of a Parallel Decoder

The main challenge when implementing a parallel architec-
ture for the message-passing algorithm is represented by the
interconnections between the functional nodes [26]. The
code described in Sect. 2 has a property, known as locality,
which in part allows overcoming this problem. For this rea-
son a parallel architecture for decoding turbo Gallager codes
has been implemented. To explore the performance and im-
plementation issues of the decoder, the code described in
Sect. 3 characterized by a block size L = 2048 and a rate
r = 1/2 component code has been used. The overall code
design is originally characterized by a rate r = 1/3 and a
block size of 3072 bits. The Tanner graph of such a code
would have 3072 variable nodes and 2048 check nodes. As
already mentioned, half of the redundant bits has been punc-
tured so reducing the code rate to 1/2. The variable nodes
corresponding to the punctured bits and the associated check
nodes must be erased from the Tanner graph. The final struc-
ture has been obtained by splitting the graph and duplicating
the nodes corresponding to the variable nodes associated to
the information bits. Figure 6 exemplifies the procedure de-
scribed to obtain the code Tanner graph. The obtained struc-
ture is totally symmetric and so it is well suited to a VLSI

1981

Fig.6 Code Tanner graph.

implementation.
5.1 Decoder Architecture

The 1536 variable nodes and 512 check nodes on each side
of the graph have been grouped into clusters (Fig. 7). Each
cluster contains d = 48 variable nodes and d/3 = 16 check
nodes, being the total number of clusters w = 32 for each
side. The links between check and variable nodes are not all
within the cluster, but there is an interconnection network
between the clusters.

This interconnection network consists of 27 links in the
upper side and 28 in the lower side because of the punctur-
ing that is dual. Moreover, there is one bypass-link for con-
necting the cluster i to the cluster i + 1, this solution has been
pursued for not constraining too much the cluster dimension
which is related to the maximum number of iterations that
can be performed by the decoder.

The links between check and variable nodes are at fixed
distance, while the pseudo-random links are reserved to the
ones that connect the upper and lower side of the decoder
(shuffle network). This propriety improves the routing-
congestion.

Data input and output are performed in a block-parallel

1982

Recin up(1) Decout up(1)

!

|

|

DecCluster
1up

=

DecCluster
2up

=

DecCluster o o o DecCluster
= = R

3up

Recin_up(2) Decout_up(2) Recin_up(3) Decout_up(3)

Recin_up(w) Decout_up(w)

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.7 JULY 2006

Ttest

edgein(1) f—
Nb_msg. Nb_msg-1 A
1

edgeout(1)

I L
A m e omeomomomom ==

DecCIusterg DecCIusterg DecCIusterg o o o g DecCluster|

1dw 2dw 3dw wdw
Recin_dw(1) Decout_dw(1) Recin_dw(2) Decout_dw(2) Recin_dw(3) Decout_dw(3) Recin_dw(w) Decout_dw(w)
Fig.7 Decoder structure.
test test
Cnode Cnode

+ interc_up

interc_up +

Interconnection network between VNs and CNs * inters. up

VNode_dv1 de_dv2 | [VNode_dv3

Bl

interc_up |

ueynys

o~ ajynys

no~opn

==

start_dec_del
(delay+1)

=

Clusters internal structure.

Fig. 8

manner with block of w data both in the upper and lower side
of the decoder. At each clock cycle, each cluster acquires
a new data to be decoded while a decoded data is read-out.
This is possible because each cluster is structured on a three-
level pipeline (Fig. 8). The clock cycles required for loading
the (n+ 1)th decoding block are d, being wd the total number
of symbols to be loaded in each side of the decoder for a
single codeword and w the number of data loaded at each
clock cycle. The same time is needed for reading-out the
(n—1)th decoded block. During this time, the block 7 is also
decoded. The decoding process is carried out in a parallel
manner. Hence, each iteration involves a clock cycle and a
decoding cycle can involve at most d iterations.

5.2 Check Nodes

Each check node is a combinatorial block with d. =6 3-bit
input messages coming from variable nodes and d, 3-bit out-
put messages going to variable nodes. Moreover, it gener-
ates a test bit which is asserted when the check is verified.
Each message passed between the check and variable nodes
is represented as a sign bit and two magnitude bits.

Figure 9 shows the internal structure of a check node.
The magnitude of the output edge i is generated summing
the mapped value of the magnitude of all the incoming mes-

edgein(2)

Nb_msg-1

Nb_msg

edgeout(d)

Fig.9 Check node structure.

edge_in(1)

Nb_msg

edge_in(2)

Nb_msg

edge_in(3) _
Phi_

Nb_msg

ehg_map (EE'E:W 5 est_bit
chn_in . ena
start_dec

start_dec_del

store

Fig.10 Three-edge variable node structure.

sages on the edges other than i and applying to this sum
a reverse map. The sign of the output edge i is obtained by
XOR-ing the sign of all incoming message on the edge other
than i.

The check equation is tested using the extrinsic infor-
mation instead of the estimated bit at the current iteration.
This causes a performance loss in terms of BER, but pro-
vides an improvement of the routing factor.

5.3 Variable Nodes

Three types of variable nodes have been implemented de-
pending on the number of input edges. Because of the split
of the Tanner graph, each node in the upper (lower) side of
the graph associated to an information bit must be connected
to one or two check nodes in the lower (upper) part of the
graph. This connectivity is realized using the corresponding
variable node in the lower (upper) part of the decoder that
receives the same inputs through the shuffle network.

5.3.1 Three-Edge Variable Node

A three-edge variable node (Fig. 10) has d, =3 3-bit input
messages coming from check nodes and d, 3-bit output mes-
sages going to check nodes. At the start signal, the decoding

FANUCCI et al.: VLSI DESIGN OF A FULLY-PARALLEL HIGH-THROUGHPUT DECODER FOR TURBO GALLAGER CODES

edge_in(1)

Nb_msg

edge_in(2)

Nb_msg

edge_in(3)

U est_bit

chg_map (1+delay)

chn_in

start_dec

start_dec_del

store [2

Fig.11 Modified structure of a three-edge variable node.

shuffle_out

edge_in(|

Nb_msg

edge_in(2

delay .
est b

(1+delay)

chg_map

chn_in

start_dec

start_dec_del

store

—

Fig.12 Two-edge variable node structure.

of a new block is started and the channel messages are driven
on the edges. For subsequent iterations, the incoming edges
and the received value are mapped and summed. This sum,
converted back to a sign-magnitude representation, repre-
sents the soft-output at current iteration. The message sent
on an edge is computed by subtracting the message incom-
ing on the corresponding edge and converting the resulting
value back to a sign-magnitude representation.

In Fig. 11 is shown a three-edge variable node whose
output edges have an additional bit passed to the check
nodes with the aim of verifying the check equation using
the current estimation. In this case the same modifications
to the other types of variable nodes apply.

5.3.2 Two-Edge Variable Node

The functionality of the three kinds of variable nodes is sub-
stantially the same, but a two-edge variable node (Fig. 12)
has two inputs coming from check nodes and one shuffle in-
put, and the same applies to the outputs. The shuffle output
is computed by summing the input edge, while the shuffle
input is used as an input edge because it comes from a check
node and is only bypassed by a one-edge variable node.

1983

edge _in(1) {7 shuffle_out

Nb_msg

Shuffle_in

Nb_sh

=
<
]

< delay .
I ine est.bit
chg_map (1+delay)
chn_in
start_dec

start_dec_del
store

—

Fig.13 One-edge variable node structure.

5.3.3 One-Edge Variable Node

A one-edge variable node (Fig. 13) has only one input com-
ing from check nodes and one shuffle input which comes
from a two-edge variable node. The shuffle input is the sum
of two messages, thus a different map must be applied to it.
This new map has to satisfy the following equation:

Phi_shu(a + b) = Phi_msg(a) + Phi_msg(b) (13)

The same map has been used also in the two-edge vari-
able node, even if is not necessary. This has been done to
easy the implementation, as the edge sum has been already
computed to evaluate the shuffle output. The shuffle output
of a one-edge variable node is simply equal to the corre-
sponding incoming message.

6. VLSI Design and Verification

The decoder has been described using VHDL hardware
description language following a meet-in-the-middle ap-
proach. Due to the modularity of the architecture, all the
processing elements (variable and check nodes) have been
developed first and verified as stand-alone Intellectual Prop-
erty (IP) macrocell. Afterwards the overall architecture has
been derived by instantiating such IPs. This approach pro-
vided a speed-advantage in the simulation, synthesis, and
data base management of the complex overall architecture.
In the following subsections the verification methodology,
the synthesis results and an upper bound estimation for the
power consumption will be presented.

6.1 Verification Methodology

The design verification has been made using the test-bench
set-up shown in Fig. 14. The test has been carried out start-
ing from an high-level description of the decoding process
in Fortran. The Fortran code was also in charge of generat-
ing the random sequences of coded inputs, that previously
summed with additive Gaussian noise, are read in by the de-
coder. The soft-outputs of the two decoding processes are
then compared to verify the functionality of the decoder.

1984
Sign_different
C
o
» L2
L
g
el
[72]
C/C++ 1/O C
Fortran source code || output @)
inteface 7]
[» C
(@]
_<£ True_vec
= -
O
start_dec Q_
decout_up_array(1..w)
C/C++ /O recin_up_array(1..w) E
interface DecBlock Q
emulata recin_dw_array(1..w) decout_dw_array(1..w) (@]

clock

n_different

decoder_tb

Fig.14 Decoder testbench.

C\C++ emulator

true_edge1
N

true_edge2
>

true_edge3
>

edge_in(1..3)
T in edge_out(1.3
start_dec

[T s dec e VNode_dv3

store.

S
[T—Chemap

:
Ciocigeneraio dock

est_bit

comparison

true_stima
dv3_test

Fig.15 Single node testbench.

Tests have been carried firstly on each single variable
and check node (as in the example shown in Fig. 15). The
single nodes can so be reused as stand alone IP for different
implementation solutions.

6.2 VLSI Results

To evaluate its performance, the decoder has been synthe-
sized using a 0.18 um, 1.8 V power supply, six metal levels
standard-cells CMOS technology. The obtained results are
shown in Table 2, for each block in the hierarchy.

The synthesis has been carried-out targeting a system
clock frequency of 50 MHz, which corresponds to a data-
rate of 1 Gbit/s. The overall decoder complexity is about 2.1
million gates.

One of the advantages of the parallel solution is that
it allows for reducing the power consumption. The circuit
switching activity depends on the SNR and hence the fre-
quency. It can be shown [26] that for low SNR values the
decoder in not able to correct any packet, so the switching
activity is relatively high. For higher values of SNR the
decoder quickly corrects packets and the edge values stop

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.7 JULY 2006

Table2 VLSI Block synthesis results.
worst delay
Block # gates path (15)

Cnode 284 7.6
Vnode_dv3 645 9.6

Vnode_dv2 537 10.14
Vnode_dv1 254 6.9

DecCluster_up
(DecCluster_dw) 32730 18.22

changing after a small number of iterations.

According to [26], a reasonable upper bound for the
switching activity is 10%. The power consumption can be
then estimated using the following formula:

PD = quulefclucka (14)

where « is the switching activity and p is a technology fac-
tor. For the used technology p = 35 nW/Gate/MHz, thus a
rough estimation of the power consumption is 367.5 mW.

7. Comparison with Other Solutions

Only one of the published iterative decoder implementations
[26] is characterized by a throughput of the same magnitude
of the implemented decoder, while other implementations
[27] are characterized by throughput at least one order of
magnitude smaller.

A comparison with [26] can be directly carried out in
terms of number of equivalent gates. The two solutions are
characterized by the same data rate of 1 Gb/s even if there is
a small technology-scaling down factor advantage because
the decoder implemented in [26] was synthesized using a
0.16 um CMOS technology. The power consumption of the
decoder implemented in [26] is 690 mW at 1.5V, which is
comparable with the one obtained in spite of the disadvan-
tage in terms of technology-scaling down and power supply.
The number of gates of the implemented decoder is greater
than the one obtained in [26], where the gate complexity is
1750K. On the other hand, we must take into account that
2/3 more variable nodes have been used: 1/3 due to the split-
ting of the Tanner graph and the others because of the larger
codeword length. For the same reason, the number of check
nodes is two times the one used in [26]. The great advan-
tage of our solution is that the routing congestion, which is
the real bottleneck of the VLSI implementation of a parallel
decoder, can be reduced thanks to the locality of the inter-
connections.

A comparison can be carried out also with the solu-
tion presented in [27]. This is characterized by a 1 Mbit/s
throughput, 100 mm? area in a 0.6 um 3.3V CMOS tech-
nology. Scaling down the throughput linearly with pro-
cess technology feature size and the area quadratically with
process technology feature size we obtained a 6.7 Mbit/s
(assuming a code rate of 1/2) throughput, 135 Kgates
complexity (9 mm? area) in a 0.18 um 1.8V CMOS tech-
nology characterized by an average integration density of
15 Kgates/mm? like the one we used. It must be noticed that

FANUCCI et al.: VLSI DESIGN OF A FULLY-PARALLEL HIGH-THROUGHPUT DECODER FOR TURBO GALLAGER CODES

for the parallel LDPC decoder, a degradation factor should
be inserted to take into account the routing factor and the pad
area. The gate complexity of the parallel decoder is strictly
greater, but it allows for a throughput increase of more than
two orders of magnitude.

8. Conclusions

A 2048-bit rate-1/2 soft-decision decoder for a new class of
codes known as “turbo Gallager codes” has been described.
The decoder can support up to 1 Gbit/s data rate and per-
forms up to 48 decoding iterations ensuring at the same time
a high throughput and a good coding gain. A preliminary es-
timation of the power consumption lead to 367.5 mW for a
1.8 V power supply. This performance has been obtained us-
ing a fully parallel architecture for implementing the belief
propagation algorithm. The considered code has a perfor-
mance only slightly inferior to that of turbo codes with the
same length and code rate, but it can be decoded using a
fully parallel architecture which allows to obtain a through-
put of at least an order of magnitude greater than the one
obtainable with turbo decoders. On the other hand, it can be
also shown that the considered code outperforms the regular
LDPC codes, ensuring at the same time simpler encoding
and a great benefit in the implementation of a parallel de-
coder. In fact the locality of the interconnections improves
the routing congestion, which is the main bottleneck of a
parallel decoder VLSI implementation.

Acknowledgments

Authors wish to thank Giovanni Vanini for his contribution
to the early phases of this project. This work has been par-
tially supported by the FIRB “Reconfigurable platforms for
wideband wireless communications” project of the Italian
Ministry for Instruction, University and Research.

References

[1] C. Berrou, A. Glavieux, and P. Thitmajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” Proc. IEEE
Intern. Conf. Commun., pp.1064-1070, Geneva, Switzerland, May
1993.

[2] C.Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,” IEEE Trans. Commun., vol.44, no.10,
pp-1261-1271, Oct. 1996.

[3] R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cam-
bridge, MA, 1963.

[4] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spiel-
man, “Improved low-density parity-check codes using irregular
graphs,” IEEE Trans. Inf. Theory, vol.47, no.2, pp.585-598, Feb.
2001.

[5] T.Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity check codes,” IEEE Trans.
Inf. Theory, vol.47, no.2, pp.619-637, Feb. 2001.

[6] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,”
IEEE Trans. Very Large Scale Inform. Syst., vol.11, no.6, pp.976—
996, Dec. 2003.

[7] T. Zhang and K. Parhi, “Join-(3,k)-regular LDPC code and de-
coder/encoder design,” IEEE Trans. Signal Process., vol.52, no.4,
pp-1065-1079, April 2004.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

1985

H. Zhong and T. Zhang, “Design of VLSI implementation-oriented
LDPC codes,” Proc. IEEE Semiannual Vehicular Technology Con-
ference (VTC), vol.1, pp.670-673, Oct. 2003.

Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate
1/2, 8088-b irregular low density parity check decoder,” Proc. IEEE
Global Telecommun. Conf., pp.113-117, Dec. 2003.

V. Nagarajan, N. Jayakumar, S. Khatri, and O. Milenkovic, “High-
throughput VLSI implementations of iterative decoders and re-
lated code construction problems,” Proc. IEEE Global Telecommun.
Conf., pp.361-365, Nov.-Dec. 2004.

G. Colavolpe, “Coding schemes based on convolutional codes and
message-passing decoding,” Italian patent n. MI2002A001438, June
2002, International Patent Application n. PCT/EP03/06337, June
2003.

T.J. Richardson and R.L. Urbanke, “Efficient encoding of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol.47, no.2,
pp.638-656, Feb. 2001.

R.M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol.27, pp.533-547, Sept. 1981.

T. Richardson and R. Urbanke, “The capacity of low density par-
ity check codes under message passing decoding,” IEEE Trans. Inf.
Theory, vol.47, no.2, pp.599-618, Feb. 2001.

S.Y. Chung, G.D. Forney, T.J. Richardson, and R.L. Urbanke, “On
the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,” IEEE Commun. Lett., vol.5, no.2, pp.58-60, Feb.
2001.

G. Colavolpe, “Design and performance of turbo Gallager codes,”
IEEE Trans. Commun., vol.52, no.11, pp.1901-1908, Nov. 2004.
G. Colavolpe, “Performance of turbo Gallager codes,” Proc. Intern.
Symp. on Turbo Codes & Relat. Topics, Brest, France, Sept. 2003.
H.H. Ma and J.K. Wolf, “On tailbiting convolutional codes,” IEEE
Trans. Commun., vol.34, no.2, pp.104-111, Feb. 1986.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial con-
catenation of interleaved codes: Performance analysis, design, and
iterative decoding,” IEEE Trans. Inf. Theory, vol.44, no.3, pp.909—
926, May 1998.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-Input
Soft-Output modules for the construction and distributed iterative
decoding of code networks,” European Trans. Telecommun., vol.9,
no.2, pp.155-172, March/April 1998.

D. Divsalar and F. Pollara, “Turbo codes for PCS applications,”
IEEE Intern. Conf. on Commun. ICC’95, pp.54-59, Seattle, USA,
June 1995.

P. Stahl, J.B. Anderson, and R. Johannesson, “A note on tailbiting
codes and their feedback encoders,” IEEE Trans. Inf. Theory, vol.42,
no.2, pp.529-534, Feb. 2002.

D.J.C. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol.45, no.2, pp.399-431, Feb.
1999.

D.J.C. MacKay, “Regular LDPC online database,” available at the
url http://www.inference.phy.cam.ac.uk/mackay/

3rd Generation partnership Project (3GPP), “Technical specifica-
tion group radio access network multiplexing and channel coding
(TDD),” 2004.

A.J. Blanksby and C.J. Howland, “A 690 mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” IEEE J. Solid-State Cir-
cuits, vol.37, no.3, pp.404-412, March 2002.

S. Hong and W. Stark, “Design and implementation of a low com-
plexity VLSI turbo-code decoder architecture for low energy mobile
wireless communications,” J. VLSI Signal Processing, vol.24, no.4,
pp-43-57, Jan. 2000.

1986

Luca Fanucci is an Associate Professor
of Microelectronics at the Department of In-
formation Engineering of Pisa University. He
was born in Montecatini Terme, Italy, in 1965.
He received the Doctor Engineer (summa cum
laude) and the Research Doctor degrees, both
in electronic engineering, from the University of
Pisa, Pisa, Italy, in 1992 and 1996, respectively.
From 1992 to 1996, he was with the European
Space Agency’s Research and Technology Cen-
ter, Noordwijk, The Netherlands, where he was
involved in several activities in the field of VLSI for digital communica-
tions. In the years 1996-2004 he was a Research Scientist of the Italian
National Research Council in Pisa. His research interests include several
aspects of design technologies for integrated circuits and systems, with par-
ticular emphasis on system-level design, hardware/software co-design and
low-power design. The main applications areas are in the field of wireline
and wireless communications, satellite communications, low power mul-
timedia and automotive. He is co-author of more than 100 journal and
conference papers and co-inventor of more than 10 patents. He is also co-
author of the book “An Experimental Approach to CDMA and Interference
Mitigation: From System Architecture to Hardware Testing through VLSI
Design,” Kluwer Academic Publishers, 2004.

Pasquale Ciao was born in Oliveto Citra
(SA), Italy, in 1977. He received the Doctor
Engineer degree (summa cum laude) from the
University of Pisa, Pisa, Italy, in 2002. Since
2003 he has been a Ph.D. student at the Depart-
ment of Information Engineering of the Univer-
sity of Pisa. His main interests are in the areas
of System-on-Chip design, VLSI architectures
for signal processing and digital communication
systems.

Giulio Colavolpe was born in Cosenza,
Italy, in 1969. He received the Dr. Ing. degree in
Telecommunications Engineering (cum laude)
from the University of Pisa, Italy, in 1994 and
the Ph.D. degree in Information Technologies
from the University of Parma, Italy, in 1998.
Since 1997, he has been at the University of
Parma, Italy, where he is now an Associate Pro-
fessor of Telecommunications. In 2000, he was
Visiting Scientist at the Institut Eurecom, Val-
bonne, France. His main research interests in-
clude digital transmission theory, adaptive signal processing, channel cod-
ing and information theory. His research activity has led to more than sev-
enty scientific publications in leading international journals and conference
proceedings and a few industrial patents. He is also co-author of the book
Detection Algorithms for Wireless Communications, with Applications to
Wired and Storage Systems (New York: John Wiley & Sons, 2004).

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.7 JULY 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

