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Abstract—This paper thoroughly investigates the maximum-
likelihood sequence detection (MLSD) receiver for the optical
ON–OFF keying (OOK) channel in the presence of both polariza-
tion mode dispersion and group velocity dispersion (GVD). A re-
liable method is provided for computing the relevant performance
for any possible value of the system parameters, with no constraint
on the sampling rate. With one sample per bit time, a practically
exact expression of the statistics of the received samples is found,
and therefore the performance of a synchronous MLSD receiver is
evaluated and compared with that of other electronic techniques
such as combined feedforward and decision-feedback equalizers
(FFE and DFE). It is also shown that the ultimate performance
of electronic processing can be obtained by sampling the received
signal at twice the bit rate. An approximate accurate closed-form
expression of the receiver metrics is also identified, allowing for the
implementation of a practically optimal MLSD receiver.

Index Terms—Chromatic dispersion, electrical equalization,
intersymbol interference (ISI), maximum-likelihood sequence
detection (MLSD), optical transmission systems, polarization
mode dispersion (PMD).

I. INTRODUCTION

IN FIBER-OPTICS communication systems, sophisticated
receivers based on electronic processing have recently been

receiving much attention in conjunction with the design of high-
speed links (40 Gb/s and beyond), mainly because electronic
techniques, although less effective, would allow for the im-
plementation of cost-effective integrated receivers as compared
with optical processing techniques.

As known, in the linear regime, group velocity disper-
sion (GVD) and polarization mode dispersion (PMD) are
the most severe sources of signal distortion and system
penalty. Although GVD can be compensated for by dispersion-
compensating fibers in present communication systems, com-
pensation at bit rates higher than 10 Gb/s may not prove to be
adequate because GVD tolerance decreases with the square of
the bit rate, leaving a nonnegligible residual dispersion. More-
over, the decreased tolerances and the evolution of the transmis-
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sion layer to a network layer can make the signal affected by an
unpredictable, and even variable, residual GVD that combines
with PMD, which is an intrinsically stochastic phenomenon
whose penalties are difficult to fully compensate for.

In a first-order approximation, the effect of PMD is just a
differential group delay (DGD) ∆τ between the two principal
states of polarization (PSPs) of the fiber, causing intersymbol
interference (ISI). Customarily, PMD is described by a vector
�Ω in Stokes space, which in a first-order approximation is taken
as frequency independent. Higher order effects arise when the
PMD vector �Ω varies with frequency. In a common second-
order approximation, �Ω is assumed to be a linear function of fre-
quency, i.e., �Ω = �Ω0 + �Ω1(ω − ω0), where �Ω1 is the derivative
of �Ω evaluated at carrier frequency ω0 [1]. Second-order effects
are mainly signal distortion and broadening. It has been shown
that optical compensation is able to recover heavy penalties, due
to both first- and second-order effects, through various possible
implementations, such as the cascade of polarization controllers
and polarization-maintaining fibers [2], planar lightwave cir-
cuits (PLCs) [3], or other optical devices [4].

The above techniques, although very effective, may still be
impractical because of their cost, due to optical technologies.
Thus, many efforts have been done to apply classical and
novel electrical (postdetection) processing techniques to optical
communication systems. The first proposal of an electrical
equalizer for optical systems, to the authors’ knowledge, was
a linear transversal filter to combat ISI arising from chromatic
dispersion [5], but nonlinear cancellation was also proposed
since photodetection implies a nonlinear transformation of the
signal [6]. Much more recently, comparisons between these
methods and optical compensation have been presented, evi-
dencing benefits and drawbacks of both solutions [4], [7], [8].

Besides feedforward and decision-feedback equalizations
(FFE and DFE), there is an increasing interest in maximum-
likelihood sequence detection1 (MLSD), implemented through
the Viterbi algorithm (VA) [9], [10], due to its potentially
optimal performance [9]. In the pioneering work [5], this
strategy was already considered, but of course, the presence
of optical amplifiers (OAs) could not be accounted for. As a
consequence, the amplified spontaneous emission (ASE) noise
is not present in [5], and the statistics of the received signal,
necessary to compute the VA branch metrics, are conditionally

1We prefer the term “detection” instead of the commonly used “estimation”
because estimation theory refers to continuous parameters whereas we are
interested in discrete sequences.
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Fig. 1. (a) Schematic of the system model. (b) Lowpass equivalent.

Gaussian due to shot and thermal noise. Nowadays, all op-
tical systems envisage the presence of OAs, and, as a con-
sequence, the signal in the fiber is impaired by a noise
that, in the linear regime, can be modeled as additive white
Gaussian noise (AWGN) [11]. Since a square-law detector is
present at the receiver end, postdetection noise statistics change
[10], [12], [13] and can no longer be considered Gaussian. In
the case of the MLSD strategy, assuming Gaussian statistics
for noise after photodetection is neither realistic nor correct
and leads to inaccurate results [14]. Hence, in [4] and [8], the
statistics of the received signal are approximately measured
and updated in real-time during transmission and assuming no
decision errors. This method, which always refers to specific
constraints, such as sample quantization, memory length, filter
kind and parameters, or even the absence of filtering, has been
compared with classical equalization schemes, showing that a
better performance, as expected, can be obtained by using the
MLSD strategy [4], [8]. A rigorous detailed description of the
MLSD approach can be found in a recent paper [15], where a
novel method for performance evaluation is devised and applied
to the case of a synchronous MLSD receiver in the presence of
chromatic dispersion only.

In this paper, we consider the optimal MLSD strategy with
PMD and GVD in the sense that our aim is to describe
the receiver structure and to provide a reliable method for
computing the relevant performance for any possible value
of the system parameters, under the only constraint of one
sample per bit, as in [15] and [16], or no constraint on the
sampling rate, since oversampling is a possible way to guar-
antee sufficient statistics for this transmission system [17] (see
also [18] for applications to optical channels). In particular,
through numerical evaluation [19], we derived a practically
exact expression of the received signal statistics in the case of
a receiver working with one sample per bit time so that a look-
up-table-based MLSD receiver could be implemented [20]. In
the case of oversampling, since our numerical method cannot
be used as we do not know an (neither exact nor approximate)
expression for the joint statistics of the samples, we resorted
to a histogram-based receiver. An exhaustive analysis of the
correlation of the received samples was carried out to state the
best tradeoff between the number of samples to be processed
and the amount of memory necessary to store a reliable estimate
of the probability density functions (pdfs).

Finally, a closed-form approximation of the receiver branch
metrics, which entails a negligible performance loss, is de-

rived. Based on the exact branch metric computation, analytical
bounds for system performance are provided, allowing us to
reach very low values of bit error rate (BER). This analytical
method also represents an essential tool for optimizing the
receiver parameters without resorting to time-consuming com-
puter simulations. Since PMD is a time-varying phenomenon,
the receiver also has to adaptively update some parameters. This
aspect is also discussed. A comparison with commonly adopted
electronic equalization and optical compensation techniques is
also provided, showing that the MLSD approach achieves, as
expected, better performance when compared to other electrical
techniques, although optical compensation still provides the
best results since, after the irreversible transformation intro-
duced by the photodetector, the receiver postdetection process-
ing is not able to effectively cope with the combined GVD and
PMD distortions.

This paper is organized as follows. Section II presents the
system model and a brief background on PMD. Section III
explains the numerical approach adopted to obtain the pdf of
the received signal, which is necessary to compute the VA
branch metrics, and the derivation of an accurate approximated
closed-form expression. Section IV is about the derivation of
a sufficient statistic based on oversampling, whereas Section V
explains the computation of lower and upper bounds. Finally, in
Section VI, numerical results are presented in the presence of
both PMD and GVD, and in Section VII conclusions are drawn.

II. SYSTEM MODEL

Fig. 1 shows the system model and its low-pass equivalent.
A standard nonreturn-to-zero (NRZ) ON–OFF-keying (OOK)-
modulated laser beam is launched in a single-mode fiber (SMF),
optically amplified and filtered at the receiver end. The OA
is assumed to have a high gain G so that the ASE noise is
dominant over thermal and shot noise. The signal is then pho-
todetected, electrically filtered, sampled, and finally processed
through the VA, effectively implementing the maximum
a posteriori (MAP) sequence detection strategy; here, it is
equivalent to MLSD, since the transmitted bits {ak} are equally
likely. In Fig. 1, w(t) = [w1(t), w2(t)]T represents AWGN,
where w1(t) and w2(t) are independent complex noise com-
ponents accounting for ASE on two orthogonal states of po-
larization (SOPs), each with two-sided power spectral density
(PSD) equal to N0. When G � 1, N0 = nsphν(G− 1)/
G � nsphν, where nsp ≥ 1 is the spontaneous emission
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parameter, and hν is the photon energy. At the optical filter
output, the components of the two-dimensional (2-D) com-
plex vectors s(t) = [s1(t)s2(t)]T and n(t) = [n1(t), n2(t)]T

represent the useful signal and noise components in each SOP,
respectively. The noise components are Gaussian but not white
since they are obtained by filtering the AWGN w(t). The low-
pass equivalent (matrix) transfer functions of the fiber, optical,
and postdetection filters are denoted by Hf (ω), Ho(ω), and
He(ω), respectively.

The well-known transfer function of a fiber affected by GVD
only is expressed as HGVD(ω) = exp(−jβ2Lω

2/2), where
β2 = −λ0D/ω0 is the chromatic dispersion parameter [21],
D being the fiber chromatic dispersion (usually expressed in
picoseconds per nanometer per kilometer) and λ0 the wave-
length, while L is the fiber length. In a chromatic-dispersion-
compensated link, several fiber pieces with alternating sign
chromatic dispersion Di and appropriate length Li may be
used, and as commonly done, we will indicate as “residual
dispersion” the quantity Dr =

∑
i DiLi in picoseconds per

nanometer. To make our results independent of the bit rate Rb,
we will use the dimensionless chromatic dispersion index γ
[22], which is defined as

γ = 2λ0R
2
bDr/ω0. (1)

Using the chromatic dispersion index γ, the transfer function
of a GVD-compensated link can be written as HGVD(ω) =
exp(jγ(ω/Rb)2/4).

Accounting now for PMD, the fiber Jones matrix is written
as Hf (ω) = HGVD(ω)RU(ω)R−1, where U(ω) describes the
fiber PMD on the basis of its PSPs at the carrier frequency that,
without loss of generality, can be taken to be coincident at the
input and output. R is a random rotation matrix, independent
of frequency, representing a change of basis SOPs. Thus, its
columns represent the PSPs at the carrier frequency on the
basis of the reference SOPs, which is often taken as two linear
orthogonal polarizations aligned along the S1 axis in Stokes
space. Assuming, without loss of generality, that the carrier
SOP remains unchanged, U(ω) is such that U(0) = I .

A closed-form expression of U(ω) accounting for all PMD
orders is not known, and although several second-order ap-
proximations are available (see [23] and references therein),
they account differently for higher PMD orders [24]. To avoid
the peculiarities of a specific analytical model, one could use
the numerical random waveplate model, but in this case the
evaluation of outage probabilities would become exceedingly
expensive, so we choose to evaluate outages by using the
model in [25] for U(ω) as it is also able to partially (and
correctly) account for higher PMD orders through second-order
parameters only [24].

At the output of the photodiode, the detected signal can
be described as the sum of two contributions (one for each
SOP), i.e.,

z(t) = ‖s(t) + n(t)‖2

= |s1(t) + n1(t)|2 + |s2(t) + n2(t)|2 . (2)

Clearly, after photodetection, noise becomes signal-
dependent and its statistics change. In the following, optical

and postdetection filter parameters can be chosen arbitrarily
since the proposed receiver is independent of a particular
choice for filter shapes or bandwidths.

III. RECEIVED SIGNAL STATISTICS

In this section, we derive the MLSD detection strategy
under the constraints of the above receiver structure and that
one sample per bit interval is extracted at the receiver. This
receiver cannot, however, be considered as optimal since the
aforementioned received samples do not represent a sufficient
statistic for this detection problem. The problem of finding a
sufficient statistic will be faced in the next section.

Under the aforementioned constraints, the MLSD detection
strategy can be expressed as [10]

â = argmax
a

p(z|a) (3)

where a = {ak} is the transmitted bit sequence, and z = {zk}
is the corresponding received sequence. The synchronous re-
ceived samples are zk = z(t0 + kT ), t0 being a proper time off-
set and T = 1/Rb the bit interval. We assume2 that, conditional
upon the transmitted sequence, the samples {zk} can be taken
as independent. Since this is the conditional pdf, this hypothesis
depends on the shape of used optical and postdetection filters,
irrespective of the presence of ISI due to PMD and/or GVD.
Then, the conditional joint pdf of the received samples can be
written as

p(z|a) =
∏
k

p(zk|a) (4)

and, assuming that the system is causal and with finite memory
L, it is

p(zk|a) = p(zk|ak, ak−1, . . . , ak−L). (5)

Therefore, the optimal MLSD strategy can be implemented by
means of the VA using the branch metrics

λk(ak, µk) = ln p(zk|ak, µk) (6)

where µk = (ak−1, ak−2, . . . , ak−L) is the trellis state. So, the
number of states is S = 2L, and hence, the receiver complexity
increases exponentially with the channel memory L.

A closed-form expression for the pdfs in (5) is not known
for arbitrary signal formats and filtering. Although the samples
at the photodetector output have a noncentral chi-square dis-
tribution, being the sum of squared Gaussian random variables
[10], the presence of the electrical filter modifies these statistics.
An appropriate characterization of these pdfs is mandatory;
otherwise, the performance of the MLSD receiver would be de-
graded. These pdfs can be evaluated almost exactly by efficient
numerical methods and stored in a look-up table that can be
addressed by the received signal samples and by the considered
trellis transition to compute the branch metrics.

2This assumption was numerically validated for the commonly used shape
and bandwidth of the optical and electrical filters.
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Undoubtedly, the most efficient numerical method is that
using the “saddlepoint” approximation [26], based on the
knowledge of the moment-generating function Ψzk|a(s) of the
samples. This function can be obtained as a closed-form expres-
sion by expanding noise on a proper Karhunen–Loève basis, as
shown in [24]. Then, using the saddlepoint approximation, the
pdf can be evaluated as

p(zk|a) �
exp

[
Φzk |a(s0)

]
√

2πΦ′′
zk|a(s0)

(7)

where s0 is the saddlepoint of Ψzk|a(s) exp(−szk) on the
real axis

Φzk |a(s) = log
[
Ψzk|a(s)e

−szk
]

(8)

and Φ′′
zk|a is the second derivative of Φzk|a, which is always

positive at the saddlepoint. This approach gives a really ac-
curate closed-form approximation for the pdf and, although
requiring a search for the saddlepoint, provides an exact method
to evaluate the theoretical performance limit for electrical
equalization.

When the signal is not distorted, i.e., it is ideal rectangu-
lar NRZ, the optical filter has a large-bandwidth rectangular-
shaped transfer function, and the postdetection filter is an
integrate and dump device, then the pdf of the received sample
is still of chi-square type [13]. Under the hypothesis that the
optical and electrical filters simply influence the number of de-
grees of freedom and that signal distortion and filtering can be
accounted for only through the induced change in signal energy,
we can approximate the conditional pdf of a received sample
as [14], [15], [27]

p(zk|ak, µk) � 1
N0

(
zk

sk

)(ν−1)/2

× exp
(
−zk + sk

N0

)
Iν−1

(
2
√
zksk

N0

)
(9)

where ν, which is half the number of degrees of freedom,
is taken as two times3 the ratio of the optical and elec-
trical filter noise equivalent bandwidths, i.e., ν = 2Bo/Be;
sk

�
= sR(ak, µk) is the noise-free received sample that depends

on the present and past transmitted symbols, according to the
channel memory length, and Iν−1(x) is the modified Bessel
function of the first kind and order ν − 1. Hence, a simplified
expression of the branch metrics, discarding irrelevant terms in
the maximization, is4

λ(ak, µk) � −ν − 1
2

ln [sR(ak, µk)]− sR(ak, µk)
N0

+ ln

[
Iν−1

(
2
√
zksR(ak, µk)

N0

)]
. (10)

3The factor 2 is because we consider signal and noise as complex rather than
real valued as done in [13]–[15].

4All additive terms in the branch metrics independent of ak and µk can be
discarded, and in addition, the branch metrics can be arbitrarily multiplied by a
positive constant.

Fig. 2. PDFs of “1” and “0” for Eb/N0 = 18 dB.

As we will see in Section VI, a receiver based on these branch
metrics practically attains the same performance of the receiver
based on exact branch metrics.

Notice that this same approach is also taken in [14] to
compute the performance of optical turbo-coded systems, but
differently from [14], we use (9) both when ak = 1 and ak = 0
as, due to finite extinction ratio, signal distortion, and filtering,
sR(ak, µk) will not be exactly zero even when ak = 0. Clearly,
when ak = 0, (9) can be used only if sR(ak, µk) > 0, i.e., when
the electrical filter is such that either its impulse response is
always positive or its negative values have a negligible impact,
as is the case for Gaussian- or Bessel-type filters, for example.

The exact (solid), chi-square (dashed), and Gaussian (dotted)
pdf approximations are reported in Fig. 2 for Eb/N0 = 18 dB,
where Eb is the received optical signal mean energy per bit.
We considered the received samples normalized to the value
corresponding to the logical “1.” The ratio Eb/N0 represents
the number of detected photons per bit at the input of the OA
and is related to the optical signal-to-noise ratio (OSNR) by
Eb/N0 = 2 · OSNR ·WT , with W being the reference mea-
surement bandwidth usually taken equal to 12.5 GHz (0.1 nm).
As can be seen, the chi-square is a better approximation to the
actual pdf than the Gaussian one, which completely fails in
estimating the tails, even if in a standard receiver it can predict
the BER with good accuracy [13]. A further simplification can
be obtained by the crude approximation Iν−1(x) � ex/

√
2πx,

by which (9) is approximated as

p(zk|ak, µk) �
(
zk

sk

) 2ν−1
4 exp

(
− (

√
zk−√

sk)2

N0

)
√
4πN0zk

(11)

reported in Fig. 2 as open circles. The resulting simplified
branch metrics are

λ(ak, µk) � 2
√
zksR(ak, µk)− sR(ak, µk)

−N0

2

(
ν − 1

2

)
ln [sR(ak, µk)] . (12)

The impact of these approximations in the expression of the
branch metrics will be considered in Section VI.
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Fig. 3. System model for the receiver based on oversampling.

As already mentioned, the number of trellis states, and thus
the complexity, depends exponentially on the channel memory
L. For commonly used optical and electrical filters, and DGD
values lower than a bit interval, we verified that L ≤ 2 in
the absence of chromatic dispersion, whereas L ≤ 4 for the
residual dispersion values we took into account. Hence, the
number of states is at most S = 16. In addition, the application
of reduced-state sequence detection (RSSD) techniques [28]
allows to substantially reduce the number of trellis states. In
particular, a reduced-state µ′

k = (ak−1, ak−2, . . . , ak−L′), with
L′ < L, may be defined. The resulting number of states is
reduced to 2L′

< 2L. To compute the branch metrics (6) in a
reduced trellis, the necessary symbols not included in the state
definition may be found in the survivor history [28]. We note
that, in the limiting case of L′ = 0, the trellis diagram degener-
ates and symbol-by-symbol detection with decision feedback
is performed. The resulting receiver can be considered as a
nonlinear equalizer with decision feedback.

Since PMD is a time-varying phenomenon, the receiver
parameters should be adaptively updated. By using one of the
aforementioned approximated closed-form expressions of the
branch metrics (10) or (12), when PMD changes, the receiver
has to simply adaptively identify the term sR(ak, µk). This can
be easily done by using a gradient adaptation algorithm and, as
a cost function, the one defining the nonlinear branch metrics.

IV. OVERSAMPLING

Although the MLSD receiver described in the previous sec-
tion represents the best postdetection technique in the case of
synchronous sampling, as already mentioned, one sample per
bit time is not a sufficient statistic for the problem at hand. The
simpler way to obtain a sufficient statistic, having in mind the
practical implementation of the receiver, is through oversam-
pling [17]. In fact, provided that an adequate number of samples
per bit is extracted from the signal after photodetection, the
whole information in the electrical signal is preserved and there
is no need of a further processing through an electrical filter
[17]. As a consequence, this latter filter was removed. In this
section, we investigate the performance improvement obtained
by adopting the MLSD strategy jointly with the oversampling
technique.

Assuming that n samples per bit time are used, we now
resort to the following notation to denote the received samples.
The n received samples related to the kth bit interval will be
denoted as zk,i = z(t0 + kT + iT/n), i = 0, 1, . . . , n− 1. As
in the previous section, the received sequence will be denoted as
z = {zk,i}. In addition, we will denote by zk the n signal sam-
ples related to the kth bit, i.e., zk = {zk,i}n−1

i=0 . When samples
are spaced less than a bit time, conditionally to the transmitted

bit sequence, they cannot be considered as independent, in
principle. As a consequence, their joint pdf is not given by the
product of the marginal pdfs. For this reason, we use the chain
rule to factorize the joint pdf p(z|a) necessary to implement
the MLSD strategy. Assuming, as in the previous section, that
the received samples that differ for at least 1 bit interval are
independent, we have [29]

p(z|a) =
∏
k

p(zk|zk−1,a)

=
∏
k

n−1∏
i=0

p(zk,i|zk,i−1, . . . , zk,0, zk−1,a) (13)

and, in the last expression, it is implicitly assumed that, if i = 0,
the terms zk,i−1, . . . , zk,0 disappear. Hence, with an appropriate
definition of the receiver state5 µk, the branch metrics of the VA
implementing the MLSD strategy can be expressed as [29]

λk(ak, µk)= ln p(zk|zk−1, ak, µk)

=
n−1∑
i=0

ln p(zk,i|zk,i−1, . . . , zk,0, zk−1, ak, µk). (14)

We did not succeed in finding a way to analytically evaluate
the pdfs in (14), when the samples are not conditionally inde-
pendent, and we had to resort to simulation, implementing a
histogram counter at the receiver to obtain a reliable estimation
of the channel statistics necessary to compute the branch met-
rics. The receiver structure in the case of oversampling (n > 1)
is shown in Fig. 3.

The joint pdfs derived from the aforementioned histograms
allowed us to also evaluate the impact of the correlation be-
tween samples on the branch metrics and the optimum sampling
rate. In Section VI, we will see that a value of n = 2 is
practically sufficient to attain optimal performance. In this case,
although the received samples are correlated, by considering
them as independent in expressing the branch metrics, we
obtain the same performance that can be obtained with the
optimal correlated metrics. Hence, a simplified branch metrics
can be adopted with no performance degradation

λ(ak, µk) �
1∑

i=0

ln p(zk,i|ak, µk). (15)

The pdfs appearing in (15) can be further simplified by using
the approximate expression (9) or (11).

5In principle, in the case of oversampling, the memory of the system
will be M ≥ L. Hence, in this case, the state is defined as µk = (ak−1,
ak−2, . . . , ak−M ).
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Fig. 4. Trellis transitions given by wrong sequences â0 and â1.

It is worth mentioning that, although the described branch
metrics have been derived having in mind the MAP sequence
detection strategy, as demonstrated in [29], the same branch
metrics can be used for the algorithm by Bahl, Cocke, Jelinek,
and Raviv (BCJR) [30], implementing the MAP symbol detec-
tion strategy and employed as a component decoder in itera-
tive decoding schemes for optical turbo codes, such as those
proposed in [14].

V. LOWER AND UPPER BOUNDS

It is well known that the classical union upper bound on the
bit error probability Pb has the expression [10]

Pb ≤
∑
a

P (a)
∑
â �=a

b(a, â)P (a → â) (16)

where a = {ak} and â = {âk} denote bit sequences corre-
sponding to correct and erroneous paths, respectively, b(a, â)
is the number of bit errors entailed by the considered error
event (a, â), P (a → â) is the pairwise error probability (PEP),
and P (a) is the a priori probability of sequence a. The PEP
P (a → â) is the probability that the sum of the branch metrics
relative to the erroneous path exceeds the sum of the branch
metrics on the correct path, i.e.,

P (a → â) = P

(
�+H∑
k=�

λk <

�+H∑
k=�

λ̂k

)
(17)

where {λk} and {λ̂k} are the branch metrics corresponding
to the correct and erroneous paths, respectively, and H is the
length of an error event starting at discrete time +. In Fig. 4,
two error events starting at the same instant are considered on
a four-state trellis. The correct bit sequence is the “all zero”
sequence, whereas the erroneous sequences are â0 and â1. The
error event has length H = 2 in the first case and H = 3 in the
second one.

From the union bound, we derive a lower and an approx-
imated upper bounds for the bit error probability. The lower
bound is simply obtained by considering the most likely error
event and assuming that only 1 bit of error characterizes it.
The approximated upper bound is obtained by truncating the
union bound considering a few most frequently occurring error
events only.

Let us consider, for example, the case of the receiver working
with one sample per bit interval. The event {∑�+H

k=� λk <

∑�+H
k=� λ̂k}, which is involved in the computation of the PEP,

can be equivalently expressed as the event that the vector of
the received samples z�+H

� = (z�, z�+1, . . . , z�+H)T belongs
to a given domain. Hence, the numerical integration of the
joint pdf allows us to compute the PEP with high accuracy
for values down to 10−15. In this case, the integration can be
easily performed since the received samples are independent
and their marginal pdf can be obtained by the same method
described in the previous section and based on the saddlepoint
approximation. However, we will shortly see a simpler way
for evaluating the PEP, which also holds when oversampling
is employed.

Indeed, in the case of oversampling receivers, it is not possi-
ble to compute the PEP along the previous lines since the joint
pdf of the received samples is not known. In fact, although it
can be approximated as the product of the marginal pdfs for
the expression of the branch metrics, this cannot be done for
the computation of the PEP if samples are spaced by less than
a bit interval. However, we can exploit the fact that, as can be
seen from (10) and (12), the branch metrics depend only on the
square root of the samples. Using (12) and letting

yk =
√
zk (18)

dk =
√
sk −

√
ŝk (19)

the PEP in (17), neglecting the term (2ν − 1)N0 log(sk/ŝk)/4
at high signal-to-noise ratios, can be written as

P (a → â) = P

(∑
k

dkyk <
1
2

∑
k

(sk − ŝk)

)
. (20)

As given in Appendix A, the random variable (r.v.) yk in (18)
can be approximated as Gaussian with mean and variance,
respectively, as

ηyk
=αk

√
sk (21)

σ2
yk

=Nk/2 (22)

where

αk =
sk/Nk +

(
4ν2

k − 1
)
/16

sk/Nk + (2νk − 1)(2νk − 3)/16
(23)

Nk =
σ2

zk

ηzk
+ sk

(24)

νk =
η2

zk
− s2k
σ2

zk

(25)

ηzk
and σ2

zk
being the mean and the variance of zk. Notice that

for the oversampling case, as the postdetection filter is absent,
the photodetected samples are chi-square distributed such that
(24) and (25) are simply equal to Nk = N0Bo and νk = 2,
where Bo is the optical filter noise equivalent bandwidth.
Hence, the r.v.

x =
∑

k

dkyk (26)
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can be approximated, in turn, as Gaussian with mean and
variance

ηx =
∑

k

dkηyk
(27)

σ2
x =

∑
k

d2
kσ

2
yk

+ 2
∑
k,�
k �=�

ρk�dkd�σyk
σy�

(28)

where ρk�, which is the correlation coefficient of yk and y�, can
be taken to be zero if yk and y� correspond to samples spaced
by at least a bit time; otherwise, it can be computed as shown
in Appendix B. Therefore, the PEP can be approximated as

P (a → â) � 1
2
erfc

(
ηx − 1

2

∑
k(sk − ŝk)√
2σx

)
(29)

which, for the synchronous case (ρk� � 0 ∀k, +), becomes

P (a→ â)� 1
2
erfc

(∑
k

[
(2αk− 1)

√
sk−

√
ŝk

]
dk

2
√∑

k Nkd2
k

)
. (30)

Notice that a similar result was also found in [15], where,
however, a different approximation to the χ2 distribution was
used in deriving the branch metrics. We would also like to
point out that the results in [15] are only valid for low optical
extinction ratios (10 dB or lower) and when the optical filter has
a large bandwidth and the postdetection filter is an integrate-
and-dump device, whereas our results hold for extinction ratios
as high as 20 dB and for almost arbitrary filtering. The accuracy
of the lower and upper bounds will be examined in the next
section.

VI. NUMERICAL RESULTS

Standard Monte Carlo simulations were carried out to eval-
uate receiver performance with respect to other electrical and
optical equalization techniques. All BER curves are assessed in
terms of Eb/N0. In all simulations, except those related to the
receiver based on oversampling, the optical filter is assumed
to be a fourth-order Butterworth with 3-dB bandwidth equal to
1.9/T , whereas the electrical filter is a fifth-order Bessel with
3-dB bandwidth equal to 0.75/T . An optical extinction ratio of
20 dB was assumed. When considering PMD only, the needed
2S pdfs at the receiver (one for each trellis transition) were
computed using a 32-bit de Bruijn sequence,6 so that all 5-bit
interfering patterns were considered, the number of trellis states
thus being equal to 16. We verified that these choices are redun-
dant and that a four-state trellis would be sufficient to describe
all interfering patterns. Since our purpose was to achieve the
theoretical limit for electrical equalization, a little growth of
complexity was tolerated. For the same reason, no quantization
of the received signal was taken into account. In the presence
of chromatic dispersion, the minimum number of trellis states
would be 16, but we used up to 64 states (such a large number
of states is only useful for large amounts of PMD and/or GVD,

6A binary de Bruijn sequence of length 2n may be obtained from a
pseudorandom binary sequence of length 2n − 1 by adding a 0 to the longest
run of 0s.

Fig. 5. Performance of the proposed MLSD receiver with first-order PMD
and equal power splitting between PSPs.

Fig. 6. Comparison between optical and electrical compensation schemes
with first-order PMD and 50% power splitting.

when, however, the induced penalty is already several decibels
and the achievable benefits are negligible).

A. Synchronous Sampling

The look-up-table-based MLSD receiver was simulated in
different first-order PMD scenarios, with no GVD and DGD
equal to 0%, 50%, and 75% of the bit time. The chi-square-
based MLSD receiver was also tested to verify its performance
with respect to the look-up-table-based one, and in Fig. 5, a
comparison is presented, showing also the results obtainable
by a standard receiver (curves labeled “uncompensated”). As
mentioned, the performance of the χ2 pdf is almost the same
as that of the exact one, both giving higher benefits as DGD
increases. Moreover, we found no appreciable difference in the
results obtained using the branch metrics in (10) or (12).

It is interesting to compare the performance of the MLSD
receiver with that of other electrical and optical equalization
techniques. In Fig. 6, for the same DGD values, we also report
the performance of combined (synchronous) FFEs and DFEs,7

and that of a three-stage optical compensator, composed by

7The number of taps of both equalizers was optimized, finding no improve-
ment with more than five taps for the FFE and three taps for the DFE.



3080 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 8, AUGUST 2006

Fig. 7. Lower and upper bounds of the receiver performance with first-order
PMD and 50% power splitting.

a cascade of three polarization controllers and polarization
maintaining fibers as in [2]. This optical compensator shows
a negligible penalty for increasing DGD values (the curves are
practically undistinguishable), whereas both electrical process-
ing schemes suffer a larger penalty as DGD increases. We
point out that this is because, in this case, we are neglecting
higher order PMD effects, and thus, the optical compensator
is able to perfectly cancel out the ISI in the optical domain,
avoiding the beating between ISI and ASE noise, whereas the
electrical processing techniques also have to cope with it, and
this fact degrades their performance. Yet, MLSD evidences a
better performance with respect to electrical equalization for
DGD values greater than about 0.5 T , as expected.

The accuracy of the described lower and approximated upper
bounds is shown in Fig. 7. In this case also, only the first-order
PMD is considered, with DGD values of 0 T , 0.5 T , and 0.75 T .
It is clear that it is not necessary to have recourse to time-
consuming computer simulations since this tool predicts very
well the receiver performance, where the higher the accuracy,
the lower the BER, and can also be used to optimize the system
parameters.

B. Oversampling

We now consider the receivers based on oversampling. As
already mentioned, in the case of oversampling, the electrical
filter was removed. Hence, the bandwidth of the optical filter
was reoptimized, finding that, in this case, its optimum value
is 1.2/T . Accounting for sample correlation, we considered up
to four samples per bit time, quantized to 4 bits. We found that
this quantization level is sufficient to avoid significant penalties,
and, at the same time, allows for a reasonable simulation time.
Indeed, the complexity required to build up correlated his-
tograms increases exponentially with the number n of samples
per bit interval and the number q of quantization bits, as the
number of required histogram bins is 2qn. As can be seen from
the simulation curves in Fig. 8, no significant improvement is
attained for n > 2, so an oversampling factor of 2 is assumed
in the following.

Since the optimal tradeoff between computability and effi-
ciency is achieved by using just two samples per bit time, it

Fig. 8. Simulation results for the histogram-based oversampling receiver for
n = 1, 2, 4. First-order PMD and 50% power splitting.

Fig. 9. Joint pdf of two T/2-spaced samples at Eb/N0 = 12 dB. Starting
from the inner, contours are at 100, 10−1, 10−2, 10−3. Ragged lines represent
simulation results.

is worth checking the impact of the actual correlation of the
samples on the metrics. In fact, if it turns out to be negligi-
ble, this could lead again to the possible exploitation of the
numerical method for pdf computation, because the joint pdf
could be approximated by the product of the marginal pdfs.8

The joint pdf accounting for sample correlation and obtained by
simulation was compared with the joint pdf evaluated under the
hypothesis of sample independence and analytically derived as
the product of the marginal pdfs. We found that the correlation
between samples is almost negligible when in both T/2-spaced
samples, the signal part is low (i.e., it corresponds to a logical
“0”), whereas it is significant when the signal is high (i.e., it
corresponds to a logical “1”). Fig. 9 compares the pdfs obtained
as explained before when the signal is high in both samples.
Indeed, the plot in Fig. 9 reveals a little amount of correlation.
So Monte Carlo simulations were carried out with both joint
and independent histograms to evaluate the impact of such
a correlation on the performance of the receiver. Obviously,
proper training sequences of different length were used to build

8We stress the fact that this would be true only for evaluating the metrics,
and not in the analytical performance evaluation, which is heavily affected by
the correlation value.
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Fig. 10. Simulation results for independence assumption or actual correlation
on noise statistics when taking two samples per bit (histogram-based receiver).

Fig. 11. Comparison between synchronous and oversampled receiver. First-
order PMD and 50% power splitting.

up the histograms so that the same degree of accuracy was
assured. We report in Fig. 10 the results obtained by simulation
under the two assumptions about sample correlation. As can
be seen, assuming independence leads to a really negligible
penalty (almost unnoticeable in the graphs), we can state that
two samples can be considered as independent for evaluating
the metrics.

To perform a fair comparison, a histogram-based synchro-
nous receiver was implemented as well with same quantization,
bin width, and training sequence length as the oversampling
receiver. After filter bandwidth reoptimization, its performance
was evaluated using the reference DGD values 0, 0.5, and
0.75 T . The final results are shown in Fig. 11, evidencing that
oversampling leads to a significant improvement for increasing
values of DGD.

C. Outage Probability

The method that we developed to obtain lower and upper
bounds allows for the computation of the outage probability,
defined here as the probability that the BER exceeds a given
value for a fixed signal-to-noise ratio margin, or, equivalently,
as the probability that the penalty exceeds the same margin
when the BER is fixed at the same value [24]. In computing the

Fig. 12. OSNR penalty at BER = 10−12 versus normalized DGD. First-
order PMD and 50% power splitting.

Fig. 13. Outage probability due to first-order PMD.

outage probability, we consider a reference BER of 10−12 and a
3-dB margin such that Monte Carlo simulations are infeasible.
So, we evaluated the penalty by using the approximated upper
bound previously discussed.

We initially considered first-order PMD only. In this case,
once verified that the penalty contour at 3 dB versus DGD
and power splitting is U shaped, the outage probability can be
approximated as [24]

Pout � exp

[
− 4
π

(
∆τ3dB

〈∆τ〉
)2
]

(31)

where 〈∆τ〉 is the mean DGD, and ∆τ3dB is the instantaneous
DGD giving a 3-dB penalty at 50% power splitting, as shown in
Fig. 12, where the penalty versus DGD is reported. Note that,
if the postdetection filter has a highly nonsymmetric impulse
response, the isopenalty curves may not be U shaped and, in
this case, (31) may not be accurate. We verified that this is not
the case with the electrical fifth-order Bessel filter we used.
The outage probability due to the first-order PMD is shown
in Fig. 13. As can be seen, a synchronous MLSD receiver
does fairly better than an FFE combined with a DFE, allowing
for a mean DGD value of about 30% higher for Pout < 10−6,
whereas the oversampling MLSD receiver improves this value
to about 60%.
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Fig. 14. Outage probability due to first- and second-order PMD.

There is no closed-form approximation for the outage proba-
bility due to second-order PMD, and we analytically evaluated
it as described in [24] using the model in [25] for the fiber Jones
matrix. The results are shown in Fig. 14, where we also su-
perimpose the outage probability due to first-order PMD only.
From the comparison, it is possible to notice that the impact
of second-order PMD is almost negligible, being the relevant
penalty due to first-order PMD only. This conclusion is also cor-
roborated by comparison with the outage probability obtainable
by exact first-order compensation in the optical domain [24],
which is also shown in Fig. 14. As in our experience, the ana-
lytical second-order models for the fiber PMD are always more
pessimistic than the random waveplate model, which accounts
for all PMD orders, and we are confident that our results also
remain valid when taking into account higher PMD orders.

D. Impact of GVD

We verified that also in the presence of GVD, an oversam-
pling factor of 2 is sufficient to give optimal performance;
the only difference is that a larger number of trellis states is
required. Anyway, as already discussed, 16 states turned out
to be sufficient in most cases. GVD is quantified through the
dimensionless chromatic dispersion index γ in (1). As already
mentioned, using the chromatic dispersion index γ instead of
the residual dispersion Dr simply makes the results indepen-
dent of the bit rate Rb. As an example, γ = 0.1 corresponds
to a residual dispersion of 392 ps/nm at 10 Gb/s, 24 ps/nm at
40 Gb/s, and 1.5 ps/nm at 160 Gb/s.

As can be seen from Fig. 15, an oversampling MLSD re-
ceiver outperforms standard electrical equalization techniques,
as well as synchronous one, except for values of the chromatic
dispersion index lower than about 0.3. It is interesting to note
that the synchronous receiver penalty shows a well-defined
local minimum at around γ = 0.4, which can be explained
by analyzing the Euclidean distances between correct and
corresponding wrong patterns on the trellis diagram. Indeed,
as shown in Fig. 16, the distance of the most likely error
event, which determines the receiver performance, is smaller
when γ = 0.3 with respect to γ = 0.4. When the chromatic
dispersion index changes from γ = 0.2 to γ = 0.4, we also
notice a change in the optimum sampling time from t = T/2

Fig. 15. OSNR penalty at BER = 10−12 as a function of chromatic disper-
sion index. Both upper and lower bounds are reported for MLSD.

Fig. 16. Euclidean distance between correct and corresponding wrong pat-
terns on the trellis diagram versus sampling time.

to t = 0. Now, with reference to Fig. 16, the maximum eye
opening occurs at t = T/2 (the eye is closed for γ > 0.6), and,
for γ = 0.4, if the same samples used in the MLSD receiver
(for which the optimum sampling time is t = 0) were used in
a standard receiver, the BER would be close to 1/2. This is due
to the nature of the MLSD that performs sequence rather than
bit-by-bit detection such that a sequence of samples need not
be taken at the maximum eye-opening times, and even when
the eye is closed, it can still be correctly detected.

We next consider the combined effect of GVD and PMD. In
Fig. 17, we report the maximum value of the mean DGD for
which the outage probability is less than 10−6 as a function
of the chromatic dispersion index. The synchronous receiver
curve shows a dip of around γ = 0.4, which can be ex-
plained by the above considerations, while the maximum mean
DGD that is tolerable by the oversampling receiver decreases
monotonically.

VII. CONCLUSION

MLSD for OOK optical channels with PMD and GVD has
been discussed, considering both the implementation aspects
and the relevant performance. In particular, the implementation
of the MLSD strategy making use of one sample per bit of
the signal after photodetection has been considered first. In
this case, starting from the exact statistics of the received



FOGGI et al.: MLSD WITH CLOSED-FORM METRICS IN OOK OPTICAL SYSTEMS IMPAIRED BY GVD AND PMD 3083

Fig. 17. Maximum mean DGD giving an outage probability of less than 10−6

versus chromatic dispersion index. First- and second-order PMD is considered.

signal that can be analytically computed, a simpler closed-
form approximated expression of the branch metrics of the VA
implementing the MLSD strategy has been obtained. Then, to
improve the performance, a quest for sufficient statistics has
been carried out, leading to the conclusion that the signal at
the receiver should be sampled at twice the bit rate. Through
comparison with the results obtainable by using the exact
statistics, it has been shown that, sampling at twice the bit rate,
the samples can still be regarded as independent for computing
the metrics. Hence, a closed-form expression of the VA branch
metrics is still available in this case. By means of simulations
as well as accurate analytical performance evaluation, it has
also been shown that this technique makes a significant penalty
reduction possible. A performance comparison with electronic
equalization techniques, such as FFE and DFE, and with optical
equalization, has also been carried out, showing that the MLSD
receiver based on two samples per bit time outperforms other
electronic equalizers but is still far away from a three-tap optical
equalizer based, for instance, on PLCs.

APPENDIX A

In this Appendix, we derive an accurate approximation for
the pdf of the square root of the samples of the photodetected
signal.

Although (11) proved to be adequate for deriving branch
metrics for the VA, it is not adequate for performance evalu-
ation. Indeed, as can be seen from Fig. 2, it can quite accurately
predict the correct threshold but would give a BER smaller than
about two orders of magnitude with respect to the true value.
However, we can use the functional form in (11) to fit the actual
pdf of the sample zk with very high accuracy as

pzk
(z)� ck√

4πNkz

(
z

sk

)2νk−1
4

exp
(
− (

√
z −√

sk)2

Nk

)
(32)

where Nk and νk are as in (24) and (25), and ck is the
normalization constant

ck =
2
√
π(sk/Nk)(2νk−1)/4esk/Nk

Υ(1, 1) + 2
√

sk

Nk
Υ(3, 3)

(33)

having defined

Υ(n,m)
�
= Γ

(
2νk + n

4

)
1F1

(
2νk + n

4
;
m

2
;
sk

Nk

)
(34)

and where 1F1 is the confluent hypergeometric function [31].
Using the approximation (less accurate for x ≈ 1, but
still valid)

1F1(a; b;x)� Γ(b)
Γ(a)

xa−bex

(
1+

(a− b)(a− 1)
x

)
, x>1

(35)

it can be seen that ck depends on the ratio sk/Nk in a quite
simple manner as

ck � sk/Nk

sk/Nk + (2νk − 1)(2νk − 3)/16
(36)

and its value is next to 1 for sk/Nk > 3÷ 4 when νk < 3.
From (32), it turns out that the pdf of yk =

√
zk can be

approximated as

pyk
(y) = 2

√
zpz(z)

� ck√
πNk

(
y√
sk

)νk− 1
2

e−(y−√
sk)2/Nk , y ≥ 0

(37)

whose tails (only the right-hand one for small sk/Nk values)
are Gaussian. The mean value of yk turns out to be

ηyk
�
√
Nk

Υ(3, 1) + 2
√

sk

Nk
Υ(5, 3)

Υ(1, 1) + 2
√

sk

Nk
Υ(3, 3)

�√
sk

sk/Nk +
(
4ν2

k − 1
)
/16

sk/Nk + (2νk − 1)(2νk − 3)/16
(38)

such that (37) can be approximated as

pyk
(y) � 1√

πNk

exp
(
− (y − ηyk

)2

Nk

)
. (39)

We point out again that, for sk/Nk � 1, (39) is a good approx-
imation only for the right-hand tail of (37), but this is suitable
in our purposes.

APPENDIX B

In this Appendix, we derive an accurate approximation for
the correlation coefficient of the square root of the samples of
the photodetected signal.

Writing signal and noise on two reference polarizations in the
optical domain in terms of their real (in phase) and imaginary
(quadrature) components

si(t) = si1(t) + jsi2(t)

ni(t) = ni1(t) + jni2(t)
, i = 1, 2 (40)
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and letting

xij(t)
�
= sij(t) + nij(t), i, j = 1, 2 (41)

the photodetector output in (2) can be written as

z(t) = x2
11(t) + x2

12(t) + x2
21(t) + x2

22(t).

The r.v. xij(t) is Gaussian with mean sij(t) and variance
σ2 = N0Bo/2, and the r.v.s xij(t1) and xij(t2) are jointly
Gaussian with joint pdf

pxij
(x, y) =

exp
{
− (x−ηij1)

2−2ρ(x−ηij1)(y−ηij2)+(y−ηij2)
2

2(1−ρ2)σ2

}
2πσ2

√
1− ρ2

(42)

where ηijk = sij(tk), and ρ = R(t1 − t2)/R(0) is their corre-
lation coefficient, with R(τ) = F−1{|Ho(ω)|2}.

Our aim is to evaluate the correlation coefficient ρz of√
z(t1) and

√
z(t2) as

ρz =
E
{√

z(t1)z(t2)
}
− E

{√
z(t1)

}
E
{√

z(t2)
}

σ√z1σ
√

z2

(43)

where σ√zi
is the standard deviation of

√
z(ti). As it turns

out to be a quite involved task, we resort to an approximate
evaluation. Observing that

1
2

4∑
k=1

|ak| ≤
√√√√ 4∑

k=1

a2
k ≤

4∑
k=1

|ak| (44)

and letting

y(t)
�
= |x12(t)|+ |x12(t)|+ |x21(t)|+ |x22(t)| (45)

we have that √
z(ti) = κiy(ti) (46)

where 1/2 ≤ κi ≤ 1. Under the hypothesis that the r.v.s κi, i =
1, 2, are independent of each other and of y(ti), we see that ρz

is equal to the correlation coefficient ρy of y(t1) and y(t2), and
even if this hypothesis does not hold, it is apparent that ρz is
close to ρy . Hence, instead of (43), we will evaluate

ρy =
E {y(t1)y(t2)} − E {y(t1)}E {y(t2)}

σy1σy2

(47)

assuming that ρz � ρy .
As, for ij �= k+, xij(t) and xk�(t) are independent

E {y(t1)y(t2)} − E {y(t1)}E {y(t2)}
=
∑
ij
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and while E{|xij(tk)|} is straightforward to evaluate
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(
ηijk√
2σ

)
+

√
2
π
σ exp
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−η2
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2σ2

)
(49)

the evaluation of E{|xij(t1)xij(t2)|} requires some more
work. Letting (for reasons to be soon explained)

η1
�
=
{
ηij1, if |ηij1| < |ηij2|
ηij2, otherwise

(50)

and

η2
�
=
{
ηij2, if |ηij1| < |ηij2|
ηij1, otherwise

(51)

it can be shown that
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=

∞∫
−∞
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where
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(53)

and

g(x) =
ρ(x− η1) + η2

σ
√
2(1− ρ2)

. (54)

Notice that, due to (42), the result of the integral in (52) remains
unchanged if we swap ηij1 and ηij2, and we exploited this fact
in (50) and (51) because the function f(x) can be approximated
as f(x) � |fa(x)|, where

fa(x) =
ρ(x− η1) + η2√

2πσ
exp

(
− (x− η1)2

2σ2

)
(55)

with an accuracy increasing with the ratio |η2|/σ. Letting now

ξ
�
= η1 − η2/ρ (56)

we have

∞∫
−∞

|x|f(x) dx �
∞∫

−∞
|xfa(x)| dx

=

∞∫
−∞

xfa(x)dx− 2sgn(ξ)

ξ∫
0

xfa(x)dx. (57)
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The first integral in the last equation in (57) gives

∞∫
−∞

xfa(x)dx = ρσ2 + η1η2 (58)

while the second one gives
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When both ηij1 and ηij2 are of the same order or smaller than
σ, (57) loses accuracy, and we must add a correction term to it.
Using the approximation f(x)− |fa(x)| � fe(x), where

fe(x) =

√
1−ρ2

π
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2
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the correction term to be added to (57) is approximated with
great accuracy by
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}
(61)

with ξ being as in (56), and

ε(ξ)=
r2σ2

√
1− ρ2

π

× exp
(
−η2µ(ξ)

σ2
+

(π−2)η2
2 + πρ2σ2

2σ2 [2− (4− π)ρ2]

)
(62)

υ1(ξ) =
η1 − ρµ(ξ)√

2rσ
(63)

υ2(ξ) =
η2 − ρ2µ(ξ)√

2ρ r σ
(64)

r =

√
2(1− ρ2)

2− (4− π)ρ2
(65)

µ(ξ) =
(π − 2)η2 − sgn (ξ)σ

√
2π(1− ρ2)

2− (4− π)ρ2
. (66)

Fig. 18. PDF of the r.v. x in (26) when (a) a = {1, 1, 1, 0, 1, 1, 1, 0} and
â = {1, 1, 1, 1, 1, 1, 1, 0}, and (b) sequences a and â are exchanged. Samples
are spaced by T/2 and Eb/N0 = 20 dB.

Notice that, when η1 and η2 are chosen as in (50) and (51),
the correction term (61) can always be safely added to (57);
otherwise, it could cause an accuracy loss if either |ηij1| or
|ηij2| are greater than σ.

The last ingredients we need for evaluating ρy are σy1

and σy2 , but they pose no problems. Indeed, the second-order
moment of |xij(tk)| is the same as that of xij(tk), i.e., σ2 +
η2

ijk, and taking into account (49), we have

σ2
yk

= 4σ2 +
∑
ij

η2
ijk

−
∑
ij

[
ηijk erf

(
ηijk√
2σ

)
+

√
2
π
σ exp

(
−η2

ijk

2σ2

)]2

. (67)

To check our hypotheses, we evaluated by multicanonical
Monte Carlo (MMC) technique [32] the pdf of the r.v. x in
(26) and compared it with a Gaussian pdf whose mean and
variance are as in (27) and (28), respectively. In Fig. 18(a), we
report the results obtained by oversampling when the correct
sequence is taken as a = {1, 1, 1, 0, 1, 1, 1, 0} and the wrong
sequence as â = {1, 1, 1, 1, 1, 1, 1, 0} and, in Fig. 18(b), the
same quantity but with the role of the two previous sequences
interchanged. The threshold xth = (1/2)

∑
k(sk − ŝk) giving

the PEP P (a → â) = P (x < xth) is also shown.
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