
INV ITED
P A P E R

Iterative Detection for
Channels With Memory
By examining various approaches and techniques, this paper aims to help designers to

create improved algorithms for communications over noisy channels with memory.

By Achilleas Anastasopoulos, Member IEEE, Keith M. Chugg, Member IEEE,

Giulio Colavolpe, Member IEEE, Gianluigi Ferrari, Member IEEE, and

Riccardo Raheli, Member IEEE

ABSTRACT | In this paper, we present an overview on the

design of algorithms for iterative detection over channels with

memory. The starting point for all the algorithms is the

implementation of soft-input soft-ouput maximum a posteriori

(MAP) symbol detection strategies for transmissions over

channels encompassing unknown parameters, either stochas-

tic or deterministic. The proposed solutions represent effective

ways to reach this goal. The described algorithms are grouped

into three categories: i) we first introduce algorithms for

adaptive iterative detection, where the unknown channel

parameters are explicitly estimated; ii) then, we consider

finite-memory iterative detection algorithms, based on ad hoc

truncation of the channel memory and often interpretable as

based on an implicit estimation of the channel parameters; and

iii) finally, we present a general detection-theoretic approach

to derive optimal detection algorithms with polynomial com-

plexity. A few illustrative numerical results are also presented.

KEYWORDS | Adaptive iterative detection; channels with

memory; finite-memory detection; iterative detection/

decoding; message passing detection algorithms; polynomial

complexity detection; trellis-based detection

I . INTRODUCTION

Over the last decades, the need for increasingly fast and

reliable transmissions has motivated a significant research

activity for the derivation of effective, yet simple, detection

algorithms. While the Viterbi algorithm, invented in the

late 1960s [1], [2], found ever-increasing fame and appli-

cations in the following three decades, the soft-output
algorithms implementing the maximum a posteriori (MAP)

symbol detection strategy, and among them the forward-
backward (FB) algorithm [3], [4], were considered as an
interesting, yet marginal, theoretical contribution for many

years. The advent of Bturbo codes[ and their suboptimal

iterative decoding, introduced by the landmark work of

Berrou and Glavieux in the early 1990s [5], [6], has

revolutionized digital communications and, therefore, the

design of detection algorithms. The birth of turbo codes

has lead to the rebirth of low density parity-check (LDPC)

codes, introduced by Gallager in his Ph.D. thesis in the
early 1960s [7]–[9] and the rediscovery of the relevant

iterative belief propagation algorithm [10]–[12].

The iterative (turbo) decoding principle has then been

extended to the detection process and generalized based

on a standard set of rules for exchanging and updating soft-

decision information between locally optimal processors.

While the original turbo decoder is typically viewed as two

processors running the FB algorithm and exchanging soft-
decision information, the generalized view of this

approach, deriving from Wiberg’s Ph.D. dissertation [13],

[14] and further advances, is now commonly described as

passing soft-decision messages on cyclic graphical models.

This paper provides an overview on the application of

iterative processing to detection problems involving

unknown parameters in addition to the unknown data to

be detected. This is an aspect of considerable theoretical
richness and practical interest. For example, one of the first

concerns regarding the practicality of turbo codes was the

ability of a receiver to estimate and track channel

parameters at very low signal-to-noise ratio (SNR). Several

generalizations of the message-passing algorithm have

been developed, which address the issue of detection over

channels with memory while attempting to maintain
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dell’Informazione, Università degli Studi di Parma, I-43100 Parma, Italy (e-mail:

giulio.colavolpe@unipr.it; gianluigi.ferrari@unipr.it; riccardo.raheli@unipr.it).

Digital Object Identifier: 10.1109/JPROC.2007.896511

1272 Proceedings of the IEEE | Vol. 95, No. 6, June 2007 0018-9219/$25.00 �2007 IEEE



reasonable complexity. The exact update rules and their
associated theoretical complexity are highly dependent on

the parameter model assumed. One approach is to include

parameter estimation and tracking into the message update

process. Another is to attempt to average out the effects of

the parameters under some statistical model. It has also

been shown, somewhat surprisingly, that if one deviates

substantially from the FB algorithm structure, there exists

an optimal algorithm with polynomial (with respect to the
channel memory) complexity for some simple channels. In

this paper, we give an overview of iterative processing

algorithms stemming from MAP symbol detection strate-

gies. We also try to highlight commonalities and differ-

ences among these algorithms. We point out that other

approaches to detection over channels with memory are

possible, such as, for example, expectation-maximization

(EM) detection [15] or space-alternating generalized
expectation-maximization (SAGE) detection [16]. We will

not consider, however, any of the latter detection strat-

egies, and the interested reader is invited to compare the

solutions presented in this paper with other relevant

detection strategies well-documented in the literature.

The structure of this paper can be summarized as

follows.

• After setting up the system model, the sum product
algorithm on factor graphs is reviewed, followed by

the derivation of the optimal FB algorithm struc-

ture for finite-memory channels.

• Then, we propose possible approaches to perform

MAP symbol detection in general communication

scenarios where the channel memory may not be

strictly finite.

/ We first introduce the concept of adaptive
iterative detection, i.e., joint data detection and

(explicit) channel estimation.

/ We then consider finite-memory iterative
detection, i.e., data detection without explicit

channel estimation, and we compare directly

these schemes with those introduced at the

previous item.

/ Finally, we show that in some cases optimal
detection can be carried out with polynomial
complexity.

We underline that the focus of this tutorial paper is on the

algorithmic structure, and its ambition is to provide the

reader with a unifying view on the important problem of

iterative detection over channels with memory. Only a few

illustrative numerical results are presented at the end. The

interested reader, however, can find much more accurate
performance analyses in the papers where the described

algorithms were originally introduced.

II . SYSTEM MODEL

We consider a generic time-continuous digital transmis-

sion system, depicted in Fig. 1. A sequence of independent

and identically distributed (i.i.d.) M-ary information

symbols fakg (with ak 2 A, A being the symbol alphabet

of cardinality jAj ¼ M) are transmitted successively from

epoch 0 to epoch K � 1. A sequence of information

symbols is denoted in vector notation as

ak2

k1
¼ ak1

; ak1þ1; . . . ; ak2
ð Þ k2 � k1:

For brevity, the entire sequence is denoted by a. This
sequence is input to the encoder and modulator. The coded

and modulated signal is denoted as sðt; aÞ to emphasize its

dependence on the information sequence. The channel is

viewed as a noiseless filter (possibly stochastic) with

output signal xðt; a;�Þ, where � 2 � denotes the set of

unknown parameters that need to be (implicitly or

explicitly) estimated during the detection process, ren-

dered noisy by the addition of white noise wðtÞ. The
domain � of the parameters � depends on the considered

communication system. The received signal

rðtÞ ¼ xðt; a;�Þ þ wðtÞ (1)

is observed by the demodulation and decoding block,

which outputs a sequence of decisions fâkg.

Without loss of generality, we assume that the encoder/

modulator block in Fig. 1 is a system which evolves, upon

receiving at its input the information sequence a, through
a sequence of states f�0; �1; . . .g. In many communication

schemes, the encoder /modulator can be described as a

time-invariant finite-state machine (FSM) (e.g., trellis

coded modulation (TCM) [17] or continuous phase

modulation (CPM) [18]). In this case, the state �k belongs

to a set of finite cardinality and a time-invariant Bnext-

state[ function nsð�; �Þ describes the evolution of the

system as

�kþ1 ¼ nsðak; �kÞ: (2)

Therefore, the evolution of the encoder/modulator can be

described through a trellis diagram, in which there are M
exiting branches (in correspondence with M different

information symbols) from each state. A trellis branch

Fig. 1. Communication system.
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corresponds to a transition, defined as tk ¼
� ðak; �kÞ. In the

rest of the paper, the initial state �0 is assumed to be

known.

In the case of a linear block code, a trellis represen-

tation is possible, but the trellis is time-variant, both in

terms of states and branches [4]. In this case, the evolution

of the encoder/modulator could be described by a time-
variant next-state function nskð�; �Þ. A Tanner graph [13],

[19] representation for a linear block codeVwhere the
parity checks determine the structure of the graphVmay

be more appealing, especially if the parity check equations

involve a few code symbols as, for instance, in LDPC codes

[9], [20]–[22].

By means of a discretization process, the received signal

rðtÞ can be converted into a time-discrete sequence r [23].

In particular, we assume that there is one observable rk per

information symbol ak, or, formally, r ¼ rK�1
0 , with a

notation similar to that used for the information sequence.

In the following, we consider a discretized observation

model of the form

r ¼ xða;�Þ þ w (3)

based on a sampling rate of one sample per symbol, which

may be practically sufficient in many casesVthe vector w

is the discretized version of the additive noise process
wðtÞ in (1). In a more general setting, there may be two or

more elements of r per information symbol ak, e.g., when

a convolutional code or a time-varying channel is

considered.

In the remainder of this paper, we will often consider

two relevant channel models for wireless communications:

i) the phase-uncertain channel and ii) the flat fading

channel. In both cases, we will assume linear modulations,
matched receiver filtering, Nyquist overall pulses, and

channel variations slow enough so that no intersymbol

interference arises and a sampling rate of one sample per

information symbol is adequate. Under these assumptions,

the general model (3) can be specialized as follows.

• In the phase-uncertain channel, denoting by

c ¼ fckgK�1
k¼0 the sequence of transmitted code

symbols corresponding to the information se-

quence a,1 the discrete-time observation at epoch

k can be given as

rk ¼ ckej�k þ wk (4)

where f�kg is a discrete-time channel phase

process (with proper statistics) and wk is an

additive white Gaussian noise (AWGN) sample of
variance �2. In case of trellis codes, the symbol ck

can be interpreted as the discrete-time output of

the encoder/modulator FSM according to a suit-

able Boutput[ function oð�; �Þ, such that ck ¼
oðak; �kÞVthis function was not clearly introduced

at the beginning of this section because in the

communication system model in Fig. 1 the output

of the encoder/modulator is represented as a
continuous-time signal. In this case, � ¼ f�kgK�1

k¼0 .

• In the fading channel case, the observable at epoch

k can be expressed as

rk ¼ fkck þ wk (5)

where f fkg is a sequence of realizations of complex
zero mean Gaussian random variables with proper

autocorrelation functionVseveral models have

been proposed in the literature [24]. In this case,

� ¼ f fkgK�1
k¼0 .

III . PRELIMINARIES

A. Factor Graphs and the Sum-Product Algorithm
A factor graph (FG) is a bipartite graph which

expresses the way a complicated joint probability mass

function (pmf) or a joint probability density function (pdf)

of many variables factors into the product of local
functions (not necessarily pmf’s or pdf’s) [12]. Let

V ¼ fv1; . . . ; vNg denote a set of variables and FðVÞ a
multivariate function. Let V1; . . . ; Vm denote subsets of V.

We say that FðVÞ admits a factorization with supports

V1; . . . ; Vm, if FðVÞ can be written as the product of the

functions fFj : j ¼ 1; . . . ;mg, where Fj has the variables

in Vj as arguments. The FG representing the factorization

F ¼
Q

j Fj is a bipartite graph G ¼ fV;F ; Eg, where

nodes in V (variable nodes) are associated with the

variables vi 2 V, nodes in F (factor nodes) are associated
with the functions Fj, and there exists an edge e 2 E
joining vi and Fj if and only if vi 2 Vj (i.e., if vi is an

argument of Fj).

Let FðVÞ be a pmf. Then, if the FG corresponding to the

factorization of F has no cycles,2 the marginal pmf’s can be

computed exactly in a finite number of steps by the sum-

product algorithm (SPA) [12]. The SPA is defined by the

computation rules at variable and at factor nodes, and by
a suitable node activation schedule. Denoting by �vi!Fj

ðviÞ
a message sent from the variable node vi to the factor

1Without loss of generality, it is assumed that the code sequence has
the same length of the information sequenceVthe redundancy introduced
by the encoder is accounted for by expanding the symbol cardinality.

2A cycle is a closed path in the graph and its length is defined as the
corresponding number of path edges.
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node Fj, by �Fj!vi
ðviÞ a message in the opposite direc-

tion, and by Ai the set of functions Fj having vi as argu-

ment, the message computations performed at variable and

factor nodes are, respectively [12]

�vi!Fj
ðviÞ ¼

Y
H2AinfFjg

�H!vi
ðviÞ (6)

�Fj!vi
ðviÞ ¼

X
�fvig

Fj fw 2 Vjg
� � Y

w2Vjnfvig
�w!Fj

ðwÞ

2
4

3
5 (7)

where, following the notation of [12], we indicate byP
�fvig the summary operator, i.e., a sum over all variables

excluding vi. The final marginals are given by

X
�fvig

FðVÞ ¼
Y

H2Ai

�H!vi
ðviÞ: (8)

The SPA above is a special case of a general algorithm

known as Belief Propagation [25], or message-passing [26].

These are terms used to describe algorithms where

processing nodes exchange messages, combine these

messages, and then marginalize these combined messages

over local constraints (or factors). These algorithms exploit

only the semi-ring properties of the marginalizing and
combining operators [13], [27], most notably the general-

ized distributive law [26]. Therefore one can consider the

above messages in the logarithmic domain by replacing the

marginalizing and combining operators from sum-product

to max� �sum, with the max�f�g operator defined as

max
u

� fðuÞf g ¼� log
X

u

e fðuÞ

where u belongs to a discrete set and fð�Þ is a given function

of u. Similarly, one can substitute the sum-product
operators with max-product and the corresponding mes-

sage exchange algorithm will eventually evaluate

Bmarginals[ of the form max�fvig FðVÞ. For a detection

problem, such marginals correspond to symbol-level soft

decisions that are consistent with optimal MAP sequence
detection. For this reason, variations on the message-

passing algorithm, and iterative processing in general, are

often referred to in terms of the marginalizing and
combining operators (e.g., marg:�comb: ¼ max�sum).

In the following we examine the case of finite-memory

channels, where the factorization of the pmf of interest

results in an acyclic linear graph and the SPA takes the

form of a simple forward and backward message update

algorithm.

B. Soft-Input Soft-Output MAP Detection for
Finite-Memory Channels

We now derive the optimal soft-ouput MAP symbol

detection algorithm for systems exhibiting a finite overall

memory. We begin by introducing statistical notions of

causality and finite memory, which represent minimal

conditions for optimality.

A causality condition for the considered communication

system can be formulated in terms of statistical depen-
dence of the observation sequence rk

0, up to epoch k, on the

information sequence. Accordingly, a system is causal if

p rk
0ja

� �
¼ p rk

0jak
0

� �
: (9)

Similarly, a finite-memory condition can be formulated, in

statistical terms, as follows:

p rkjrk�1
0 ; ak

0

� �
¼ p rkjrk�1

0 ; ak
k�C; �k�C

� �
(10)

where C is a suitable finite-memory parameter and �k�C

represents the state, at epoch k� C, of the encoder/

modulator.

The encoder/modulator block in Fig. 1 can often be
decomposed into the cascade of an encoder and a

memoryless mapper. In this case, the previous conditions

imply analogous relations between the observation se-

quence r and code sequence c ¼ cN�1
0 . Accordingly,

causality and finite-memory conditions can be formulated

as follows:

p rk
0jc

� �
¼ p rk

0jck
0

� �
(11)

p rkjrk�1
0 ; ck

0

� �
¼ p rkjrk�1

0 ; ck
k�C

� �
: (12)

We remark, however, that these conditions involve the

transmission channel only and, in general, do not imply (9)
and (10). A case of interest may be that of a linear block

code followed by a memoryless modulator. In particular, a

linear block code is not guaranteed to be causal and finite-

memory3 so that the channel causality (11) and finite

memory (12) do not imply the system causality (9) and

finite-memory condition (10).

The FB algorithm allows to implement the MAP symbol
detection criterion, since it explicitly computes the APPs
fPfakjrgg. The FB algorithm is based on: i) a forward
recursion, during which forward state metrics (typically

denoted with the notation �) are recursively computed;

3Block-wise causality and finite-memory must be indeed satisfied.
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ii) a backward recursion, during which backward state
metrics (typically denoted with the notation �) are recur-

sively computed; and iii) a completion operation, which, at

each epoch k, generates the corresponding APP Pfakjrg by

properly averaging the forward state metrics, associated

with the initial states of the kth trellis section, with the

backward state metrics, associated with the final states of

the same trellis section.

Based on the causality and finite-memory conditions
(9) and (10), the following probabilistic derivation of an

FB algorithm is obtained by marginalization:

Pfakjrg¼
X
ak�1

k�C

X
�k�C

P ak
k�C; �k�Cjr

� �
/
X
ak�1

k�C

X
�k�C

p rK�1
kþ1 jrk

0; ak
k�C; �k�C

� �
� p rkjrk�1

0 ; ak
k�C; �k�C

� �
p rk�1

0 jak
k�C; �k�C

� �
� P ak

k�C; �k�C

� �
(13)

where Bayes and chain rules have been used, and /
denotes proportionality. The causality and finite-memory

properties (9) and (10) allow one to write4

p rK�1
kþ1 jrk

0; ak
k�C; �k�C

� �
¼ p rK�1

kþ1 jrk
0; ak

k�Cþ1; �k�Cþ1

� �
p rk�1

0 jak
k�C; �k�C

� �
¼ p rk�1

0 jak�1
k�C; �k�C

� �
:

Recalling the independence of the information symbols,

(13) can be rewritten as follows:

Pfakjrg /
X
ak�1

k�C

X
�k�C

p rK�1
kþ1 jrk

0; ak
k�Cþ1; �k�Cþ1

� �
� p rkjrk�1

0 ; ak
k�C; �k�C

� �
p rk�1

0 jak�1
k�C; �k�C

� �
� P ak�1

k�C; �k�C

� �
Pfakg: (14)

The finite-memory condition (10) is an extension of

the folding condition introduced in [29], which accounts

for the (possibly recursive) encoder/modulator state �k.

The considered model includes any definition of state �k

in terms of a suitable state variable, not necessarily

defined in terms of input variables. This leads naturally to

the introduction of an augmented trellis diagram with state

Sk ¼ ak�1
k�C; �k�C

� �
¼ ðak�1; . . . ; ak�C; �k�CÞ (15)

and transition

ðak; SkÞ ¼ ak
k�C; �k�C

� �
¼ ðak; . . . ; ak�C; �k�CÞ: (16)

The state evolution over the augmented trellis diagram

can be characterized by a next-state function NSð�; �Þ such

that Skþ1 ¼ NSðak; SkÞ ¼ ðak; . . . ; ak�Cþ1; �k�Cþ1Þ, where

�k�Cþ1 ¼ nsðak�C; �k�CÞ. Using these definitions of aug-
mented state Sk and transition ðak; SkÞ and further

defining

�kþ1ðSkþ1Þ ¼� p rK�1
kþ1 jrk

0; ak
k�Cþ1; �k�Cþ1

� �
�kðak; SkÞ ¼

�
p rkjrk�1

0 ; ak
k�C; �k�C

� �
Pfakg

�kðSkÞ ¼
�

p rk�1
0 jak�1

k�C; �k�C

� �
� P ak�1

k�C; �k�C

� �
(17)

the symbol APP in (14) can be finally expressed as

Pfakjrg /
X

Sk

�kþ1 NSðak; SkÞ½ ��kðak; SkÞ�kðSkÞ: (18)

Based on the causality and finite-memory conditions,

the quantities �kðSkÞ and �kþ1ðSkþ1Þ can be computed by

means of forward and backward recursions, respectively,

according to

�kþ1ðSkþ1Þ ¼
X

ðak;SkÞ:Skþ1

�kðSkÞ�kðak; SkÞ (19)

�kðSkÞ ¼
X

ak

�kþ1 NSðak; SkÞ½ ��kðak; SkÞ (20)

where the notation ðak; SkÞ : Skþ1 indicates all transitions

ðak; SkÞ compatible with state Skþ1, i.e., such that

NS½ðak; SkÞ� ¼ Skþ1. The detailed derivation of these

recursions can be found in [28]. Here, it suffices to say
that all is needed to run the algorithm according to (18),

(19), and (20) is the quantity �kðak; SkÞ in (17) and proper

boundary conditions f�0ðS0Þg and f�K�1ðSK�1Þg.

The algorithm can be also formulated in the logarith-

mic domain by letting

�kðak; SkÞ ¼
�
log �kðak; SkÞ

�kðSkÞ ¼
�
log�kðSkÞ

�kðSkÞ ¼� log�kðSkÞ (21)
4A formal proof can be found in [28], but intuition may be suffi-

cient here.
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interpretable as branch, forward state, and backward state
metrics, respectively. Accordingly, we obtain

log Pfakjrg /max
Sk

���kðSkÞ þ �kðak; SkÞ

þ �kþ1 NSðak; SkÞ½ �
�

�kþ1ðSkþ1Þ ¼ max�
ðak;SkÞ:Skþ1

�kðSkÞ þ �k ðak; SkÞð Þf g

�kðSkÞ ¼max
ak

� �kþ1ðSkþ1Þ þ �k ðak; SkÞð Þ
� �

:

The FB algorithm above is the same algorithm pro-

cessing soft-decision information in two different formats

(i.e., probabilistic soft decisions or the log-probability soft

decisions) as discussed in the more general framework of

message-passing algorithms.

In the above context, a close examination of the

recursive equations reveals a factorization of the overall
pmf Pfak

k�C; �k�Cjrg implying an acyclic graph of local

constraints corresponding to one time index of the FSM

and the FB algorithm is the result of running standard

message-passing rules. While the FB algorithm is optimal

in this context, using the FB algorithm as a component of

an iterative detector is equivalent to an iterative message-

passing algorithm running on a graphical model that has

cycles. In the absence of cycles, the algorithm converges to
a globally optimal solution, whereas with cycles in the

graphical model, iterative message-passing is only a

heuristic.

We remark that the derived formulation of the FB

algorithm for detection over channels with memory is

based on very general causality and finite-memory statis-

tical conditions, and it does not make any assumption on

the specific nature of the channel. A general class of
channels which satisfy the finite-memory property (10)

are those exhibiting known intersymbol interference

(ISI) of finite length, possibly encompassing nonlinear

finite-memory effects, and additive white noise. In this

case, (10) simplifies by dropping the conditioning ob-

servations to

p rkjrk�1
0 ; ak

0

� �
¼ p rkjak

k�C; �k�C

� �
: (22)

Unfortunately, the general channel model (3) enco-

passing a stochastic parameter � is not finite-memory, in

the sense that a finite value of the parameter C does not
exist. In these cases, two main approaches can be devised

to approximate the soft-output MAP detector.

The first approach is based on the following parameter-

conditional finite-memory property

p rkjrk�1
0 ; ak

0;�
� �

¼ p rkjrk�1
0 ; ak

k�C; �k�C;�
� �

(23)

where C and �k�C are defined as in (10). In this case, a
classical estimation-detection decomposition may be used

by simply assuming the parameter � is known for

detection and simultanuously estimating the parameter

value. This approach requires an explicit estimation of the

parameter and leads to adaptive iterative detection dis-

cussed in Section IV.

The second approach is based on the idea that, in any

logical stochastic system model, signal samples taken at far
apart time instants tend to be independent, for a given

information sequence. As a consequence, the finite-

memory property (10) can be imposed as an approximation

to enable finite-memory iterative detection, as discussed in

Section V. In this case, there is no attempt to explicitly

estimate the parameter, although some specific solutions

can be interpreted in terms of an implicit estimation

procedure.
This FB algorithm can be directly employed in iterative

detection schemes, where soft information is circulated

among several detection and decoding units [30]. To this

purpose, soft information can be input to the algorithm in

terms of a priori probability of the information symbols, i.e.,

Pfakg. Likewise the soft-ouput information can be obtained

by the computed APP, by extracting the so-called extrinsic
information component, given by log Pfakjrg � log Pfakg.
A typical example of iterative detection scheme is shown

in Fig. 2, where a coded modulation signal is transmitted,

after interleaving, over a finite-memory channel (e.g., static

intersymbol interference channel). At the receiver side,

the iterative decoder is composed by two blocks, which

exchange soft information: the inner block is a soft-input

soft-output (SISO) MAP detector where a detection algo-

rithm of the family proposed in this section can be used;
the outer block is a SISO MAP decoder, where the standard

FB algorithm can be used. We underline that the example

shown in Fig. 2 is just one of the many possible iterative

detection/decoding scenarios where finite-memory soft-

output detection algorithms can be applied. Finally, we

point out that although the FB algorithm (as well as other

algorithms that will be presented later) is recursive in

nature (i.e., it requires a forward and a backward recursion
through the received observation), it is activated in an

iterative manner when it is part of a larger system, as

shown in Fig. 2.

IV. ADAPTIVE ITERATIVE DETECTION

Adaptive iterative detection (AID) is the generalization of

iterative detection to the case where relevant parameters
are unknown and the estimation of these parameters is

included into the message-passing algorithm (e.g., [27],

[31]–[36]). This means that the estimates of the parame-

ters computed explicitly, or in some cases implicitly, will

change as the iterative algorithm is run. As a concrete

example, consider the model of (5) where the channel

symbols fckg have been coded by a powerful modern
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code. In a non-AID approach, the channel gains f fkg
would be estimated once using the observation sequence

frkg, driven by a signal with embedded, known (training)

symbols in fckg. These estimates would then be used to

compute channel likelihoods which would be used to

perform iterative decoding of the code. This approach

can perform poorly because, while the coded system may

be capable of operating reliably at a very low SNR,

reliable estimation of the channel may require much
higher SNR or require a very large overhead for training

symbols.

In an AID-based system, these channel estimates can

be used to start the iterative processing, but they are

updated as soft-decision information on fckg becomes

available. For example, after each iteration of the iterative

decoder of the code, updated soft decisions are available

for these channel symbols. Reestimation of the channel
can be done that takes this new information into account,

thus changing the estimates of the channel. These updated

channel estimates can be used to recompute the channel

symbol likelihoods and proceed with further iterations of

the decoder.

The primary value of AID approaches is that structure

added into the transmitted signal can be used to aid with

channel parameter estimation. For example, a decision
directed estimation scheme without AID cannot benefit

from structure added by a code, but the AID approach

allows the coding gain to be exploited in a decision

directed parameter estimator that reestimates the channel

parameters as part of the iterative processing.

Many variations on this theme have been explored and

most are based on truncation of the estimator memory or

by some form of decision feedback on a recursive esti-
mator. The form of the associated estimator is dependent

on the statistical model (or lack thereof) assumed for the
parameter. Assumption of Gauss–Markov models or

deterministic models tends to lead to recursive estimators

while the assumption of more general statistical models

leads to nonrecursive estimators. Modeling choices for the

overall system can also impact the resulting AID algorithm.

For example, one often has the choice of combining the

model of the channel parameter and a part of the trans-

mitter structure or separately modeling the channel. In the
latter case, especially when the portion of the transmitter

modeled with the channel is an FSM, it is natural to seek

algorithms that are generalizations of the FB algorithm

that include the ability to reestimate the channel

parameters (see Section IV-A). For the former case, it is

reasonable to proceed roughly as described in the above

example (see Section IV-B). Once more we emphasize that

the term adaptive refers to the overall receiver architec-
ture, while the specific algorithm within a given block can

be forward/backward recursive.

A. Trellis-Based Adaptive Iterative Detection
The key idea underpinning the FB algorithm is that

conditioning on the value of the FSM state at a given time

decouples the past and the future and allows one to solve

the two associated problems separately. This leads to the
FB algorithm which is based on dynamic programming

[37]. When the value of a parameter relevant to the FSM

model is unknown, typically, no such decoupling occurs

and in theory finding the best sequences requires search-

ing over a number of sequences that grows exponentially

in the length of the data block. However, it is possible to

use heuristics to approximate this search while still

maintaining the basic structure of the FB algorithm which
is the focus of the rest of this section.

Fig. 2. Communication system with iterative detection: the inner detector is associated with the finite-memory channel,

whereas the outer decoder is associated with the used code.
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1) Forward-Adaptive Algorithms: Consider a concrete
example where a convolutional code with binary inputs ak,

state �k, and output symbol ck is the input to the flat fading

channel model in (5). If the channel values ffkg were

known, the FB algorithm could be used to perform optimal

soft-decision message updates. When these channel values

are not known completely, the FB algorithm is not directly

applicable and heuristics need to be applied. Assume that

the channel is modeled as a first order, autoregressive
Gauss–Markov process

fk ¼ 	fk�1 þ vk (24)

where fvkg is a discrete-time complex white Gaussian

process with variance ð1� 	2Þ and independent compo-

nents. Assuming that the initial state of the code is known,

a given sequence is defined by specifying the input se-

quence aK�1
0 and computing the APP of the sequence, i.e.,

PfaK�1
0 jrK�1

0 g, is equivalent to computing the joint

probability distribution function5 PðaK�1
0 ; rK�1

0 Þ. For the

model assumed, this can be performed recursively using

P aK�1
0 ; rK�1

0

� �
/
YK�1

k¼0

p rkjrk�1
0 ; aK�1

0

� �
Pfakg (25)

which follows directly using the rules of conditional

probability [38] and the assumption that the input bits are

independent, with marginal distribution Pfakg (different

for different values of k in general).
For the statistical models of (5) and (24) the

conditional density pðrkjrk�1
0 ; aK�1

0 Þ is a complex circular

Gaussian with mean and variance that can be computed

recursively using a Kalman Filter (KF). Specifically, the

mean is ckðak
0Þf̂ kjk�1, where f̂ kjk�1 ¼ Ef fkjrk�1

0 ; aK�1
0 g, and

the variance is �2 þ jckðak
0Þj

2
Fkjk�1, where

Fkþ1jk ¼ j	j2 1� gkck ak
0

� � �
Fkjk�1 þ �2

v (26)

gk ¼
Fkjk�1c�k ak

0

� �
�2 þ ck ak

0ð Þj j2Fkjk�1

(27)

comprise the standard KF recursions. Note that the

conditional mean and variance depend on the hypothe-

sized path (although this dependency on the Kalman
recursions shown above is suppressed for brevity).

The above result shows that for each possible sequence,

the sequence APP can be computed recursively using a KF.

If one were to consider each possible path, a tree with 2k

leaves would be constructed. When k ¼ K � 1 is reached,

the APP of each sequence has been computed and the soft

output values can be obtained by marginalizing these

sequence probabilities over all sequences consistent with a

conditional value of a variable. This optimal processing is

referred to as forward recursive estimator-correlator [27].

Similar to the (non-recursive) estimator-correlator [39],

[40], optimal processing is impractical because the
complexity is exponential in K. However, the recursive

structure allows one to apply decision feedback principles

to obtain simple, effective approximations.

Specifically, if one applies a Viterbi-based algorithm to

the tree-search problem, we obtain a greedy approximation

that performs the same recursions as the Viterbi state

recursions, but substitutes the KF-based sequence proba-

bility recursion for the standard path probabilities used in
the known channel case. In the known channel case, the

recursion on sequence probabilities requires conditioning

only on �k, the state of the FSM. However, for the unknown

channel case considered above, one must condition on the

entire past ak
0. To avoid growing the exponential tree, one

can use decision feedback to simplify the search. For

example, consider a trellis defined by a state Sk that

contains the information in �k plus possibly more
information about the past, Sk ¼ ðak�1; . . . ; ak�C; �k�CÞ
for some fixed CVthis definition of an augmented state will

be crucial for the finite-memory approach described in

Section III-B. The per-path KF recursions can then be

executed with a condition on Sk, Skþ1, ak, and a sequence of

previous decisions on faig conditioned on the path

terminating in Sk. These decisions are exactly the survivor

sequences in the state recursion update. For this reason,
such processing is known as per-survivor processing (PSP)

[41]. Thus PSP is a method of computing the state

probability recursion using decision feedback to forcefully

fold the tree search to a trellis with state Sk.

If only hard decisions are desired, PSP can use survivor

traceback as in the Viterbi algorithm. To obtain the desired

soft decisions, a backward state recursion is required. The

most direct method to achieve this is to store the state
transition probabilities (i.e., the conditional means and

variance of the conditional Gaussian densities) and then

process the backward recursion of the FB algorithm using

these transition probabilities. This is a forward-adaptive FB

algorithm since channel estimation (adaptation) is per-

formed only during the forward recursion using a causal

estimator (e.g., a KF).

At this point is is important to note that any algorithm
that approximates the Viterbi algorithm for unknown

channels by performing a forward state recursion can be

modified to provide soft decisions by the above methodV
i.e., by storing the transition probabilities during the

forward recursion. Many such Bhard-out[ algorithms can

be found in literature (e.g., [38], [41]–[45]). Also, since

the state used for the trellis processing is arbitrary, one

5We use the term probability distribution function to denote a
continuous probability density function (pdf) with some discrete
probability masses. For a probability distribution function, we still use
the symbol P(.).

Anastasopoulos et al.: Iterative Detection for Channels With Memory

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1279



can trade off trellis complexity against better approxima-
tions of the optimal tree-search processing. This tradeoff

has also been noted and studied for these various algo-

rithms. In particular, even if the underlying state has

cardinality one (i.e., the system is memoryless when all

parameters are known), the above trellis-based processing

can be applied since, in theory, a tree-search computation

is required due to dependency of the estimator on the

entire hypothesized path.

2) Forward-Adaptive, Backward-Adaptive Algorithms: The

forward-adaptive algorithm described above was based on

recursive, causal estimation (i.e., filtering) of the unknown

channel parameter. Since one eventually expects to process

the data in a noncausal manner (during the backward state

recursion), it is reasonable to consider noncausal estima-

tion (i.e., smoothing) of the channel. Using the same model
as in the previous development, it is possible to show that

the sequence probability can be factored in a noncausal

manner [27], [32]

P aK�1
0 ; rK�1

0

� �
¼ P ak

0; rk
0

� �|fflfflfflfflffl{zfflfflfflfflffl}
past=present

P aK�1
kþ1 ; rK�1

kþ1 j�kþ1

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
future

�
Z

p fkjak
0; rk

0

� �
p fkjSkþ1; aK�1

kþ1 ; rK�1
kþ1

� �
pð fkÞ

dfk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
binding term

: (28)

The relation in (28) indicates that PðaK�1
0 ; rK�1

0 Þ can be

split into three factors, of which the first two depend on

the past/present and future, respectively, while the third

can be viewed as a weighting factor that binds them

together. The past-present term can be computed via the

per-path KF as described above and the future term can be
computed via a similar backward Kalman recursion [27],

[32]. The binding term completes a per-path Kalman

smoother and may be viewed as an adjustment to the

sequence probability that decreases the probability if the

forward channel estimate and backward channel estimates

disagree significantly.

This per-path Kalman smoother can also be viewed as

implying a tree-search. In this case, there is a tree grown in
the forward direction to time k, with 2kþ1 leaves and

another grown in the backward direction, with 2K�k�1

leaves. The APP of any sequence can be computed by

binding these together according to (28). This is referred

to as the forward-backward recursive estimator-correlator

[27] and, again, it is not a practical solution due to the

complexity. However, decision feedback can be applied in

both the forward and backward trees, resulting in an
algorithm that performs an adaptive forward state

recursion (as in the previous example) and an adaptive

backward state recursion. Such algorithms are called

forward-adaptive backward-adaptive FB algorithms. Note

that these algorithms store portions of both forward and
backward survivor sequences and perform PSP in both the

forward and backward recursions.

Generalization of other previously developed hard-out

algorithms to forward-adaptive backward-adaptive soft-out

algorithms is less straightforward than in the forward-

adaptive case because these existing algorithms typically

perform only filtering. This has been considered for the

model of (5) when the channel is Gaussian, but with
arbitrary correlation [46]. Also, one can specify approxi-

mate smoothers based on causal and anti-causal estimators

(e.g., see [35] for this applied to the phase tracking

problem).

Forward-adaptive backward-adaptive algorithms typi-

cally perform better than forward-adaptive algorithms in

the presence of high channel dynamics. However, the

latter offer some practical advantages. For example, in a
packet-based format, a forward-adaptive backward-

adaptive algorithm is best suited for a packet with training

at both ends, while a forward-adaptive algorithm needs

training at only one end of the packet. Also, forward-

adaptive algorithms are more compatible with hardware

architectures typically used to implement forward-

backward recursions in hardware [47]–[51].

B. Non-Trellis-Based Adaptive Iterative Detection
In some cases, it is necessary to resort to a different,

non-trellis-based, approach. This occurs, for example,

when an LDPC code is employed, but the same approach

can be also used in the case of turbo or serially concatenated

codes. In this section, we will assume that the unknown

parameters� are modeled as random variables with known

statistics. Hence, we adopt a Bayesian approach to
detection. A different non-Bayesian approach is employed

in [52]. To illustrate a possible approach to adaptive

iterative detection, we will employ FGs and the SPA.

For illustration purposes, we consider a channel model

for which xkða;�Þ ¼ xkðck; �kÞ, that is the noiseless

observation at discrete time k only depends on the kth

code symbol and a channel parameter. This is, for example,

the case of the channel models (4) and (5). The joint
probability distribution function of symbols and channel

parameters can be expressed as

Pða; c;�jrÞ / PfagPfcjagpð�Þpðrj�; cÞ
/� c ¼ CðaÞ½ �pð�Þpðrj�; cÞ

/� c ¼ CðaÞ½ �pð�Þ
YK�1

k¼0

pðrkjck; �kÞ

/� c ¼ CðaÞ½ �pð�Þ
YK�1

k¼0

gkðck; �kÞ (29)

having defined by C the encoding function associating the

information sequence a to the codeword c, by �½c ¼ CðaÞ�
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the code indicator function, equal to 1 if c is the codeword
corresponding to a and to zero otherwise, and

gkðck; �kÞ ¼� exp
1

�2
< rkx�kðck; �kÞ
 �

� xkðck; �kÞj j2

2�2

� �

/ exp � 1

2�2
rk � xkðck; �kÞj j2

� �
(30)

and having assumed that the information symbols are also

uniformly distributed (hence Pfag is constant).

Let us now suppose that the channel parameters satisfy

the following Markov property:

pð�kj�k�1; �k�2; . . . ; �0Þ ¼ pð�kj�k�1Þ: (31)

as for a Wiener process or an autoregressive model of first
order (AR(1)) [53].6 In this case, using the chain rule, we

can further factor

pð�Þ ¼ pð�0Þ
YK�1

k¼1

pð�kj�k�1Þ: (32)

Hence

Pða; c;�jrÞ / � c ¼ CðaÞ½ �pð�0Þg0ðc0; �0Þ

�
YK�1

k¼1

gkðck; �kÞpð�kj�k�1Þ (33)

whose corresponding FG is shown in Fig. 3.

The application of the SPA to this FG allows the exact
(in the absence of cycles in the graph) or approximate

(if cycles are present) computation of the marginal

a posteriori probabilities Pfakjrg [12], thus implementing

MAP symbol detection. We used extensively the propor-

tionality relationship, since the SPA is defined up to

scaling its messages by positive factors, independent of the

variables represented in the graph. Since the channel

parameters, which are continuous random variables, are
explicitly represented in the graph, the application of the

SPA becomes impractical since it involves integral

computations. To solve this problem, the method of

canonical distributions, suggested in [54], can be adopted.

This consists of constraining the messages from/to the

continuous variables to a prescribed family of pdf’s, that

admits a compact parametric representation. Hence, the

message computation reduces to the computation of the

pdf parameters. This representation can be exact or, more

often, may involve some approximations.

In the following examples, for specific channels, we
detail some detection algorithms which can be derived

from this approach. We concentrate on the message

computation and exchange in the lower part of the graph

since the SPA applied to the FG in the upper box,

corresponding to the code constraints, consists of the

decoding algorithm whose efficient implementation de-

pends on the structure of the code and needs no details

here. We stress that the messages the decoder exchanges
with the detector are represented by an estimate of the

code symbol a posteriori probabilities only. For this reason,

we refer to this scheme as non-trellis-based or separate
adaptive iterative detection, since the detector operates

without taking the code constraints into consideration.

Omitting, for the sake of notational simplicity, the explicit

reference to the current iteration, we will denote by PdðckÞ
the message from variable node ck to factor node gk, and by
PuðckÞ the message in the opposite direction (see Fig. 3).

1) ExampleVChannel Affected by a Phase Noise Modeled
as a Wiener Process: Let us consider the channel model (4)

and assume that the channel phase �k satisfy the discrete-

time Wiener model described by

�k ¼ �k�1 þ�k (34)

where the increments �k are i.i.d. Gaussian7 random

variables with mean zero and known standard devia-

tion ��.

6The generalization to AR models of higher order or autoregressive
moving average (ARMA) processes is straightforward.

Fig. 3. Factor graph corresponding to equation (33).

7Note that, since the channel phase is defined modulo 2�, the pdf
pð�kj�k�1Þ can be approximated as Gaussian only if �� � 2�.
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With reference to the messages in Fig. 3, where now
�k ¼ �k, one obtains that the message pdð�kÞ from factor

node gk to variable node �k can be expressed as

pdð�kÞ /
X

ck

PdðckÞgkðck; �kÞ: (35)

We also assume that in the lower part of the FG, a forward-

backward node activation schedule is adopted. Therefore,

the messages pf ð�kÞ, from factor node pð�kj�k�1Þ to

variable node �k, and pbð�kÞ, from factor node pð�kþ1j�kÞ
to variable node �k, can be recursively computed as

follows:

pf ð�kÞ /
Z2�

0

pdð�k�1Þpf ð�k�1Þpð�kj�k�1Þd�k�1 (36)

pbð�kÞ /
Z2�

0

pdð�kþ1Þpbð�kþ1Þpð�kþ1j�kÞd�kþ1 (37)

with uniform pdf’s as initial conditions

pf ð�0Þ ¼ pbð�N�1Þ ¼
1

2�
: (38)

Finally, the message PuðckÞ from gk to ck is given by

PuðckÞ /
Z2�

0

pf ð�kÞpbð�kÞgkðck; �kÞd�k: (39)

Different canonical distributions can now be adopted

to approximately compute the messages in (36), (37), and

(39), leading to algorithms with different performance and
complexity. The first one is based on a discretization of

channel phase. This case corresponds to letting the

canonical distribution be a weighted sum of impulses.

This approach has been adopted for Viterbi-like and FB-

like receivers in [55] and [56]–[59], respectively. The

channel phase �k is assumed to take on the following L
values: f0; 2�=L; . . . ; 2�ðL� 1Þ=Lg. In [56], the authors

found that for M-PSK signals, L ¼ 8M values are sufficient
to have no performance loss. Obviously, this approach

becomes Boptimal[ (in the sense that it approaches the

performance of the exact SPA) for a sufficiently large

number of discretization levels, at the expense of an

increasing computational complexity.

The second approach we report is based on a Tikhonov
canonical distribution [60]–[62]. Let us consider (35). If

the messages PdðckÞ were the exact probabilities of the

code symbols, it would hold

pdð�kÞ /
X

ck

PdðckÞgkðck; �kÞ / pðrkj�kÞ: (40)

We approximate pdð�kÞ by the nearest Gaussian pdf in the

sense of divergence (Kullbach–Leibler distance) [63]. This

yields the Gaussian pdf with mean E½rkj�k� and variance

varðrkj�kÞ [60]. Hence, letting �k and �k be the first- and

second-order moments of ck, given by

�k ¼
�
X

ck

ckPdðckÞ; �k ¼
�
X

ck

jckj2PdðckÞ (41)

we obtain

pdð�kÞ ’
1

� 2�2 þ �k � j�kj2
� � exp � jrk � �kej�k j2

2�2 þ �k � j�kj2

( )

/ exp 2
Re rk�

�
ke�j�k

 �
2�2 þ �k � j�kj2

� �
: (42)

Substituting (42) in the forward recursion (36), it follows

pf ð�kÞ ’
Z2�

0

exp 2
Re rk�1�

�
k�1e�j�k�1

 �
2�2 þ �k�1 � j�k�1j2

� �

� pf ð�k�1Þpð�kj�k�1Þd�k�1: (43)

When the channel phase is slowly varying, i.e., for

�� ! 0, we have pð�kj�k�1Þ ¼ �ð�k � �k�1Þ. In this
case, the solution of the recursion given by (43) with

initial condition (38) is a sequence of Tikhonov pdf’s,

given by

pf ð�kÞ / exp <½af ;ke�j�k �
� �

(44)

where af ;k can be recursively computed as

af ;k ¼ af ;k�1 þ 2
rk�1�

�
k�1

2�2 þ �k�1 � j�k�1j2
(45)
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with the initial condition af ;0 ¼ 0. Similarly, the solution
of the backward recursion (37) under the above approx-

imations is the sequence of Tikhonov pdf’s

pbð�kÞ / exp <½ab;ke�j�k �
� �

(46)

where ab;k can be recursively computed as

ab;k ¼ ab;kþ1 þ 2
rkþ1�

�
kþ1

2�2 þ �kþ1 � j�kþ1j2
(47)

with the initial condition ab;K�1 ¼ 0. From (44), (46), and

(39), we obtain

PuðckÞ / exp � jckj2

2�2

� �
I0 af ;k þ ab;k þ

rkc�k
�2

����
����

� �
: (48)

When the phase varies more rapidly, so that the

approximation pð�kj�k�1Þ ’ �ð�k � �k�1Þ is no longer

valid, it is shown in [60] that the distributions pf ð�kÞ and

pbð�kÞ are still approximately given in the form (44) and

(46), where now the coefficients af ;k and ab;k are updated

by properly modified forward and backward recursions. Ì

2) ExampleVFlat Fading Channel Following an AR(1)
Model: Let us consider the channel model (5) and assume

that the discrete-time fading process satisfy (possibly in

an approximate sense) the AR(1) model described by

(24). By applying the SPA rules to the lower part of the

graph in Fig. 3, where now �k ¼ fk, we obtain that message

pdðfkÞ from factor node gk to variable node fk can be

expressed as

pdðfkÞ /
X

ck

PdðckÞgkðck; fkÞ: (49)

Similarly, we may compute the recursions for messages

pf ð fkÞ and pbð fkÞ, and the update of the a posteriori
probabilities PuðckÞ. In the literature, message pdð fkÞ,
which is a Gaussian mixture, is usually approximated as

[33], [64]

pdðfkÞ ¼
1

2��2
exp � jrk � fkĉkj2

2�2

� �
(50)

where ĉk ¼ argmaxck
PdðckÞ in case of hard decision

feedback or ĉk ¼ �k, with �k given by (41), in case of soft-

decision feedback. When adopting this approximation, the
exact solution of the integral recursions for pf ð fkÞ and

pbð fkÞ is a sequence of Gaussian pdf’s. As shown in [12], in

this case the application of the SPA gives the well-known

Kalman smoother, already proposed for this detection

problem in [33] and [64]. This approach can be

straightforwardly extended to the case of a fading process

modeled as AR processes of higher order or as ARMA

processes.
As a conclusion, for general fading channels we also

mention the approach based on a sliding-window Wiener

filter adopted for example in [31], [33], [65]. Ì

V. FINITE-MEMORY
ITERATIVE DETECTION

If the channel is affected by stochastic uncertainty, i.e., it
emcopasses a set of random parameters, the observa-

tions frkg at its output are conditionally dependent, so

that the channel memory may not be finite. From (3), a

general parametric model for the observation rk is the

following:

rk ¼ g ak
k�L; �k�L; Q

k
0

� �
þ wk (51)

where L is an integer, Qk
0 is a sequence of stochastic

parameters independent of a, and gð�Þ denotes the

functional dependence of the noiseless channel output

on the information sequence and the parameter setVnote

that � ¼ QK�1
0 in this case. Under this channel model, the

following conditional Markov property

p rkjrk�1
0 ; ak

0

� �
¼ p rkjrk�1

k�R; ak
0

� �
(52)

where R is the order of Markovianity, is sufficient to

guarantee a finite-memory property (10). In fact, (52) can

be shown to imply the following [28]:

p rkjrk�1
0 ; ak

0

� �
¼ p rkjrk�1

k�R; ak
k�C; �k�C

� �
¼ p rkjrk�1

k�R; ak; Sk

� �
(53)

where the finite-memory parameter is C ¼ R þ L and Sk is

defined as in (15).

It is immediate to recognize that (53) represents a

special case of (10) and can be directly used to derive the

basic branch metric of the FB algorithm defined in (21)

and (17). In other words, (53) is the key relation that

Blinks[ a generic finite-memory detection algorithm with

the specific channel with memory. A statistical description
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of the stochastic channel parameter allows one to compute
(53) as

p rkjrk�1
k�R; ak; Sk

� �
¼

p rk
k�Rjak; Sk

� �
p rk�1

k�RjSk

� �
¼
EQk

0
p rk

k�Rjak; Sk; Q
k
0

� �� �
EQk�1

0
p rk�1

k�RjSk; Q
k�1
0

� �� � : (54)

Use of the above basic branch metrics leads to the design of

a wide range of finite-memory iterative detection (FMID)

schemes.

The above exact result, although theoretically limited

by the fact that in realistic scenarios the conditional

Markov property (52) is seldom met exactly, suggests a

reasonable approach to devise effective approximate
detection algorithms whenever the conditional observa-

tions are asymptotically independent for increasing index

difference [29], [44].

A. Trellis-Based Finite-Memory Iterative Detection

1) ExampleVChannel Affected by an Unknown Phase: As a

first example, we assume that the channel introduces an
unknown phase rotation, modeled as a time-invariant

random variable � with uniform distribution in ½0; 2�Þ.
This is a special case of the generic phase-uncertain channel

observation model (4) with �k ¼ � and also a special case

of model (51) with L ¼ 0 ðC ¼ RÞ and a dependence from a

single time-invariant stochastic parameter. It is immediate

to conclude that, being � a random variable, the channel

memory is infinite. Hence, the conditional Markov
property can be claimed in an approximate sense only.

On the basis of the considered phase model,

pðrkjrk�1
k�C; ak; SkÞ can be expressed using (54) as

p rkjrk�1
k�C; ak; Sk

� �
¼ p rkjrk�1

k�C; ck
k�C

� �
¼
E� p rk

k�Cj�; ck
k�C

� �� �
E� p rk�1

k�Cj�; ck�1
k�C

� �� �

/ exp � jckj2

2�2

� � I0
1
�2

PC

i¼0

rk�ic
�
k�i

����
����

� �

I0
1
�2

PC

i¼1

rk�ic
�
k�i

����
����

� � (55)

where I0ðxÞ is the zeroth-order modified Bessel function of

the first kind [66]. This result, obtained here as a special

case of (54), is equivalent to previous solutions devised for
noncoherent detection [34], [67]–[69]. The same metric

can then be used, through a further approximation step,

also in scenarios with time-varying channel phase. Ì

2) ExampleVFlat Fading Channel: As a second example,
we consider transmission over a flat Rayleigh fading

channel (L ¼ 0 and C ¼ R). The observation model is

given by (5), and we assume that the fading process ffkg has

an autocovariance sequence modeled according to isotropic

scattering [70], i.e., given by Effkf�k�ng ¼ J0ð2�BnÞ, where

J0ð�Þ is the zeroth-order Bessel function [66] and B is the

normalized Doppler rate. In this case, the conditional

Markov property is an approximation as well, and
pðrkjrk�1

k�C; ak; SkÞ can be computed, considering linear

prediction, according to

p rkjrk�1
k�C; ak; Sk

� �
¼ p rkjrk�1

k�C; ck
k�C

� �
¼ 1

2��2
k

e
� 1

�2
k

rk�
PC

i¼1
rk�i

ck
ck�i

pi

��� ���2

(56)

where the order of Markovianity C can be interpreted as

the prediction order, fpigC
i¼1 are the prediction coefficients

(which depend on state Sk, but not on symbol ak), and �2
k

represents the mean square prediction error at epoch k.

The result in (56), which can be derived from (53) owing

to the Gaussianity of the observable, was obtained in [42],

[43], and [71]–[75] as a solution for maximum likelihood

sequence detection over fading channels. Ì

B. Non-Trellis-Based Finite-Memory
Iterative Detection

As in Section IV-B, we use the FG/SPA framework.

Using the causality and finite-memory conditions (11) and

(12), the joint a posteriori probability mass function of the

information symbols can be expressed as

Pfa; cjrg / � c ¼ CðaÞ½ �
YK�1

k¼0

p rkjrk�1
0 ; ck

k�C

� �
(57)

where the causality condition has been applied. The

corresponding FG is shown in Fig. 4 for C ¼ 2, and

represents both the code constraints (described by �ð�Þ)
and the channel behavior. With respect to the case of a

transmission over a memoryless channel, additional factor
nodes must be added at the bottom of the graph, as shown

in Fig. 4. Due to the presence of cycles in the FG, the

application of the SPA allows to derive only an approxi-

mation of the marginal a posteriori probabilities Pfakjrg. In

this case of presence of cycles, a major role is also played

by the adopted schedule. As an example, the so-called
flooding schedule [76], suited for a fully parallel implemen-

tation of the detector/decoder, can be adopted. Following

the SPA rules, the additional factor nodes introduced in

the FG of Fig. 4 perform a marginalization, based on the

channel model, without taking into account the code
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constraints. The complexity of this marginalization is, in

general, exponential in C.
The quality of the convergence of the SPA to the exact

marginal probabilities is in general determined by the girth

of the graph. As an example, in designing LDPC codes,

cycles of length 4 must be avoided to ensure decoding

convergence. The FG derived from the proposed factor-

ization has, in general, girth 4 (as one can see in Fig. 4).

Surprisingly, we verified by computer simulations that

these length-4 cycles involving two factor nodes which
model the channel behavior often do not affect the

convergence of the algorithm. If this is not the case, as for

transmissions over ISI channels, FG transformations can

be adopted [77].

The complexity of the proposed algorithms may be

reduced following a technique similar to that described in

[78] for FB algorithms or to reduced-state sequence

detection (RSSD) used for MAP sequence detection
[79]–[81]. The details can be found in [82] and [83]. For

equal energy signals, a modified version of the described

FGs for noncoherent and flat fading channels may be

devised. In fact, in this case each additional factor node in

Fig. 4 can be slit into C two-edge factor nodes [82], as will

be described in detail in the following example.

1) ExampleVEqual Energy Signals Transmitted Over a Flat
Fading Channel: In this case, pðrkjrk�1

k�C; ck
k�CÞ given by (56)

can be further simplified. In fact, the prediction coeffi-

cients and the mean square prediction error become

independent of the considered sequence. Taking into

account that jckj ¼ 1 and denoting �2
k ¼ �2

e ; 8k, after

straightforward manipulations we have

p rkjrk�1
k�C; ck

k�C

� �
/ exp 2

�2
e

XC

i¼1

< pirkr�k�ic
�
kck�i

 �( )

� exp � 2

�2
e

XC

i¼1

XC

‘¼iþ1

< pip‘rk�ir
�
k�‘c

�
k�ick�‘

 �( )
: (58)

Substituting (58) into (57), it can be easily shown, by
grouping the exponential terms which depend on the same

argument rk�ir
�
k�‘c

�
k�ick�‘, that the resulting joint a

posteriori probability of the information symbols becomes

Pða; cjrÞ / � c ¼ CðaÞ½ �
YK�1

k¼0

YC

i¼1

gk�i;kðck�i; ckÞ (59)

having defined

gk�i;kðck�i; ckÞ ¼ e
2

�2
e
< qirkr�k�ic

�
k ck�i½ �

(60)

where qi ¼ pi �
PC�i

‘¼1 p‘p‘þi.

This further factorization has a direct impact on the

graph structure. In fact, each factor node can be

decomposed into C simpler two-edge factor nodes [82].

Hence, for increasing values of C, the number of factor

nodes increases linearly but the computational burden at

each factor node remains the same. Hence, the algorithm

complexity is linear in C. This is a fundamental difference
with respect to trellis-based linear predictive receivers

[42], [43], [71], [73], [75], whose complexity is exponen-
tial in the prediction order, and suggests that by using the

tool represented by FGs and SPA new computationally

efficient algorithms can be derived. In addition, in this

modified FG there are no cycles of length 4 in the part of

the graph modeling the channel and, by adopting the

flooding schedule, the derived algorithm is also well
suited for a fully parallel implementation of the detector/

decoder.

VI. OPTIMAL DETECTION WITH
POLYNOMIAL COMPLEXITY

We now revisit the problem of adaptive iterative detection

and show that when certain assumptions hold true, the
exact solution has complexity growing only polynomially

with the sequence length K.

Consider the discretized observation model in (3).

Furthermore, assume uncoded transmission, i.e.,

xða;�Þ ¼ x0ða0;�Þ; x1ða1;�Þ; . . . ; xK�1ðaK�1;�Þð Þ:
(61)

The assumption of uncoded transmission does not mean

that the proposed technique is only useful for detection of

uncoded sequences. Rather it reveals a structure similar to
the one depicted in Figs. 3 and 4, where the demodulator/

estimator is loosly connected to the decoder through the

exchange of symbol soft decisions. Thus the demodulator/

Fig. 4. Overall factor graph for C ¼ 2.
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estimator operates under the assumption of uncoded
symbols with given a priori probabilities.8

We are interested in obtaining soft decisions on the

symbols ak 2 A in the presence of �. Clearly this problem

is intimately related to the problem of detecting the

sequence a in the presence of �. For this reason we first

examine the sequence detection problem and then we

make a connection to the symbol soft-decision generation

problem.

A. Sequence Detection
The sequence detection problem under consideration

can be formally expressed as

â ¼ argmax
a2AK

max
�2�

Mðr; a;�Þ (62)

where Mð�; �; �Þ is a suitably defined metric. Due to the

uncoded assumption, the metric (for a fixed �) can be

decomposed as

Mðr; a;�Þ ¼
XK�1

k¼0

Mkðrk; ak;�Þ (63)

with Mkð�; �; �Þ are symbol-wise metrics. Note that the

maximization over the unknown parameter � resembles
a generalized likelihood approach to the detection/

estimation problem (i.e., maximization of Pða;�jrÞ over

both a and�). It is emphasized however that there are two

problems of interest for which generalized likelihood

coincides with average likelihood (i.e., maximization of

PðajrÞ over a). The first one is detection of equal-energy

constellations in the presence of a uniformly distributed

phase rotation (the original idea behind the polynomial
complexity solution was first introduced for this model

in [85] and reinvented in [86]), and the second one is

detection of equal-energy constellations in the presence

of complex Gaussian fading (the polynomial complexity

solution for this model was first presented in [87]).

Observe that although the metric in (63) is decomposed

for any fixed �, this is not the case for the maximized

metric over �. In view of the double maximization nature
of the problem, it is natural to define a parameter-

conditional sequence detector as follows:

âð�Þ ¼ argmax
a2AK

Mðr; a;�Þ

¼ â0ð�Þ; . . . ; âK�1ð�Þð Þ; (64)

where the dependence on the observation r has been sup-
pressed for notational simplicity. Based on the decompo-

sition in (63), the above parameter-conditional sequence

detector can be performed with complexity linear in K,

since the sequence maximization is equivalent to K
symbol-wise maximizations. Similarly, a data-conditional

parameter estimator can be defined as

�̂ðaÞ ¼ argmax
�2�

Mðr; a;�Þ (65)

where, again, dependence on r is implicitly assumed. It is

further assumed that the estimator complexity is poly-

nomial in K. This is true for both aforementioned problems

of interest, i.e., detection of equal-energy constellations in

the presence of a uniformly distributed phase rotation,

and detection of equal-energy constellations in the
presence of complex Gaussian fading, where the com-

plexity is in fact linear in K. When this is not true, one

can still talk about polynomial complexity with the under-

standing that complexity refers only to the number of

sequences that need to be tested before the optimal se-

quence is found and disregarding the complexity involved

in evaluating the metric for a specific sequence a through

max� Mðr; a;�Þ ¼ Mðr; a; �̂ðaÞÞ. This approach is fol-
lowed in the problem of detection of equal-energy

constellations in the presence of a phase rotation and

frequency jitter [88].

The basic idea behind the polynomial complexity

solution is as follows. If it were possible to scan the entire

parameter space �, and for each � 2 � obtain the

corresponding sequence estimate according to (64), then

the global estimate â would be found. More precisely, if we
define the set

T ¼ fâð�Þj� 2 �g (66)

it is easy to see that â 2 T . Thus the original problem

reduces to constructing the set T , and then performing the

maximization

â ¼ argmax
a2T

M r; a; �̂ðaÞ
� �

: (67)

Of course, the above-described procedure for constructing

T is not practical since the parameter space is usually

infiniteVindeed uncountable in most cases of interest. In

the following we show that the construction of T can be
performed with polynomial complexity in K and further-

more, its size is only polynomial in K. These two facts are

sufficient to prove the original claim of polynomial

complexity joint sequence detection and parameter

8A polynomial complexity result has also been established for joint
estimation and decoding of simple two-state trellis codes in [84] for the
complex Gaussian fading channel.
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estimation. Intuitively one expects that points in the
parameter space that are close to each other result in the

same sequence estimate âð�Þ. More precisely, one can

partition � into sets �a defined as

�a¼ �2�jâð�Þ¼af g (68a)

¼ �2�j8t2AK Mðr; a;�Þ�Mðr; t;�Þ
� �

: (68b)

Now it should be clear that in order to construct T it is

sufficient to Bsample[ only one point from each set �a in

the partition. This reduces the problem of constructing T
to that of generating the aforementioned partition, or in

other words, to determine all nonempty sets �a. Form the

definition of �a it is not clear that this task can be
accomplished efficiently. However, an efficient decompo-

sition of �a can be obtained (see [87], [89] for a proof of

this decomposition), which has the form

�a ¼
\K�1

k¼0

\
b2A
�
ðkÞ
ak;b

(69)

where

�
ðkÞ
a;b ¼ � 2 �jMkðrk; a;�Þ � Mkðrk; b;�Þf g: (70)

We have now reduced the problem of constructing T
into constructing all nonempty sets

TK�1
k¼0

T
b2A �

ðkÞ
ak;b

.

Based on the definition (70), if we consider the boundary

equations of the form

Mkðrk; a;�Þ ¼ Mkðrk; b;�Þ (71)

for all k 2 f0; . . . ;K � 1g and for all a; b 2 A with a 6¼ b,

the above-described partition will emerge. There are

exactly Q ¼ K �MðM� 1Þ=2 such equations defining an

equal amount of boundaries in �. This geometric problem

can be quite complex. However, for the specific problems

discussed above, each of these equations represents a
hyperplane in �. The problem of generating all possible

partitions of the d-dimensional Euclidean space Rd by

superimposing Q hyperplanes has been studied in [90] and

has been shown to have complexity Qd. Furthermore, the

number of convex polytopes generated is on the order of

Qd. Since Q depends only linearly in K, our claim has been

established. An example of this partitioning is shown in

Fig. 5 for the case of � being the two-dimensional
Euclidean space.

We conclude this subsection by pointing out that a new

suboptimal algorithm emerges from the optimal procedure

outlined above. In particular, since most of the complexity

is associated with the optimal partitioning of �, one can

skip this step and sample the parameter space in a
meaningful and efficient manner so as to Bhit[ as many

sets �a as possible. This procedure involves the selection of

P sample points f�igP
i¼1, where P is a design parameter and

determines the algorithm complexity. The algorithm then

proceeds by finding an approximation of T by evaluating

the sequences fai ¼ âð�iÞgP
i¼1 and then maximizing the

metric over these sequences.

B. Symbol Soft-Decision Generation
We now return to the main problem under consider-

ation, that of generating symbol soft decisions for the

observation model in (3) under the uncoded assumption of

(61). The quantities of interest are of the form

SkðaÞ ¼ max
a:ak¼a

max
�2�

Mðr; a;�Þ: (72)

Again we point out that in general the above metric implies

soft decision of the formmaxa:ak¼amax� Pða;�jrÞ, but for

the two special problems of interest mentioned above, the

generated soft decisions are of the form maxa:ak¼a PðajrÞ.
Using (63) one can rewrite (72) as follows:

SkðaÞ ¼ max
�2�

Mkðrk; a;�Þ þ
XK�1

i¼0;i6¼k

Mi ri; âið�Þ;�ð Þ
" #

:

(73)

Following a reasoning similar to the one followed in the

previous section for the sequence detection problem, if we

Fig. 5. Partition of � for the case of K ¼ 3 and A ¼ fþ1;�1g.
The three boundaries between the sets �ðkÞa;b are labeled with the

appropriate set on each side. Observe that in this example,

sequence ð�1;þ1;þ1Þ need not be examined. The development

in the section essentially guarantees that virtually all but a

polynomial number of sequences need be examined

without loss of optimality.
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define the set

T kðaÞ ¼ â0ð�Þ; . . . ; âk�1ð�Þ; a; âkþ1ð�Þ; . . . ;ðf
âK�1ð�ÞÞj� 2 �g (74)

then the symbol soft decision in (72) can be found as

SkðaÞ ¼ max
a2T kðaÞ

M r; a; �̂ðaÞ
� �

: (75)

Furthermore, there is a straightforward way to obtain

T kðaÞ from the original set T ; all that is needed is to

change the kth symbol of each sequence of T to a. Thus,
for each candidate sequence in T , there are at most

K � ðM� 1Þ new sequences that need to be tested, which

implies that the complexity of evaluating SkðaÞ for all

k ¼ 0; 1 . . . ;K � 1 and all a 2 A remains polynomial.

Finally it should be mentioned that a suboptimal

algorithm can be derived in a similar way it was derived for

the sequence detection problem. First, an approximation

of T is obtained as outlined in the previous subsection.
This approximate set is then enriched by flipping the kth

symbol of all existing sequences, thus obtaining an

approximation of all sets of the form T kðaÞ for

k ¼ 0; 1 . . . ;K � 1 and all a 2 A. Soft decisions are then

evaluated according to (75) using the approximate T kðaÞ.

VII. A FEW ILLUSTRATIVE
NUMERICAL RESULTS

We now present a few illustrative results relative to

communication systems with iterative detectors using the

proposed algorithms. In particular, we distinguish between

trellis-based and non-trellis-based schemes.

A. Trellis-Based Iterative Detection
The performance of the proposed receivers is assessed

by means of computer simulations mainly in terms of bit-

error rate (BER) versus the SNR Eb=N0, Eb being the

received energy per information bit and N0 the AWGN

single-sided power spectral density.

1) Phase-Uncertain Communications: In order to provide

the reader with a concise overview of the performance of

the proposed detection strategies in a scenario with phase
noisy communication channels, we consider a scheme

which makes use of a serially concatenated convolutional

code (SCCC). We assume that Np ¼ 1 pilot symbol is

inserted every Nd symbols, and the SNR loss due to the

insertion of pilot symbols is accounted for in all the results

presented herein. The performance of the considered

systems under dynamic channel conditions is investigated.

The time-varying phase process f�kg is modeled as a

Wiener process, with variance over a signaling interval
equal to �2

�. Our goal is to compare the AID approach,

outlined in Section IV-A, with the FMID approach,

outlined in Section V-A. More details on this comparison

and the underlying assumptions can be found in [91]. In

the FMID case, state reduction techniques (to limit the

computational complexity) are applied [78].

The considered SCCC consists of an outer 4-state, rate-

2/3 nonrecursive convolutional code and an inner 4-state,
rate-3/3 recursive convolutional code, connected through a

length-1024 symbol interleaver [92]. The outer encoder is

obtained by parallelizing two identical encoders with

generator

GoðDÞ ¼ 1
1þ D2

1þ Dþ D2

" #

and puncturing every other coded bit. The inner code is

essentially the anti-rotational invariant version of Code 1

in [93]. The three output bits are mapped to an 8-ary phase
shift keying (8-PSK) symbol with natural mapping. The

spectral efficiency of the overall code is then 2 bits/s/Hz.

At the receiver side, the inner detector/decoder makes use

of either an AID-based FB algorithm, whose basic branch

metric can be found9 in [35], or an FMID-based FB

algorithm, whose basic branch metric is given by (55). The

outer decoder makes use of a coherent FB algorithm. The

performance of the two considered detection strategies for
this communication system is analyzed by evaluating the

SNR necessary to obtain a prescribed BER of 10�3, at ten

decoding iterations, as a function of the jitter standard

deviation ��. The results are presented in Fig. 6. Two

curves for each of the two detection strategies are shown.

In the AID case one curve corresponds to Nd ¼ 4, while

the other curve is obtained by optimizing the insertion rate

for each specific value of the phase noise jitter standard
deviation ��. In the FMID case, both curves correspond to

the optimized value Nd ¼ 8: one of the curves corresponds

to the case with C ¼ 6 (with number of states reduced

from 4C � 4 ¼ 47 to 44), while the other curve refers to the

case with C ¼ 5 (with number of states reduced from

4C � 4 ¼ 46 to 43). As one can see, the AID detection

strategy is better than the FMID detection strategy for

low phase jitter standard deviation, while it worsens for
increasing standard deviation. On the other hand, the

FMID approach is more robust at high phase dynamics,

and the required SNR to attain the desired BER is almost

constant for �� ! 5 degrees. Moreover, the optimized

value Nd in the FMID case does not seem to depend on

the phase jitter standard deviation ��. For increasing

phase jitter the FMID scheme with a short observation

9Note that in Section IV-A, only the derivation of an FB algorithm for
a scenario with fading is considered. The extension of this approach to a
scenario with phase noise is detailed in [35].
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window ðC ¼ 5Þ outperforms the one with a larger obser-

vation window ðC ¼ 6Þ. The overall conclusion is that
there exists a threshold value for �� on the order of 1 to

2 degrees, such that AID is better than FMID for ��
values lower than the threshold, and FMID is better than

AID for �� values higher than the threshold.

2) Faded Communications: In this case, we compare AID

and FMID strategies in a scenario with transmission of

an SCCC over a Rayleigh flat fading channel with
normalized bandwidth fDT ¼ 0:01. The code consists of

an outer 4-state, rate-1/2 convolutional code connected

through a length-1024 pseudorandom interleaver [6] to an

inner 4-state, rate-1/2 convolutional code. The respective

generator matrices are given by

GoðDÞ¼½1þDþD2 1þD2�

GiðDÞ¼ 1
1þD2

1þDþD2

" #
:

(76)

The output symbols are mapped to a quaternary PSK

(QPSK) constellation with Gray mapping, resulting in an

overall code of spectral efficiency 0.5 bit/s/Hz. The outer

decoder makes use of a standard BCJR algorithm, whereas

the inner detector/decoder makes use of either a linear
predictive FB algorithm with branch metric given by (56)

(FMID case) or the recursive least square (RLS)-based

forward-adaptive/backward adaptive FB algorithm de-

scribed in Section IV-A (AID case), with RLS forgetting

factor optimized by trial and error. In the AID case, one

pilot QPSK symbol is introduced every eight data QPSK

data symbols and the corresponding power loss (due to

pilots) is properly taken into account in the definition of

the SNR. Therefore, the comparison between FMID and
AID schemes is fair. In Fig. 7, the BER is shown as a

function of the SNR. In all cases, five decoding iterations

are considered. In the FMID case, two possible values for

the finite-memory parameter C are considered, although

the number of states of the inner detector/decoder is

reduced to 8 in all cases. In the AID case, the number of

states of the inner code (equal to 4) is Bexpanded[ to 8, as

in the FMID caseVthis corresponds to considering C ¼ 2
in the AID case. As one can see, the performance of FMID

and AID case, in the case with C ¼ 2, is the same at

sufficiently large values of the SNR, whereas the AID

scheme shows an improved performance at low SNR. As

expected, increasing the finite-memory parameter im-

proves the performance.

B. Non-Trellis-Based Iterative Detection
We now consider non-trellis-based iterative detection

and the algorithms described in Sections IV-B and V-B. In

all simulations, a scheme making use of a rate-1/2 (3, 6)-

regular LDPC code of length 4000 [94] with BPSK

modulation is considered and a maximum of 200

iterations of the SPA on the overall graph is allowed. In

all simulated cases, one pilot symbol every 20 code

symbols is inserted in the transmitted codeword in order
to make the iterative decoding algorithms bootstrap. Pilot

symbols involve a slight decrease of the effective

information rate, resulting in an increase in the required

signal-to-noise ratio. This increase has been introduced

artificially in the curve labeled Bperfect CSI[ for the sake

of comparison. Hence, the gap between the Bperfect CSI[
curve and the others is uniquely due to the need for phase

estimation/compensation, and not to the rate decrease due
to pilot symbols.

Fig. 7. BER of a SCCC, with inner linear predictive combined detection

and decoding (FMID strategy), over a Rayleigh flat fading channel with

normalized Doppler bandwidth fDT ¼ 0:01. In all cases, five decoding

iterations are considered.

Fig. 6. Eb=N0 required to obtain a BER of 10�3 at 10 decoding

iterations versus the phase jitter standard deviation ��.

Both the AID and FMID strategies are considered.
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1) Phase-Uncertain Communications: In Fig. 8, for a

channel with phase noise, we compare the performance of

the FMID approach with a couple of AID-based strategies.

The FMID receiver is based on linear prediction. The two

AID-based receivers are based on the canonical distribu-

tion approaches described in Section IV-B, Example 2,

namely the practically optimal approach based on dis-

cretization and that based on the Tikhonov distribution. In
this specific application, the AIM approach based on the

Tikhonov distribution is the most convenient solution,

from both a performance and a complexity point of view.

In this figure, the performance of the EM-based algorithm

described [52] is also shown for the sake of comparison. In

order to adapt this algorithm to a time-varying channel

phase, a sliding-window version of the EM algorithm is

used where the window size was optimized by computer
simulation. The resulting algorithm is denoted by sliding-

window EM (EM-SW). We found that the optimal window

has width of 60 symbols for the considered phase noise. In

this case, the performance loss is due to the fact that this

algorithm is designed for a different phase model, i.e., a

block-constant phase.

2) Faded Communications: Finally, in Fig. 9 we consider
a flat correlated Rayleigh fading channel with normalized

Doppler rate fDT ¼ 10�2. The performance in the case of

perfect CSI is also considered for comparison. The

performance of the FMID approach based on linear

prediction is shown for different values of parameter C.

Obviously, for increasing values of the memory parameter

C there is a performance improvement. A similar behavior

is observed for different values of the normalized Doppler
rate. In addition, due to the linear complexity of the

detection algorithm, it is possible to implement receivers

with values of C higher than those used in [42], [43], [71],

[73], and [75] for Viterbi- or BCJR-based algorithms, thus

closer approaching the performance of the receiver with

perfect CSI.
The flat fading channel is a case in which the FMID

approach is favorable with respect to AIM. In fact, as

mentioned in Section IV-B, the explicit representation of

the channel parameters into the FG and a fading model

autoregressive of order N ðARðNÞÞ leads to an algorithm

for joint decoding and estimation in which the fading

estimate is obtained through a Kalman smoother [33],

[64]. In this case, however, the number of parameters to be
recursively updated in the forward and backward recur-

sions is N þ NðN þ 1Þ=2 and therefore the complexity is

quadratic in N. Hence, for a value of N ’ C, the FMID

approach is less complex. In addition, a fully parallel

schedule, such that adopted by the the FMID algorithm,

would havily degrade the performance of the Kalman

smoother.

VIII . CONCLUSION

In this paper, we have considered iterative detection for

channels with memory. The focus of this paper has been on

algorithmic structures, but a few numerical results have

also been presented. We proposed a simple classification

for describing iterative detection algorithms, distinguish-

ing between adaptive iterative detection (where explicit
estimation of the channel parameters is considered),

finite-memory detection (where no explicit estimation of

channel parameters is considered), and optimal detection

with polynomial complexity (where channel parameters

and data are viewed as composing a single observation

space). We have tried to show commonalities and

differences between the various approaches, taking into

account a common starting point, consisting of the

Fig. 8. BER of a LDPC, considering both FMID and AID strategies, over a

channel with phase noise ð�� ¼ 6 degreesÞ.

Fig. 9. BER of a LDPC, considering both FMID and AID strategies,

over a Rayleigh flat fading channel with normalized Doppler

bandwidth fDT ¼ 0:01.
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implementation of a MAP detection strategy. The
proposed classification is by no means the classification

for iterative detection. More precisely, the presented

overview should stimulate the reader to go ahead and
derive novel detection algorithms by taking the inspiration

from those presented here. h
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