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On Linear Predictive Detection for Communications
With Phase Noise and Frequency Offset
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Abstract—In this paper, by applying the concept of linear
prediction, which is widely used for fading channels, to phase-
uncertain communications, we generalize existing linear predic-
tive detection algorithms for transmission over channels with
phase noise and frequency offset. This approach leads to the
derivation of detection algorithms, which are referred to as phasor
linear predictive (pLP), for trellis-based maximum a posteriori
(MAP) sequence detection (based on the Viterbi algorithm)
and MAP symbol detection: trellis-based (using the forward–
backward algorithm) and graph-based (using the sum–product
algorithm). The effectiveness of the proposed pLP detection
algorithms is evaluated for several communication schemes.
The derived algorithms outperform previously appeared finite-
memory detection solutions in terms of robustness against fast
channel dynamics. Moreover, the proposed detection strategy
lends itself to attractive extensions to adaptive schemes.

Index Terms—Finite-memory detection, forward–backward
(FB) algorithm, graph-based detection, iterative detection, linear
prediction, maximum a posteriori (MAP) sequence/symbol de-
tection, minimum mean square error (MMSE) estimation, sum–
product (SP) algorithm, Viterbi algorithm (VA).

I. INTRODUCTION

PHASE uncertainty, which is due to phase noise or fre-
quency offset, is one of the most detrimental and common

impairments of radio communication systems [1]. In addi-
tion to cellular networks and satellite communications [2],
in future-generation wireless local area networks, the inte-
gration of mobile and satellite communications will call for
detection algorithms suitable to phase-uncertain channels. In
particular, these detection algorithms should be robust to os-
cillator instabilities, generating phase noise, and time-varying
frequency offsets, possibly due to the Doppler shift and ex-
perienced, for example, in low Earth orbit (LEO) satellite
systems [2], [3].

Various detection strategies have appeared in the literature
to combat the effects of channel phase uncertainty. These
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strategies can be classified into three main categories as
follows.

1) The first group of trellis-based detection algorithms is
based on the key idea of per-path recursive computation
of a channel phase estimate. This represents an applica-
tion of the concept of per-survivor processing (PSP) [4].
In particular, in [4] and [5], hard-output maximum
a posteriori (MAP) sequence detection algorithms, based
on the Viterbi algorithm (VA) [6], [7], are derived.
In [8], this approach is extended to iterative detection
schemes based on the use of the forward–backward
(FB) algorithm [9]. In particular, in [8], recursive least
mean squares estimation of the unknown channel phase
is considered in the computations that are involved
in the proposed FB algorithm instances. Schober and
Gerstacker [10] propose a noncoherent sequence detec-
tion (NSD) algorithm with per-path recursive metric com-
putation based on a heuristic modification of the metric
proposed in [11].

2) The second group of detection algorithms is based on
the application of a general finite-memory condition. The
basic idea consists in limiting a priori the channel mem-
ory. This approach was considered in [12] and [13]. In
[11], an instance of this detection philosophy for VA-
based MAP sequence detection algorithms, which are
referred to as NSD, is proposed. In this case, the chan-
nel phase is assumed to be a random variable that is
uniformly distributed in [0, 2π). This approach is ex-
tended to the case of iterative detection, based on the
FB algorithm, in [14] and [15]. A general framework for
finite-memory detection is proposed in [16]. The class of
detection algorithms proposed in this paper belongs to
this group.

3) The third group of detection algorithms is obtained by
modeling the channel phase process as a suitable Markov
process. In [17], the channel phase process that is mod-
eled as first-order Markov chain and detection algo-
rithms, run over an expanded trellis diagram that takes
into account the phase evolution, are derived. A general
approach for maximum-likelihood detection over finite-
state Markov channels is also considered in [18].

Linear prediction has been extensively considered for detec-
tion over fading channels [19]–[22]. In [23]–[25], linear pre-
diction is used for noncoherent detection, over fading channels,
with differential phase shift keying (DPSK). We point out that,
in [23]–[25], only DPSK is considered, whereas the approach
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presented in our paper is general and can be applied to any
modulation format. In this paper, we exploit the concept of
linear prediction to derive an optimal metric for finite-memory
detection, and we show how to use this metric in various de-
tection algorithms for phase-uncertain communications, which
belong to the second group previously indicated. We will refer
to this class of detection algorithms as phasor linear predictive
(pLP) detection algorithms. Although stemming from a funda-
mentally different criterion for the estimation of the unknown
channel phase process, the proposed pLP algorithms are re-
lated to previously appeared noncoherent detection schemes
[11], [14], [26], exhibiting improved robustness to strong phase
instabilities or uncompensated frequency offsets. In particular,
it is worth pointing out that the proposed class of pLP detection
algorithms represents a conceptual generalization, to time-
varying phase-uncertain channels, of the noncoherent detection
algorithm proposed in [11] and valid for channels introduc-
ing a random phase. This relation is investigated in detail in
the Appendix.

We will first derive VA-based pLP detection algorithms for
linear coded modulations, and we will then propose a possible
extension, based on oversampling, to the case of continuous
phase modulation (CPM) [27], [28]. The proposed class of
VA-based pLP detection algorithms will be systematically ex-
tended to FB and sum–product (SP) [29] algorithms according
to the framework in [16]. Numerical results will be presented
for hard-output detection schemes (based on the VA) and soft-
output iterative detection schemes (based on the FB and SP
algorithms).

This paper is organized as follows. In Section II, pLP algo-
rithms, both trellis-based and graph-based, are derived for a
generic channel phase process, along with simplified versions
and extensions to oversampled receivers. In Section III, the
important case of a Wiener channel phase process with a
time-invariant frequency offset is considered. Extensive nu-
merical results relative to linear predictive detection schemes
are presented in Section IV. In Section V, we comment on
adaptive extensions of the proposed pLP detection algorithms
to scenarios with time-varying channel dynamics. Section VI
concludes the paper. In the Appendix, the case with a time-
invariant channel phase is interpreted as a special instance of
the general case considered in this paper.

II. pLP DETECTION ALGORITHMS

We first derive VA-based pLP detection algorithms for linear
coded modulations and then extend them to the case of CPM.
A simplified version of VA-based pLP algorithms for nonequal
energy signaling is also proposed. Finally, systematic exten-
sions to pLP-FB and pLP-SP algorithms are outlined.

A. Linear Coded Modulation

We consider the low-pass complex equivalent system de-
picted in Fig. 1. We assume that a sequence of K independent
and uniformly distributed M -ary symbols {ak}K−1

k=0 , which are
also denoted by a for conciseness, feeds an encoder/modulator,
which can be modeled as a time-invariant finite-state machine

Fig. 1. System model.

(FSM) with state µk. The evolution of the encoder/modulator
FSM is described by a “next-state” function ns(·, ·) [such that
µk+1 = ns(µk, ak)] and an “output” function o(·, ·) [such that
the output symbol1 is ck = o(µk, ak)]. We also define the

relevant state transition as tk
�
= (ak, µk). The linearly modu-

lated continuous-time signal s(t,a) is obtained by letting the
code symbol ck be carried by a suitable shaping pulse p(t).
Although suboptimal in the presence of a time-varying channel,
a matched-filter front-end with a sampling rate of one sample
per symbol can be practically used, provided that the phase
process is not affected by very strong variations [30]. The
resulting observation model2 is

rk = cke
jθk + wk (1)

where {wk} is an independent identically distributed (i.i.d.)
complex additive Gaussian noise sequence with variance N0,
and {θk} is a zero-mean wide sense stationary (WSS) channel
phase process. The autocorrelation sequence of the stationary

phasor process {ejθk} is denoted by Rθ(n)
�
= E{ejθk+ne−jθk}

and is assumed to be known at the receiver side. In the absence
of this information at the receiver, the phasor autocorrelation
function needs to be properly estimated. Obviously, the observ-
ables are not Gaussian, conditionally on the data sequence.

Should the phase process {θk} be known exactly, a coherent
sequence detector based on the VA, which was run over a
trellis diagram relative to the encoder/modulator FSM, could
be derived, with the branch metric

λcoher
k (tk) � − |rk − ejθkck|2

N0
+ lnP{ak}

= −
|ck|2

∣∣r′k − ejθk
∣∣2

N0
+ lnP{ak} (2)

where r′k
�
= rk/ck is a normalized observation—recall that a

VA based on the metric (2) performs recursive maximization
of path metrics associated with the survivors. By assuming that
P{ak} = 1/M (i.e., maximum likelihood detection), a metric
equivalent to (2) is given as follows:

λcoher
k (tk) = −|rk − ejθkck|2 = −|ck|2

∣∣r′k − ejθk
∣∣2 . (3)

1For simplicity, we refer to a scalar output function, but the extension to
the case of multiple output symbols is straightforward, by the use of vector
notation.

2For the sake of notational simplicity, we do not use a different formalism to
distinguish between a random variable and its realization. The context should
make it clear to which case the used notation refers.
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The performance of a receiver using a VA with metric (2)
[or (3)] will be considered as a benchmark for the performance
of the proposed pLP-based sequence detection schemes.

If only a statistical characterization of the phase process is
available, a practical sequence detector can be obtained by
using (2) with the exact value θk replaced by a suitable estimate
θ̂k. In the general case of a time-varying phase process, the data-
aided minimum mean square error (MMSE) phase estimate
based on ν previous observations is given by the following
conditional mean:

θ̂k = E
{
θk|ck−1

k−ν , r
k−1
k−ν

}
(4)

where an indexed vector notation is used to denote code sym-
bols and observations from epoch k − ν to epoch k − 1. The
expectation in (4) leads to a nonlinear estimate, which is usually
rather difficult to compute.

Instead of directly estimating the phase, we use the fol-
lowing indirect estimation strategy. We note that for a large
signal-to-noise ratio (SNR), one can write r′k � ejθk so that
θk � arg{r′k}. In order to exploit the phase correlation char-
acteristics in the estimation process, we consider a data-aided
linear prediction r̂′k of r′k based on the previous ν normalized
observations {r′j}k−1

j=k−ν , i.e., we define

r̂′k �
ν∑
i=1

pir
′
k−i (5)

where {pi}νi=1 are the prediction coefficients, and ν is the
prediction order [31]. The prediction coefficients in (5) can be
computed by solving the following MMSE problem [19]–[22]:

min
{pi}ν

i=1

E


∣∣∣∣∣r′k −

ν∑
i=1

pir
′
k−i

∣∣∣∣∣
2
∣∣∣∣∣∣ ck−1
k−ν

 (6)

which leads to a Wiener–Hopf linear system Rp = b, where
R is a square ν × ν matrix whose elements have the following
expression:

[R]l,m =
{

Rθ (|l −m|) , if l 
= m
Rθ(0) + N0

|ck−l|2 , if l = m (7)

where p
�
= [p1 · · · pν ]T is the unknown vector, and b �

[Rθ(1), Rθ(2), . . . , Rθ(ν)]T . With the prediction coefficients
obtained by solving the Wiener–Hopf system, it is easy to
express the corresponding MMSE, which is denoted as ε2k, as
follows:

ε2k = Rθ(0) +
N0

|ck|2
−

ν∑
i=1

piRθ(i). (8)

One can therefore consider the following indirect data-aided
phase estimate:

θ̂k � arg
{
r̂′k

}
= arg

{
ν∑
i=1

pir
′
k−i

}
= arg

{
ν∑
i=1

pi
rk−i
ck−i

}
.

(9)

Upon the definition of an extended state3 Sk
�
= (ak−1, . . . ,

ak−ν , µk−ν), it is immediate to conclude that the optimal
prediction coefficients depend, in general, on Sk and that the

MMSE depends on the extended transition Tk
�
= (ak, Sk)—

note that an extended transition Tk uniquely identifies a se-
quence of code symbols ckk−ν . Defining an extended trellis
diagram (with respect to the trellis diagram relative to the
encoder/modulator FSM) with state Sk, a VA with the following
branch metric can be implemented:

λpLP
k (Tk) = −

|ck|2
∣∣∣r′k − ejθ̂k

∣∣∣2
ε2k

+ lnP{ak}

= −
|ck|2

∣∣∣∣r′k − ∑ν

i=1
pir

′
k−i

|
∑ν

i=1
pir′k−i|

∣∣∣∣2
ε2k

+ lnP{ak}. (10)

A VA based on metric (10) can be interpreted as performing
combined detection and decoding, with per-survivor linear pre-
dictive estimation based on ν consecutive observations, of the
channel phase process.

In the case of equal energy signaling, since the system
matrix R in (7) no longer depends on {ck−l}νl=1, the prediction
coefficients and the MMSE do not depend on Tk, but only on
the SNR. In this case, they can be precomputed offline and then
used in the VA. Moreover, if a symbol can assume with equal
probability all possible values, the metric in (10) can be written
as follows:

λpLP
k (Tk) = −|ck|2

∣∣∣∣∣r′k −
∑ν
i=1 pir

′
k−i∣∣∑ν

i=1 pir′k−i
∣∣
∣∣∣∣∣
2

. (11)

With respect to classical linear predictive receivers for fading
channels [19]–[22], where the fading amplitude is not unitary,
the proposed solution features the main difference, i.e., the
fact that the phasor estimate has (obviously) unit modulus. In
particular, this is obtained by normalizing

∑ν
i=1 pir

′
k−i by its

modulus. Our results show that the absence of this normal-
ization, although not rigorous, entails a minor performance
degradation for equal-energy modulations. However, this nor-
malization is essential for nonequal energy signaling such as
quadrature amplitude modulations (QAMs), as will be shown
in Section IV.

The complexity of the proposed VA-based pLP detection
algorithms can be limited by applying reduced-state sequence
detection (RSSD) techniques [33]–[35]. As an example, a re-
duced state can be defined by substituting ν with a reduced-
state parameter Q < ν in the definition of Sk, i.e., by “memory
truncation.” In other words, the reduced state is defined as
sk � (ak−1, . . . , ak−Q, µk−Q). During the recursive computa-
tion of the VA, decision feedback sequences that are associated

3The idea of expanding the trellis diagram to partially take into account the
channel memory can be originally traced back to carrier phase recovery for
analog frequency-modulated communications [32].
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with each trellis state are recursively updated and used in the
computation of the branch metrics. In the case of high-order
modulation formats, other state reduction techniques, based on
set partitioning [33], [34], can be used.

We remark that the prediction coefficients {pi}νi=1 can also
be computed by an adaptive algorithm that recursively mini-
mizes the mean square error in (6), such as a stochastic gradient
algorithm [36]. This suggests that, on the practical side, the
proposed algorithms lend themselves to the implementation,
through standard methods, of adaptive receivers that are capable
of copying with possible time variations of the statistics of the
underlying channel phase model. This aspect will be addressed
in more detail in Section V.

B. Simplified pLP Detection Algorithms for Nonequal Energy
Linear Modulations

Considering the general Wiener–Hopf system with a matrix
given by (7), it is immediate to conclude that the prediction
coefficients to be used for the computation of the branch
metric λpLP

k (Tk) depend, in general, on the transition Tk. This
implies that the ensemble of all possible transitions determines
an ensemble of prediction coefficient sets. More precisely,
by indicating by Mamp the number of different symbol am-
plitudes for the constellation relative to the nonequal energy
modulation format, it can easily be concluded that MN

amp

sets of ν prediction coefficients are required in the detection
process. In this subsection, we propose a simple approximation
to derive a unique set of prediction coefficients, independent
from the specific transition, also in the case of nonequal
energy modulations. In Section IV, it will be shown that
the performance degradation entailed by this simplification is
not significant.

Consider a modified MMSE problem, where the squared
error is averaged with respect to both channel phase and code
symbols. In other words, the prediction coefficients are ob-
tained by solving the following minimization problem:

min
{pi}ν

i=1

E


∣∣∣∣∣r′k −

ν∑
i=1

p′ir
′
k−i

∣∣∣∣∣
2


= min
{pi}ν

i=1

E

E


∣∣∣∣∣r′k −

ν∑
i=1

p′ir
′
k−i

∣∣∣∣∣
2
∣∣∣∣∣∣ ck−1
k−ν


 . (12)

The minimization problem in (12) leads to a Wiener–Hopf
system of the form Rsimpp′ = b, where a generic element
[Rsimp]i,j of the system matrix Rsimp has the following
expression:

[Rsimp]i,j =

{
Rθ (|i− j|) , if i 
= j

Rθ(0) + N0E

{
1

|ck−i|2
}

, if i = j.
(13)

Assume that a code symbol ck can be any point of the con-
stellation with equal probability: It follows that the quantity
E{1/|ck−i|2} depends only on the specific constellation. For

example, in the case of 16-ary QAM (16-QAM), it is easy to
show that

E

{
1

|ck−i|2
}

� 1.89
ES

(14)

where ES is the average symbol energy.

C. CPM

The decomposition approach to CPM proposed in [37]
clearly shows that any CPM modulator can be interpreted as
a serial concatenation of a continuous phase encoder (CPE) and
a memoryless mapper. In particular, the CPE is a rate-1/L re-
cursive encoder with state µk = (ak−1, . . . , ak−L+1, ρk−L+1),
where L is the duration of the frequency impulse that char-
acterizes the CPM signal, and ρk is a p-ary symbol, which is
recursively updated according to ρk = Rp[ρk−1 + ak], where
Rp[x] indicates the remainder of x in base p. The integer p is
related to the CPM modulation index h: In fact, h = k/p, with k
and p relatively prime numbers. The equivalent baseband CPM
signal sbb(t,a) can be expressed as [37] follows:

s(t,a) = exp
{
jψ(t,a)

}
(15)

in which the tilted phase ψ has the following expression:

ψ(τ + kT,a) = R2π

[
2πhρk−L+1

+ 4πh
L−1∑
i=0

ak−iq(τ + iT ) + ξ(τ)
]
, 0 ≤ τ ≤ T (16)

where q(t) is the CPM phase pulse, and ξ(τ) is a function
of time only (i.e., it does not depend on any information
symbol) [37].

The receiver front-end can be implemented, in a practically
optimal way, with the use of a simple filter followed by over-
sampling [38]. Considering β samples per symbol interval, the
generic sample in the kth interval has the following expression:

r
(i)
k = ejθ

(i)
k s

(i)
k + n

(i)
k

= exp
{
j
[
θ
(i)
k + ψ(iT/β + kT,a)

]}
+ n

(i)
k

i = 0, . . . , β − 1 (17)

where s
(i)
k � s(iT/β + kT,a). The bandwidth expansion (due

to oversampling) in the front-end bandpass filter makes the
variance of the Gaussian noise sample {n(i)

k } equal to βN0.
In the case of an AWGN channel, being the additive channel
noise white, it follows that {n(i)

k } may be made independent by
suitably setting the filter frequency response.

As a possible direct extension of the linear predictive strategy
proposed in Section II-A, and based on a sampling rate of
one sample per symbol interval, we now assume that ejθ

(i)
k

is estimated based on the observation sequence (r(i)′

k−N , . . . ,

r
(β−1)′

k−N , . . . , r
(0)′

k−1, . . . , r
(β−1)′

k−1 , r
(0)′

k , . . . , r
(i−1)′

k ). Fig. 2 high-
lights the sliding window prediction strategy considered in the
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Fig. 2. Sliding window linear predictive detection strategy in the case of
oversampling with β = 4.

case of oversampling. It is worth observing that different strate-
gies based on observation windows of different lengths could
be considered.4 According to the current estimation strategy,
the prediction order can be written as ν = Nβ, and the basic
metric, which is indicated by λpLP-o

k , becomes

λpLP-o
k (Tk) = −

∑β−1
i=0

∣∣∣c(i)k ∣∣∣2 ∣∣∣∣r(i)′

k − êθ
(i)
k

∣∣∣∣
(εok)

2 + lnP{ak}

(18)

where (εok)
2 is the MMSE in the current case with oversam-

pling. It is possible to extend the MMSE problem in (6) as
follows:

min
{poi}ν

i=1

E


∣∣∣∣∣∣r(i)′

k −
i−1∑
j=0

po
i−jr

(j)′

k−i −
N−2∑
l=0

β−1∑
j=0

po
lβ+jr

(j)′

k−1−l

−
β−1∑
j=i

po
Nβ+i−jr

(j)′

k−N

∣∣∣∣∣∣
2∣∣∣∣∣∣µk

 (19)

where {po
i } represents the prediction coefficients for the con-

sidered oversampled detection strategy. Solving the MMSE
problem (19) for the prediction coefficients {po

i } leads to a
Wiener–Hopf system of the form Ropo = bo, where Ro is a
square ν × ν matrix whose elements, owing to the fact that
|c(i)k | = 1, have the following expression:

[Ro]l,m =
{

Ro,β
θ (|l −m|) , if l 
= m

Ro,β
θ (0) + N0, if l = m

(20)

where {Ro,β
θ (j)} is the autocorrelation sequence of the over-

sampled phase process {θ(i)
k }. Finally, the MMSE in the case

of oversampling is formally identical to the case without over-
sampling, i.e.,

(εok)
2 = Ro,β

θ (0) + N0 −
ν∑
i=1

po
iR

o,β
θ (i). (21)

Note that being CPM a particular equal-energy modulation
format, the prediction coefficients po and the MMSE (εok)

2 do
not depend on the code symbols, i.e., neither on state Sk nor on
transition Tk.

4For instance, in order to estimate ejθ
(i)
k , one could use all past observations

down to r(0)
′

k−N
. In this case, Fig. 2 should be modified in such a way that the

prediction window for each sample in the kth symbol interval started from the
initial sample of the (k −N)th symbol interval.

D. FB Algorithm: Trellis-Based MAP Symbol Detection

The derivation of a VA in the preceding subsections allows
one to perform hard-output MAP sequence detection. Accord-
ing to the general framework on finite-memory detection in
[16], the basic “exponential” metric to be used in a pLP-FB
algorithm is given as follows:

γpLP
k (Tk) � exp

[
λpLP
k (Tk)

]

= exp

−
|ck|2

∣∣∣∣r′k − ∑ν

i=1
pir

′
k−i

|
∑ν

i=1
pir′k−i|

∣∣∣∣2
ε2k

P{ak}

(22)

and the a posteriori probability P{ak|r} can be approximately
computed as

P{ak|r} �
∑
Tk:ak

αk(Sk)γ
pLP
k (Tk)βk+1(Sk+1) (23)

where the notation Tk : ak indicates all transitions Tk compat-
ible with ak. The quantities αk(Sk) and βk+1(Sk+1) can be
computed by means of the following forward and backward
recursions, respectively:

αk+1(Sk+1) =
∑

Tk:Sk+1

αk(Sk)γ
pLP
k (Tk) (24)

βk(Sk) =
∑
Tk:Sk

βk(Sk+1)γ
pLP
k (Tk). (25)

Proper boundary conditions for α0(S0) and βK(SK) have to
be considered. For example, considering a sequence of ν pilot
symbols at the beginning of the transmission, it is possible to
set α0(S0) = 1 if S0 = 0, and zero in correspondence of all
other states.

The complexity of the proposed pLP-FB algorithms can be
limited by applying the state reduction techniques proposed in
[39]–[41]. In this case as well, a reduced-state trellis diagram is
obtained by replacing ν with a reduced-state parameter Q and
applying decision feedback in at least one of the two recursions.

E. SP Algorithm: Graph-Based MAP Symbol Detection

As described in [16] and [42], the basic “exponential” metric
(22) characterizing a pLP-FB algorithm can be associated with
a factor node modeling the channel and connected to the factor
graph describing the code constraints [29]. Given a code, it is
possible to associate to it an indicator function χ(c) such that

χ(c) =
{

1, if c is a codeword
0, otherwise.

(26)

The joint a posteriori probability of the code symbols, given the
received observation sequence and discarding irrelevant terms,



2078 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 4, JULY 2007

Fig. 3. Factor graph corresponding to the factorization (27) for ν = 2.

can be approximately expressed as [42]

P (c|r) � χ(c)
∏
k

γpLP
k

(
ckk−ν

)
(27)

where

γpLP
k

(
ckk−ν

)
� exp

−
|ck|2

∣∣∣∣r′k − ∑ν

i=1
pir

′
k−i

|
∑ν

i=1
pir′k−i|

∣∣∣∣2
ε2k

P{ak}.

(28)

Comparing (28) with (22), it can easily be recognized that
they are identical, but for a formal difference. Although the FB
algorithm is trellis based and, consequently, suitable definitions
of state and transition are considered, in the case of graph-based
detection on a factor graph, the definitions of state and transition
become irrelevant.

The factor graph relative to the factorization in (27) is
pictured in Fig. 3. As one can see, this factor graph takes
into account both the code constraints [described by χ(c)]
and the channel statistics. Although the code constraints are
represented by the upper part of the graph, the channel behavior
is characterized by the channel factor nodes at the bottom of the
graph. In particular, the channel factor node relative to epoch k
is connected to the variable nodes relative to the code symbols
ckk−ν (in Fig. 3, ν = 2) and computes the exponential metric

γpLP
k (ckk−ν). The application of the SP algorithm to this overall

graph will allow the approximate (because of the presence of
cycles in the graph) computation of the marginal code symbol
a posteriori probabilities [29]. As it will be shown by the results
presented in Section IV, the presence of short cycles containing
the channel factor nodes does not entail significant performance
degradation.

In the case of graph-based MAP symbol detection, the com-
plexity can be reduced by applying the techniques proposed in
[42]. In particular, a channel factor node is connected with ν
variable nodes. Although soft messages are transmitted only
over the “least reliable” Q edges coming out of the channel
factor node, hard messages (i.e., early decisions) are considered
for the remaining ν −Q “most reliable” edges.

III. EXAMPLE: WIENER CHANNEL PHASE PROCESS WITH

TIME-INVARIANT FREQUENCY OFFSET

In this section, we specialize the general derivation con-
tained in the previous sections to a communication scenario
characterized by an important and widely used channel model.
We remark, however, that the previous derivation holds for
any phase-uncertain channel, provided that the autocorrelation
of the phasor process is available or can be estimated at the
receiver.

We assume that the phase process {ψk} is a discrete-time
Wiener process [31]. In particular, the phase evolution can be
characterized by the following recursion:

ψk = ψk−1 + ∆k (29)

where {∆k} are i.i.d. Gaussian increments with zero mean and
variance σ2

∆, which is descriptive of the phase noise intensity.
In this case, the autocorrelation of the associated phasor process
{exp(jψk)} becomes

Rψ(n) = E

{
ej(ψk−ψk−n)

}
= E

{
e
j
(∑n−1

i=0
∆k−i

)}

=
n−1∏
i=0

E{ej∆k−i}. (30)

It is possible to interpret E{ej∆k−i} as the characteristic func-
tion (evaluated in one) of the Gaussian random variable ∆k−i
[31]. Since {∆k−i} are identically distributed, it follows that
E{ej∆k−i} = exp(−σ2

∆/2) ∀k, i. Hence

Rψ(n) = exp
(
−|n|σ2

∆

2

)
. (31)

The presence of a time-invariant random uncompensated
frequency offset can also be incorporated by modeling the
channel phase as θk = ψk + 2πfkT , where f is a random
variable that is uniformly distributed in (−α/T, α/T ), α is
the normalized frequency offset intensity, and T denotes the
symbol interval. For this phase model, assuming that the phase
jitter and the frequency offset are independent, it follows that

Rθ(n) = E

{
ej(θk−θk−n)

}
= E

{
ej(ψk−ψk−n)

}
E
{
ej2πfnT

}
= exp

(
−|n|σ2

∆

2

)
sinc(2αn) (32)

where sinc(x)
�
= sin(πx)/πx. In the Appendix, the special

case of absence of phase noise (σ∆ = 0) and frequency offset
(α = 0), i.e., the case where the channel phase reduces to a
random variable uniformly distributed in [0, 2π), is analyzed in
more detail.
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Fig. 4. Prediction coefficients as functions of the phase noise standard devia-
tion σ∆ for an equal energy modulation, prediction order ν = 4, andEb/N0 =
4 dB. Various values of the frequency offset intensity α are considered.

In the case of oversampling, we refer to the modified phase
process {θ(i)

k } introduced in Section II-C for CPM signals. A
detailed analysis of the effects of oversampling on the statistics
of the modified phase process is rather complicated. In the case
of a Wiener channel phase process {ψk}, however, a reasonable
assumption consists of describing the modified phase {ψ(i)

k }
(obtained by oversampling) as a Wiener process, with an incre-
mental variance5 between ψ

(i)
k and ψ

(i+1)
k equal to σ2

∆/β.
Other phase models may be considered, possibly incorporat-

ing a time-varying frequency offset, such as that caused by a
Doppler shift [3]. For the sake of simplicity, we present results
only for a scenario with random frequency offset and time-
varying phase noise.

IV. NUMERICAL RESULTS

In this section, we characterize the performance of the pro-
posed pLP detection algorithms. In particular, we first analyze
the behavior of the prediction coefficients under varying chan-
nel dynamics (considering the phase process model proposed in
Section III). We then evaluate the performance of the proposed
receivers in terms of BER versus Eb/N0, where Eb denotes
the received energy per information bit. Several communication
systems are considered in order to assess the flexibility and
effectiveness of the proposed detection strategy.

Fig. 4 shows the behavior of the prediction coefficients as
functions of the phase noise standard deviation σ∆ for an equal
energy modulation, either phase shift keying (PSK) or CPM,
a prediction order ν = 4 and Eb/N0 = 4 dB. Three values of
the frequency offset intensity α are considered, namely 0, 0.01,
and 0.02. In the absence of phase instabilities (σ∆ = 0 and
α = 0), all four prediction coefficients are equal, as shown
in the Appendix. For increasing phase noise or frequency
offset, the prediction coefficients take on different values—the

5Obviously, the incremental variance is the same between any two consecu-

tive phase values inside a symbol interval and between the phases ψ(β−1)
k

and

ψ
(0)
k+1

across two consecutive signaling intervals.

Fig. 5. BER as a function of the phase noise standard deviation σ∆ for
DQPSK, symbol-by-symbol decision, and various values of the frequency
offset intensity α.

stronger the phase variations, the larger the difference. In par-
ticular, in the considered σ∆ range, p1 is an increasing function
of σ∆, p2 is almost constant, whereas p3 and p4 decrease. As
one can see, for no phase noise, all prediction coefficients are
equal, and the proposed metric coincides with that proposed
in [11]—a more detailed comparison is the subject of the
Appendix. One can observe that the prediction coefficients are
decreasing for an increasing value of their indexes. Schober
and Gerstacker [10] consider exponentially decaying linear
prediction coefficients, i.e., pi = αi, where 0 ≤ α < 1 is a
forgetting factor. One can verify that the exponentially decaying
linear prediction coefficients used in [10], which have been only
heuristically justified so far, resemble the prediction coefficient
profile found in our approach. Observe, however, that the
exponential prediction coefficients in [10] are attractive from
an implementation viewpoint.

Differentially encoded quaternary PSK (DQPSK) is consid-
ered in Fig. 5. The performance of the communication system
is assessed by computer simulations in terms of BER versus
the phase noise standard deviation σ∆ for various values of
the frequency offset intensity α and Eb/N0 = 10 dB. Symbol-
by-symbol detection with decision feedback (i.e., Q = 0) is
considered at the receiver. The performance of the proposed
linear predictive receiver is compared with that of an NSD-
based receiver [11]—in the latter case, the parameter ν is
related to the finite-memory parameter introduced in [11]. For
α = 0, the curve corresponding to the proposed pLP receiver
with ν = 5 is the “envelope” of the performance curves of
the NSD-based receiver relative to ν = 1, 2, . . . , 5. For given
values of σ∆ and α, there exists an optimum value of ν that
minimizes the BER in the case of an NSD-based receiver—this
optimal ν reduces for increasing values of σ∆ and α. On the
other hand, the proposed pLP detection algorithm with ν = 5
minimizes the BER for all values of σ∆ and α, provided that
the prediction coefficients are adaptively updated according
to the channel dynamics, i.e., the effective value of σ∆. In
the presence of frequency offset, the advantage of the pro-
posed pLP schemes over an NSD scheme is even more pro-
nounced, as it appears from the curves relative to α = 0.02 and
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Fig. 6. BER of a TCM scheme with 16-QAM. Linear predictive receivers with
various complexity levels are considered. For comparison, the performance of
the equivalent coherent receiver is also shown.

α = 0.05. For the latter value of α, the performance of the
NSD schemes with ν > 1 is appreciably worse than that of the
pLP schemes.

As an example of application of the proposed detection strat-
egy to the case of nonequal energy modulations, we consider
a communication system with an eight-state rate-3/4 trellis
coded modulation (TCM) with 16-QAM and 90◦ rotational
invariance [43]. The BER performance of the system, as shown
in Fig. 6, is investigated for values of the phase jitter standard
deviation σ∆ equal to 0◦ and 5◦, respectively. For comparison,
the performance with the simplified algorithm proposed in
Section II-B is also evaluated. The number of states is kept
fixed to 64 (Q = 1) in all pLP receivers: This corresponds
to a “strong” complexity reduction. Although for σ∆ = 0◦,
the receiver using a prediction order ν = 7 asymptotically
approaches the ideal performance of the coherent receiver (i.e.,
a receiver which is given perfect knowledge of the channel
phase realization), for σ∆ = 5◦, the best performance is ob-
tained with a small prediction order, namely ν = 2. A possible
explanation is that a large prediction order combined with
heavy state reduction is likely to degrade the performance for
large phase jitters. It is also worth observing that a simplified
receiver based on the analysis in Section II-B shows limited
performance loss with respect to the nonsimplified version. The
performance of the proposed receiver could be improved, for
example, by using pilot symbols. The expected improvement
is not lower than that observed in communications over fading
channels [44].

As an example of application of the pLP detection strat-
egy to a transmission scheme based on CPM signaling, we
consider a serially concatenated scheme characterized by an
outer convolutional encoder and an inner Gaussian minimum
shift keying (GMSK) modulator [45]. In particular, we refer to
the Global System for Mobile Communications standard [46],
where the outer code is a 16-state nonrecursive nonsystematic
convolutional code with rate 1/2 and generator matrix

Go(D) = [1 + D3 + D4 1 + D + D3 + D4]. (33)

Fig. 7. BER of a serially concatenated scheme with GMSK and inner linear
prediction with a sampling rate of β = 2 samples per symbol. Various receiver
complexity levels in terms of the parameters ν and Q are considered. For
comparison, the performance of the coherent system is also shown. In all cases,
five decoding iterations are considered.

The outer code and the GMSK modulator are connected
through a length-1024 pseudorandom bit interleaver. At the
receiver side, we consider β = 2 samples per symbol interval.
The receiver is constituted by an inner detector/decoder, using
a pLP-FB algorithm and relative to the CPE, and an outer
decoder relative to the considered convolutional code. The
numerical results are shown in Fig. 7. In all cases, five decoding
iterations are considered at the receiver side. As one can see, for
sufficiently large ν and Q (for instance, ν = 5 and Q = 2), the
performance loss, with respect to an ideal coherent receiver,
which perfectly knows the channel phase, is within 1.2 dB
for σ∆ ≤ 10◦.

We now describe an application of the proposed detection
technique to FB algorithms and iterative detection. We consider
a serially concatenated convolutional code (SCCC) consist-
ing of an outer four-state rate-1/2 code connected through a
length-1024 pseudorandom bit interleaver to an inner four-
state rate-2/3 code [47]. The respective generator matrices are
given by

Go(D) =
[
1 1+D2

1+D+D2

]
Gi(D) =

[
1 0 1+D2

1+D+D2

0 1 1+D
1+D+D2

]
.

(34)

The output symbols are mapped to an 8-PSK constellation
with natural mapping. Pilot symbols are introduced with a rate
of one pilot every 16 information symbols. At the receiver
side, the inner decoder uses the pLP-FB algorithm proposed in
Section II-D and performs joint detection and decoding.

1) The behavior of the BER as a function of the SNR,
for various channel dynamics, is first considered. The
numerical results are shown in Fig. 8. For comparison,
the performance of the corresponding ideal coherent sys-
tem is also shown. In all cases, five decoding iterations
between the component decoders are considered. The
performance of the system for increasing phase jitter
standard deviation σ∆ (from 2◦ to 10◦) and for various
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Fig. 8. BER versus SNR for an SCCC with 8-PSK and inner linear prediction
at the receiver side. Various receiver complexity levels are considered. For
comparison, the performance of the coherent system is also shown. In all cases,
five decoding iterations are considered.

complexity levels, characterized by the couple (ν,Q), is
evaluated. In particular, the performance loss (in terms
of the SNR) with respect to the coherent system, for
(ν,Q) = (6, 2) and σ∆ = 2◦, is about 0.75 dB at a BER
equal to 10−4. The loss increases to 1.4 dB for σ∆ = 10◦.

2) Next, we consider the BER performance as a function of
the phase jitter standard deviation σ∆ for Eb/N0 = 4 dB.
The numerical results are shown in Fig. 9. As for the
results in Fig. 8, in this case as well, five decoding it-
erations and increasing values of the frequency offset are
considered. For ν = 6 and Q = 3, the pLP-based iterative
detection scheme is very robust to phase instabilities up
to σ∆ = 10◦ and α = 0.01. A less complex receiver with
ν = 4 and Q = 2 has still acceptable performance for
low values of σ∆ and α. The performance of the pro-
posed pLP-based iterative receiver degrades significantly
for α ≥ 0.02.

3) Finally, we consider a direct comparison of pLP iterative
detection schemes, which are proposed in this paper,
with noncoherent iterative detection schemes. In particu-
lar, we refer to the noncoherent FB algorithm proposed
in [47] and characterized by the following exponential
metric [11]:

γNC
k (Tk) ∝ P{ak} exp

(
−|ck|2

N0

) I0

(
2
N0

∣∣∑ν
i=0 rk−ic

∗
k−i

∣∣)
I0

(
2
N0

∣∣∑ν
i=1 rk−ic∗k−i

∣∣)
(35)

where I0(x) is the zeroth-order modified Bessel function
of the first type. As a meaningful performance compar-
ison, we analyze the behavior of the BER as a function
of the parameter ν for a given SNR. The results are
shown in Fig. 10. In particular, Eb/N0 = 4 dB, and a
fixed reduced-state parameter Q = 2 is considered for
any value of ν. In other words, in the case where ν = 2,
there is no complexity reduction, whereas for ν ≥ 3, the
state reduction techniques in [39] are used. As one can

Fig. 9. BER as a function of the phase noise standard deviation σ∆ for an
SCCC with 8-PSK, an inner linear predictive detector,Eb/N0 = 4 dB, various
values of frequency offset intensity, and various levels of receiver complexity.
In all cases, five decoding iterations are considered.

immediately see in Fig. 10, the BER of iterative detection
is a nonincreasing function of the prediction order ν
for any phase noise standard deviation. On the contrary,
the BER of noncoherent iterative detection exhibits an
“optimal” value of ν, which decreases for increasing val-
ues of the phase jitter standard deviation. The following
scenarios can be distinguished.
a) For σ∆ = 15◦, the performance with pLP iterative

detection is better than that of noncoherent iterative
detection for any value of ν.

b) For σ∆ ≤ 10◦, the noncoherent iterative detection
schemes outperforms the pLP iterative detection
scheme for ν ≤ 5.

Considering the performance results in Fig. 5, it is possi-
ble to conclude that the use of a strong channel code (like
the considered SCCC) seems to slightly favor detection
strategies based on the exponential metric (35) rather than
on the metric (22). We remark, however, that, by suffi-
ciently increasing the prediction order ν, the performance
of pLP iterative detection schemes becomes identical to
(and eventually outperforms) that of noncoherent iterative
detection schemes. This is confirmed by the results which
will be shown in Fig. 11.

We now consider the application of the proposed pLP-SP
algorithm to perform graph-based joint detection and decoding
of a low-density parity check (LDPC) code. In particular, we
consider the transmission of a (3, 6)-regular LDPC code with
codewords of length 4000 [48]. In Fig. 11, the performance
of the proposed pLP-based graph-based iterative detection
scheme is compared with that of the ideal coherent receiver.
The considered modulation format is binary phase shift key-
ing (BPSK), and the maximum allowed number of decoding
iterations of the pLP-SP algorithm, running over a graph as
in Fig. 3 with flooding schedule [49], is 200. A pilot symbol
every 19 code symbols is added for ambiguity problems. The
phase noise is modeled as a discrete-time Wiener process with
incremental standard deviation over a signaling interval equal to
σ∆ = 6◦, 12◦, and 16◦, respectively. In correspondence to the
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Fig. 10. BER versus parameterN in the case of iterative detection, with (solid
lines) inner linear predictive and (dashed lines) noncoherent detection for an
SCCC with 8-PSK. In all cases, five decoding iterations are considered, and for
ν ≥ 3, the reduced-state parameter Q is fixed to 2.

Fig. 11. BER versus SNR in the case of iterative detection based on the SP
algorithm using the modified factor graph considered in Section II-E for various
values of the Wiener phase noise standard deviation σ∆. The value of ν is
optimized in each individual case.

three considered values of the phase noise standard deviation,
the prediction order ν is set to 20, 18, and 16, respectively. In
all cases, a reduced-state parameter Q = 1 is used: This leads
to almost the same (and relatively low) complexity in all cases.
As a comparison, we also consider the performance of graph-
based noncoherent iterative detection, where the basic metric
computed at a channel factor node has the expression (35). The
parameters ν and Q are set as in the case of graph-based pLP
iterative detection. As one can see from the results in Fig. 11,
the performance of the pLP receiver is slightly better than that
of the noncoherent receiver.

V. ADAPTIVITY OF pLP DETECTION ALGORITHMS

The obtained performance results with pLP detection
algorithms suggest an important and interesting extension to
phase-uncertain channels with time-varying dynamics. In fact,
by applying standard adaptation methods, like those based on

stochastic gradient [36], it is possible to recursively “adapt” the
values of the prediction coefficients (either along the survivors
in a trellis diagram or in the channel factor nodes in a graph).
In particular, this would make pLP detection algorithms very
attractive, especially with respect to noncoherent detection
algorithms, where the “sliding window” of observations used
for metric computation are all weighted in the same way.

1) As can be seen in Figs. 5 and 10, for each specific value
of the channel dynamics, there exists an optimal value
of the parameter ν for noncoherent detection algorithms.
Hence, in order for noncoherent algorithms to be made
adaptive, it would be necessary to dynamically vary ν.
However, this would lead to a corresponding modification
of the trellis diagram used by a detection algorithm.
A trellis diagram should “compress” (low values of ν)
for fast channel variations, whereas it should “expand”
(large values of ν) for slow channel variations. Similarly,
in a factor graph, the degree of a channel factor node
should reduce for low values of ν or increase for large
values of ν. It seems complicated from an implemen-
tation standpoint that a receiver can possess such an
adaptivity.

2) On the other hand, in Figs. 5 and 10, it can easily be seen
that, by adaptively changing the prediction coefficients
according to Fig. 4, increasing the prediction order im-
proves the performance for all channel dynamics. Hence,
for a fixed prediction order (and, thus, fixed receiver
trellis dimension), it would be possible to consider an
external block that periodically, on the basis of a short
sequence of pilot symbols, estimates the current phase
noise statistics and correspondingly updates the predic-
tion coefficients. In the case of trellis-based pLP detection
algorithms, the PSP principle [4] could be applied by
recursively updating the prediction coefficients associated
to a state from the values of the prediction coefficients at
the previous state in the survivor. Adaptive versions of
the pLP detection algorithms considered in this paper are
currently under investigation.

We comment further on the relation between pLP detection
algorithms and noncoherent algorithms. As can be seen in
Fig. 4, for fast channel dynamics, the first prediction coefficient
p1 dominates over the other prediction coefficients. However,
the second prediction coefficient seems almost constant with
respect to the phase noise standard deviation σ∆. This is basi-
cally equivalent to considering a reduced “effective prediction
window,” i.e., it is equivalent to a reduction of the observa-
tion window characterizing a noncoherent algorithm. In other
words, whereas adaptive noncoherent algorithms would reduce
the observation window (weighting in the same way the channel
observations falling inside it), adaptive pLP algorithms would
keep the same observation window but weight different channel
observations, depending on the channel dynamics.

VI. CONCLUSION

In this paper, pLP detection algorithms for phase-uncertain
communications have been proposed. They are based on the
application of linear predictive estimation of the channel
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phasor and exploit the correlation between consecutive channel
phase realizations. In particular, pLP detection algorithms have
been derived for linear coded modulation and extended, by
means of oversampling, to CPM signals. Both trellis-based
MAP sequence detection and trellis-based and graph-based
MAP symbol detection schemes have been considered. The
designed pLP detection algorithms are very robust to phase
noise and uncompensated frequency offset, and the design of
adaptive versions is an attractive research direction. From a
theoretical viewpoint, the obtained results show that linear
predictive detection, although suboptimal in principle, appears
to be effective even with non-Gaussian observables.

APPENDIX

TIME-INVARIANT CHANNEL PHASE WITH

UNIFORM DISTRIBUTION IN [0, 2π)

The case of a time-invariant (TI) random channel phase can
be derived from the Wiener phase process model considered
in Section III by imposing σ∆ = 0. Assuming equal energy
modulation (|ck| = 1,∀ck), the Wiener–Hopf system can be
written as RTIpTI = bTI, with

RTI � N0I +

 1 · · · 1
...

...
...

1 · · · 1

 (36)

where I is the identity matrix, and bTI � [1 · · · 1]T . After
a few simple manipulations, it follows that the solution of
the Wiener–Hopf system consists of a sequence of identical
prediction coefficients, i.e.,

pTI
i =

1
ν + N0

, i ∈ {1, . . . , ν}. (37)

Hence, the phasor estimate becomes

êjθk =
∑ν
i=1 r′k−i∣∣∑ν
i=1 r′k−i

∣∣ =

∑ν
i=1

rk−i

ck−i∣∣∣∑ν
i=1

rk−i

ck−i

∣∣∣ . (38)

The branch metric of a pLP-VA can therefore be written, in the
case of equally likely information symbols, as follows:

λpLP−TI
k (Tk) = −|ck|2

∣∣∣∣∣r′k −
∑ν
i=1 r′k−i∣∣∑ν
i=1 r′k−i

∣∣
∣∣∣∣∣

= −|ck|2
∣∣∣∣∣∣r′k −

∑ν
i=1

rk−i

ck−i∣∣∣∑ν
i=1

rk−i

ck−i

∣∣∣
∣∣∣∣∣∣
2

. (39)

In [47], it is shown that the basic metric used in [11] for a
noncoherent VA can be expressed, in the case of equally likely
information symbols, as

λNSD
k (Tk) = −�

{
rkc

∗
ke

−jθ̂(ν)
k

}
+

|ck|2
2

(40)

where

θ̂
(ν)
k � arg

(
ν∑
i=1

rk−ic
∗
k−i

)
. (41)

After simple manipulations, it can easily be concluded that the
branch metric (40) coincides with (39) in the case of equal
energy modulation (|ck| = 1). More generally, the metric (39)
coincides with the metric of the noncoherent VA proposed in
[26] for QAM signals. Hence, this confirms that the proposed
pLP detection algorithms generalize noncoherent detection al-
gorithms, in the sense that the latter can be interpreted as special
cases of the former.

Considering a generic modulation format (not necessarily
with constant amplitude), for a large SNR, i.e., N0/|ck|2 � 0,
the system matrix RTI can be approximated as follows:

RTI =


N0

|ck−1|2 0 · · · 0
...

...
...

...
0 0 · · · N0

|ck−ν |2

 +

 1 · · · 1
...

...
...

1 · · · 1



�

 1 · · · 1
...

...
...

1 · · · 1

 (42)

which implies pi � 1/ν, i ∈ {1, . . . , ν}. The same phasor es-
timate given by (38) (“exact” in the case of equal energy
modulation) can therefore be approximately used for any lin-
ear modulation format, and the corresponding performance is
expected to be good at a sufficiently large SNR. Hence, one can
conclude that, for a large SNR, the proposed class of detection
algorithms generalizes (to time-varying phase channels) the
noncoherent detection strategy proposed in [26], regardless of
the used modulation format.
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