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Soft-Output Decoding of Rotationally Invariant
Codes Over Channels With Phase Noise
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Abstract—We consider rotationally invariant (RI) trellis-coded
modulations (TCMs) transmitted over channels affected by phase
noise. To describe the main ideas of this paper, we first concentrate,
as a case study, on the simplest RI scheme, namely the differentially
encoded M -ary phase-shift keying (M -PSK) signal. For this prob-
lem, we use the framework based on factor graphs (FGs) and the
sum–product algorithm (SPA), to derive the exact maximum a pos-
teriori (MAP) symbol detection algorithm. By analyzing its prop-
erties, we demonstrate that it can be implemented by a forward–
backward estimator of the phase probability density function, fol-
lowed by a symbol-by-symbol completion to produce the a posteri-
ori probabilities of the information symbols. To practically imple-
ment the forward–backward phase estimator, we propose a couple
of schemes with different complexity. The resulting algorithms ex-
hibit an excellent performance and, in one case, only a limited com-
plexity increases with respect to the algorithm that perfectly knows
the channel phase. The properties of the optimal decoder and the
proposed practical decoding schemes are then extended to the case
of a generic RI code. The proposed soft-output algorithms can
also be used in iterative decoding schemes for concatenated codes
employing RI inner components. Among them, in the numerical re-
sults, we consider repeat-accumulate (RA) codes and other serially
concatenated schemes recently proposed in the technical literature.

Index Terms—Differential encoding, maximum a posteriori
(MAP) symbol detection, repeat-accumulate codes, rotationally in-
variant codes.

I. INTRODUCTION

IN THE last few years, the problem of robust decoding in
channels affected by a time-varying phase has been inves-

tigated for classical coding schemes (see [1] and references
therein), as well as for powerful channel codes to be decoded
iteratively, such as turbo codes or low-density parity-check
codes [2]–[10]. In particular, the authors in [10] developed an
algorithm with a very low complexity and a practically optimal
performance. Some of these algorithms require the insertion of
pilot symbols in order to solve the phase ambiguity problem that
arises in phase-uncertain channels, and to make the iterative de-
coder bootstrap, especially in the case of strong phase noise and
long codeword lengths [10].
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An alternative to pilot symbols, that avoids the decrease of the
effective information rate due to pilot insertion, is represented
by the use of a rotationally invariant (RI) code [11]–[14], such
as a differential code [15]. An inner differential encoder is used
as an inner component in most of the serially concatenated
RI schemes recently proposed in the literature [16]–[19]. By
using an equivalent terminology, an inner accumulator, is also a
component of repeat-accumulate (RA) codes [20], [21].

In principle, the algorithms described in [6]–[10] can be used
for RI coding schemes. However, they have a main drawback:
they perform separate detection and phase tracking, namely, at
every iteration an instance of a soft-input soft-output (SISO) de-
coding algorithm for the RI code, for example implemented by
means of a Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [22],
the execution of the code-aware phase tracking algorithm (which
takes advantage from the a posteriori probabilities coming from
the BCJR), and finally, another execution of the BCJR, are per-
formed. Hence, they are characterized by a higher latency, and
do not exploit the code structure but only the soft outputs pro-
duced by the decoder, thus requiring the insertion of (a minimal
amount of) pilot symbols to bootstrap.

On the contrary, the algorithms in [2]–[5] can be designed
to jointly perform the decoding of the RI and the detection in
the presence of the unknown time-varying phase. In [2], after a
proper discretization of the phase space, a super-trellis, taking
into account the RI code trellis and the phase model, is built and
the BCJR algorithm is run over it. In [3] and [4], the channel
phase is a priori averaged out, but the resulting algorithm still
works on an expanded trellis. Finally, the algorithm in [5] can
work on the trellis of the RI encoder or on an expanded trel-
lis, and multiple nonBayesian phase estimators are used in the
forward and backward recursions of the algorithm.

In this paper, to illustrate the main concepts behind the deriva-
tion of the proposed algorithms, we first consider the problem
of a differentially encoded M -ary phase-shift keying (M -PSK)
signal transmitted over a channel affected by phase noise. The
approach is Bayesian, i.e., the channel phase is modeled as a
stochastic process with known statistics. Although the imple-
mentation of the exact maximum a posteriori (MAP) sym-
bol detection algorithm is impractical, we analyze its prop-
erties, finding that it can be implemented by using a single
forward–backward estimator of the phase probability density
function (pdf), followed by a symbol-by-symbol completion to
produce the a posteriori probabilities of the information sym-
bols. This algorithm obviously works in a noniterative joint
decoding/phase tracking fashion, and does not require the inser-
tion of pilot symbols. Then, by using the canonical distribution
approach [23], we develop a couple of practical schemes to
implement the forward–backward estimator.
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The resulting algorithms may be used as SISO blocks for
iterative detection/decoding in concatenated schemes using an
inner differential encoder. We also describe the extension of the
proposed technique to generic RI codes and show the relevant
numerical results. Although in the numerical results, we mainly
concentrate on iteratively decodable concatenated codes, since
the problem of detection in the presence of phase noise is made
harder by the low operating SNR, the proposed schemes can also
be adopted for the noniterative joint detection and decoding of
a single (nonconcatenated) RI code.

The remainder of this paper is organized as follows. In
Section II, we provide the system model. By means of the
framework based on factor graphs (FGs) and the sum–product
algorithm (SPA) [24], in Section III, the exact MAP symbol
detection algorithm is derived and its properties analyzed. The
low-complexity algorithms, based on the approximated versions
of the exact detection strategy, are described in Section IV. The
extension to RI codes is discussed in Section V. The perfor-
mance of the proposed schemes, obtained through computer
simulations, is assessed in Section VI, and finally, in Section VII,
some conclusions are drawn.

II. SYSTEM MODEL

We consider the transmission of a sequence of K + 1 com-
plex modulation symbols c = {ck}K

k=0 , belonging to an M -
PSK alphabet {ej2π/M i, i = 0, 1, . . . ,M − 1}, over an additive
white Gaussian noise (AWGN) channel affected by an unknown
time-varying phase. Symbols {ck} are obtained from informa-
tion symbols {ak}K

k=1 , assumed independent, but not identically
nor uniformly distributed, and belonging to the same M -PSK
alphabet, through differential encoding, i.e.,

ck = ck−1ak . (1)

Symbol ck−1 is also the encoder state. Since the transmission
over a channel affected by phase noise will be considered, we
may assume that the initial symbol c0 is unknown to the receiver
due to the initial channel phase uncertainty. Assuming Nyquist
transmitted pulses, matched filtering, phase variations to be slow
enough so that no intersymbol interference arises, the discrete-
time baseband received signal is given by

rk = ckejθk + wk , k = 0, 1, . . . , K (2)

where the noise samples w = {wk}K
k=0 are independent and

identically distributed (i.i.d.), complex, circularly symmetric
Gaussian random variables, each with zero mean and variance
2σ2 , σ2 being the variance per component.

In the derivation of the proposed algorithms, for the time-
varying channel phase θk we assume a random-walk (Wiener)
model θk+1 = θk + ∆k , where {∆k} are real i.i.d. Gaussian
random variables with zero mean and standard deviation σ∆ ,1

and θ0 is uniformly distributed in [0, 2π). In the derivation of the
proposed algorithms, the value of σ∆ is assumed to be known

1Note that, since the channel phase is defined modulo 2π , the pdf p(θk+1 |θk )
can be approximated as Gaussian in θk+1 , with mean θk and variance σ2

∆ , only
if σ∆ � 2π .

Fig. 1. Factor graph for the considered problem.

to the receiver. The sequence of phase increments {∆k} is sup-
posed to be unknown to both the transmitter and the receiver,
and statistically independent of c and w. The assumption on the
phase noise model will be relaxed in the numerical results.

III. MAP SYMBOL DETECTION OF DIFFERENTIALLY ENCODED

PSK SIGNALS

Here, we derive the exact MAP symbol detection algorithm
for the considered problem by using a properly defined FG and
the SPA [24].

Let us consider the joint distribution of vectors a, c, and
θ = {θk}K

k=0 , given r = {rk}K
k=0 :2

p(a, c,θ|r) ∝ P (a)P (c|a)p(θ)p(r|c,θ)

= P (a)P (c|a)p(θ)
K∏

k=0

p(rk |ck , θk ) (3)

where

p(rk |ck , θk ) =
1

2πσ2 exp
{
−|rk − ckejθk |2

2σ2

}
. (4)

We can further factor the terms P (a), P (c|a), and p(θ) in (3) as

P (a) =
K∏

k=1

P (ak ) (5)

P (c|a) = P (c0)
K∏

k=1

I(ck , ck−1 , ak ) (6)

p(θ) = p(θ0)
K∏

k=1

p(θk |θk−1) (7)

where I(ck , ck−1 , ak ) is an indicator function, equal to 1 if ak

and the differential symbols ck and ck−1 respect the constraint
(1), and zero otherwise. Since the SPA is defined up to scaling its
messages by positive factors, independent of the variables repre-
sented in the graph, from now on, we take the notational liberty
of using the equality symbol “=” instead of the proportionality
symbol “∝.” Substituting (5)–(7), into (3), clustering [24] the
variables ck and θk , we obtain the FG in Fig. 1. Since this FG
does not contain cycles, the application of the SPA to it, with

2We still use the symbol p(·) to denote a continuous pdf with some discrete
probability masses.
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a noniterative forward–backward schedule, produces the exact
a posteriori probabilities of the symbols {ak}. Taking into ac-
count the probabilistic meaning of the messages in the graph,
defining rk2

k1
= {rk}k2

k=k1
(hence r = rK

0 ), the forward and
backward recursions and the completion necessary to compute
the a posteriori probabilities of the symbol ak (or, equivalently,
the extrinsic information P (ak |r)/P (ak )) are, respectively,

p(ck , θk |rk
0 )=p(rk |ck , θk )

∑
ak

P (ak ) ·
∫

p(ck−1

= cka∗
k , θk−1 |rk−1

0 )p(θk |θk−1)dθk−1

p(ck−1 , θk−1 |rK
k−1)=p(rk−1 |ck−1 , θk−1)

∑
ak

P (ak ) ·
∫

p(ck (8)

= ck−1ak , θk |rK
k )p(θk |θk−1)dθk

P (ak |r)
P (ak )

=
∑
ck −1

∫∫
p(ck−1 , θk−1 |rk−1

0 ) (9)

·p(ck =ck−1ak , θk |rK
k )p(θk |θk−1)dθk−1dθk.

(10)

The initializations for the forward and backward recursions are
p(c0 , θ0 |r0) = p(r0 |c0 , θ0) and p(cK , θK |rK ) = p(rK |cK , θK )

Equations (8)–(10) can be equivalently obtained by using a
(more involved) probabilistic derivation. In fact, the received
signal is the output of a Markov source observed through
an AWGN channel. As a consequence, this detection prob-
lem is the same as in [22], with the only difference that the
“state” of the Markov source is defined, in this case, as the
joint mixed discrete-continuous random variable (ck−1 , θk−1).
Hence, a forward-backward algorithm similar to that in [22]
results.

Let us now consider (8). We may decompose

p(ck , θk |rk
0 ) = p(θk |ck , rk

0 ) P (ck |rk
0 ). (11)

The first term of the right-hand side considers the distribution
of the unknown phase, at time k, given the past and present
received samples, and the state of the differential encoder, while
the second term is the state probability that is exactly the same
probability mass function (pmf) evaluated in case of detection
in the presence of a known phase. In practice, the algorithm
performs a per-state Bayesian estimation of the channel phase
during the forward recursion. A similar decomposition can be
clearly accomplished for the backward pdf (9).

A proof of the following three properties is given in the
Appendix.

Property 1: Irrespective of the values of the a priori infor-
mation {P (ak )}, the state probabilities are P (ck |rk

0 ) = const.
and P (ck |rK

k ) = const., for each value of k. Hence, it is not
necessary to evaluate them.

Property 2: The pdfs p(θk |ck , rk
0 ), for different values of ck ,

differ for a shift of a multiple of 2π/M , i.e.,

p(θk |ck = ej 2 π
M i , rk

0 ) = p

(
θk +

2π

M
i|ck = ej0 , rk

0

)
. (12)

An identical result holds for the backward pdf p(θk |ck , rK
k ).

Property 3: The summation over ck−1 in the completion (10)
disappears because all the M terms of the summation are equal.
Hence, only one of them needs to be evaluated.

From these three properties, it follows that, for each time
epoch k, only the pdfs p(θk |ck = 1, rk

0 ) and p(θk |ck = 1, rK
k )

need to be evaluated. By defining αk (θk ) ∆= p(θk |ck = 1, rk
0 )

and βk (θk ) ∆= p(θk |ck = 1, rK
k ), the forward-backward algo-

rithm described by (8)–(10) simplifies to

αk (θk ) = p(rk |ck = 1, θk )
M −1∑
i=0

P
(
ak = ej 2 π

M i
)

(13)

·
∫

αk−1

(
θk−1 −

2π

M
i

)
p(θk |θk−1)dθk−1

βk−1(θk−1) = p(rk−1 |ck−1 = 1, θk−1)
M −1∑
i=0

P
(
ak = ej 2 π

M i
)

·
∫

βk

(
θk +

2π

M
i

)
p(θk |θk−1)dθk (14)

P (ak = ej 2 π
M i |r)

P (ak = ej 2 π
M i)

=
∫∫

αk−1 (θk−1) βk

(
θk +

2π

M
i

)

·p(θk |θk−1)dθk−1dθk . (15)

Hence, we have a single forward–backward estimator of the
phase pdf and a final completion.

This exact MAP symbol detection strategy involves integra-
tion and computation of continuous pdfs, and it is not suited
for direct implementation. A solution for this problem is sug-
gested in [23] and consists of the use of canonical distributions,
i.e., the pdfs αk (θk ) and βk (θk ) computed by the algorithm are
constrained to be in a certain “canonical” family, characterized
by some parameterization. Hence, the forward and backward
recursions reduce to propagating and updating the parameters
of the pdf rather than the pdf itself. In the next section, two
algorithms based on this approach will be described.

IV. LOW-COMPLEXITY ALGORITHMS

A. First Algorithm

A very straightforward solution to implement (13) and (14)
is obtained by discretizing the channel phase [2], [10]. This ap-
proach is also similar to that proposed in [25], for flat fading
channels. In this way, the pdfs αk (θk ) and βk (θk ) become
pmfs and the integrals in (13)–(15) become summations. When
the number L of discretization levels is large enough, at least
L = 8M [2], the resulting algorithm becomes optimal (in
the sense that its performance approaches that of the exact
algorithm). Hence, it may also be used to obtain a perfor-
mance benchmark and will be denoted as “discretized-phase
algorithm” (dp-algorithm). Note that with respect to the algo-
rithm proposed in [2], we are exploiting here the properties in
Section III to reduce the algorithm complexity. The performance
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of the described dp-algorithm is, therefore, identical for a given
value of L, to that of the algorithm proposed in [2], but with a
lower complexity.

B. Second Algorithm

By observing that the Tikhonov distribution ensures a very
interesting performance with a low complexity when used as a
canonical distribution in detection algorithms for phase noise
channels, as demonstrated in [10], and observing the form of
the pmfs obtained by adopting the described dp-algorithm, pdfs
αk (θk ) and βk (θk ) are constrained to have the following ex-
pressions

αk (θk ) =
M −1∑
m=0

q
(m )
f ,k t

(
zf,k ej 2 π

M m ; θk

)
(16)

βk (θk ) =
M −1∑
m=0

q
(m )
b,k t

(
zb,k ej 2 π

M m ; θk

)
(17)

where, for each time index k, {q(m )
f ,k ,m = 0, 1, . . . ,M − 1}

({q(m )
b,k ,m = 0, 1, . . . ,M − 1}) and zf,k (zb,k ) are, respectively,

M real coefficients and one complex coefficient, and t(z; θ) is
the Tikhonov distribution with complex parameter z defined as

t(z; θ) =
eRe[z e−j θ ]

2πI0(|z|)
(18)

I0(x) being the zeroth-order modified Bessel function of the
first kind.

Three approximations are now introduced in order to derive
a low complexity detection algorithm. A justification of these
approximations is represented by the excellent performance of
the resulting algorithm.

1) the convolution of a Tikhonov and a Gaussian pdf is still
a Tikhonov pdf, with a modified complex parameter [10],
[26], i.e.,∫

t(z;x)g(x, ρ2 ; y)dx � t

(
z

1 + ρ2 |z| ; y
)

(19)

where g(x, ρ2 ; y) represents a Gaussian pdf in y with mean
x and variance ρ2

2) Since, for large arguments, I0(x) � ex , we approximate

eRe[z e−j θ ] � 2πe|z |t(z; θ). (20)

3) Let z be a complex number, {um ,m = 0, 1, . . . ,M − 1} a
set of complex numbers, and {qm ,m = 0, 1, . . . ,M − 1}
a set of real numbers such that

∑
m qm = 1, then the

following approximation holds, especially when |z| is
sufficiently larger than each |um | or when there is an m
such that qm � qm , ∀m �= m:∑

m

qm t
(
z ej 2 π

M m + um ; θ
)
�

∑
m

qm t
(
w ej 2 π

M m ; θ
)

(21)
where w = z +

∑
� q�u�e

−j 2 π
M � .

We now derive the reduced-complexity forward recursion.
Substituting (4) into (13), assuming that αk−1(θk−1) has the

canonical expression (16), and using approximation (19), we
obtain

αk (θk ) = e
1

σ 2 Re[rk e−j θ k ]
M −1∑
i=0

M −1∑
m=0

P
(
ak = ej 2 π

M i
)

· q(m )
f ,k−1t

(
z′f ,k−1 ; θk − 2π

M
(m + i)

)
(22)

where z′f ,k−1 = zf,k−1/(1 + σ2
∆ |zf,k−1 |). Now, by changing the

first summation index in n = (i + m)modM , using (18) and (20),
and discarding irrelevant multiplicative factors, we have

αk (θk ) =
M −1∑
n=0

[
M −1∑
i=0

P
(
ak = ej 2 π

M i
)

q
(n−i)m o d M

f,k−1

]

· e

∣∣∣z ′
f , k −1 e

j 2 π
M

n + r k
σ 2

∣∣∣
t
(
z′f ,k−1e

j 2 π
M n +

rk

σ2 ; θk

)
. (23)

This resulting αk (θk ) is not in the constrained form (16). How-
ever, by applying the approximation (24), we obtain the fol-
lowing updating equations for the parameters of the canonical
distribution (16)

q
(m )
f ,k ∝

[
M −1∑
i=0

P
(
ak = ej 2 π

M i
)

q
(m−i)m o d M

f,k−1

]
,

· e

∣∣∣z ′
f , k −1 e

j 2 π
M

m + r k
σ 2

∣∣∣
, m = 0, . . . , M − 1 (24)

zf,k = z′f ,k−1 +
rk

σ2

M −1∑
m=0

q
(m )
f ,k e−j 2 π

M m . (25)

It is worth noticing that, before the evaluation of the coefficient
zf,k , the M real coefficients q

(m )
f ,k evaluated through (24) have

to be normalized so that their sum is 1. Since there is no a
priori knowledge of the initial phase or of the initial differential
symbol, the following initial values of the recursive coefficients
result

q
(m )
f ,0 = δm zf,0 =

r0

σ2 (26)

where δm represents the Kronecker delta.
Similarly, it is also possible to find the backward recursive

equations. Due to the lack of space, we report only the final
expressions here

q
(m )
b,k−1 ∝

[
M −1∑
i=0

P
(
ak = ej 2 π

M i
)

q
(m+i)m o d M

b,k

]

· e

∣∣∣z ′
b , k

e
j 2 π

M
m +

r k −1
σ 2

∣∣∣
, m = 0, . . . , M − 1 (27)

zb,k−1 = z′b,k +
rk−1

σ2

∑
m

q
(m )
b,k−1e

−j 2 π
M m (28)

having defined z′b,k = zb,k /(1 + σ2
∆ |zb,k |) . The initial values of

the backward coefficients are

q
(m )
f ,K = δm zf,K =

rK

σ2 . (29)
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Finally, substituting (16) and (17) into (15) and discarding irrel-
evant constants, the extrinsic information is evaluated as

P (ak = ej 2 π
M i |r)

P (ak = ej 2 π
M i)

=
∑
m

∑
�

q
(m )
f ,k−1q

(�)
b,k

· I0
(∣∣∣z′f ,k−1 + zb,k ej 2 π

M (�−m−i)
∣∣∣) . (30)

In summary, this detection algorithm is based on three steps:
a forward recursion in which, for each time epoch k,M real and
one complex coefficients are evaluated based on the summa-
tions (24) and (25) of M terms, a backward recursion, based on
(27) and (28), which proceeds similarly, and finally, a comple-
tion (30), which computes M values of extrinsic information,
each through a sum of M 2 terms (although only M of them are
numerically significant). This algorithm, which will be denoted
as “algorithm based on Tikhonov parameterization” (Tikh algo-
rithm), entails a limited complexity increase with respect to the
known-phase MAP symbol detector [22]. In fact, to implement
this latter algorithm, we must compute, in each recursion, M
real quantities (instead of M real and 1 complex parameters, as
in the Tikh algorithm) through summations of M terms and, in
the completion, M extrinsic information values each through a
sum of M terms.

V. EXTENSION TO RI CODES

Differential encoding belongs to the wider class of RI codes,
introduced by Wei [11], [12], whose ideas were successively
extended by other authors [13], [14]. For example, the necessary
and sufficient conditions for a code and an encoder to posses
such a property were presented in [13]. Although most of the
RI concatenated codes in the literature have an inner differential
component code [16]–[21], we now introduce the main concepts
behind RI codes and encoders, as well as possible extensions of
the proposed algorithms to RI codes.

We say that a sequence of modulation symbols is the ro-
tated version of another sequence if every symbols of the first
sequence is the rotated version of the symbol of the second
sequence in the same position (i.e., componentwise rotation).
A code is said to be RI if there exists an angle Θ (the base
angle), such that every code sequence, rotated by any multiple
of the base angle, is still a code sequence. Furthermore, if all
the rotated versions of a given code sequence are associated to
the same information sequence, the encoder is said to be RI. As
demonstrated in [13], an RI encoder cannot be feedforward. This
is a favorable property for serially concatenated schemes whose
inner encoder must be recursive to have an interleaver gain.

Let us consider an S-state RI encoder whose input symbol,
output symbol, and trellis state at discrete time k will be denoted
by ak , ck , and sk , respectively. The “next-state” and output
functions of the encoder will be denoted by sk+1 = η(sk , ak )
and ck = ψ(sk , ak ), respectively. Since the encoder is recursive,
for any given state sk+1 and input symbol ak , it is possible to
obtain the state sk , i.e., sk = η−1(sk+1 , ak ). We will denote
by a(n) the nth symbol of the input alphabet (with cardinality
N ) and by c(m ) the mth symbol of the output alphabet (with
cardinality M ≥ N ).

All trellis states of an RI encoder can be partitioned into
orbits [13], [14] of size P ≥ 1, where the orbit is defined as
the set of “equivalent” states (in the sense specified in [13]
and [14]) and thus, the total number of states of the encoder
must be a multiple of P . It is worth noticing that, for the M -PSK
differential encoder (which is clearly an RI encoder), P = M ,
that is, there exists only one orbit. Hence, the state space can
be partitioned as (Σ(0) ,Σ(1) , . . . ,Σ(S/P −1)) where each Σ(p)

collects all states belonging to the pth orbit. We will denote by
σ

(p)
0 a reference state of the pth orbit (which can be whatever

state).
Let us define ρ�(x) = xej�Θ , that is, ρ�(x) denotes a rotation

of x by a multiple of the base angle. It is worth noticing that,
from the definition of P , ρP (·) is an identity function. From the
rotationally invariance of the encoder, with a proper labeling of
the trellis states, it follows that [13]

ρ�(sk+1) = η (ρ�(sk ), ak )

ρ�(sk ) = η−1 (ρ�(sk+1), ak )

ρ�(ck ) = ψ (ρ�(sk ), ak ) (31)

for any valid sk , sk+1 , ak and ck .
Although the mathematical details are not reported here, we

can prove that properties similar to the ones in Section III hold
for a generic RI encoder. For example, in the forward recursion,
for a given time epoch k, a single message for each orbit has to
be updated. This message will be

α
(p)
k (θk ) ∆= p(θk |sk+1 = σ

(p)
0 , rk

0 ), p = 0, 1, . . . ,
S

P
− 1.

(32)
The forward recursion turns out to be

α
(p)
k (θk ) =

N −1∑
n=0

P
(
ak = a(n)

)
p

(
rk |c(m ) , θk

)

·
∫

α
(q)
k−1

(
θk−1 + Θ�

)
p(θk |θk−1)dθk−1 (33)

where �, and q are such that ρ�(σ
(q)
0 ) = η−1

(
σ

(p)
0 , a(n)

)
and

c(m ) is the modulation symbol associated with this transition,
i.e., c(m ) = ψ(ρ�(σ

(q)
0 ), a(n)). For the backward recursion and

the completion, it turns out that

β
(p)
k−1(θk−1) =

N −1∑
n=0

P
(
ak = a(n)

) ∫
β

(q)
k (θk + Θ�)

· p
(
rk |c(m ) , θk

)
p(θk |θk−1)dθk (34)

P
(
ak = a(n) |r

)
P

(
ak = a(n)

) =
S/P −1∑

p=0

∫ ∫
α

(p)
k−1(θk−1)β

(q)
k (θk + Θ�)

· p
(
rk |c(m ) , θk

)
p(θk |θk−1)dθk−1dθk (35)

where, in this case, �, and q are such that ρ�(σ
(q)
0 ) =

η(σ(p)
0 , a(n)) and c(m ) is the modulation symbol associated with

this transition, i.e., c(m ) = ψ(σ(p)
0 , a(n)). It is worth noticing
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Fig. 2. Performance for a serially concatenated scheme composed by a
rate-2/3 convolutional encoder and a differential encoder. The binary phase-
shift keying (BPSK) modulation is considered and the phase noise follows the
Wiener model with σ∆ = 6◦.

that (33)–(35) represent a generalization to the case of general
RI encoders of (13)–(15), respectively.

In this way, the dp-algorithm introduced in Section IV-A can
be generalized to work with every RI encoder, irrespective of the
used modulation format. On the other hand, the Tikh algorithm
introduced in Section IV-B can be straightforwardly generalized
as well, at least for single-orbit encoders (namely, when S = P ).
For RI encoders with more than one orbit, approximation (21)
must be extended in order to derive a Tikh-algorithm for this sce-
nario also (this approach is not pursued here for a lack of space).

VI. NUMERICAL RESULTS

In this section, the performance of the proposed algorithms
is assessed by computer simulations in terms of bit error rate
(BER) versus Eb/N0 , Eb being the received signal energy per
information bit and N0 the one-sided noise power spectral den-
sity. The sequence a is now assumed as a codeword of an outer
channel code. After interleaving, these code symbols are then
further encoded by means of an inner RI code.

In particular, in Fig. 2, we consider a serially concatenated
scheme composed of a convolutional code (CC), an interleaver,
and a differentially encoded BPSK. The CC is a rate-1/2 non-
recursive nonsystematic code with four states and generators
(5, 7) (octal notation). A uniform puncturing of its parity bits is
used to obtain a rate-2/3 code. The codewords are composed of
16 200 bits. The proposed schemes are employed to perform
joint detection and decoding of the differential code. The pro-
duced soft outputs are then exchanged, in an iterative way, with
the soft-output decoder for the CC, and a maximum of 15 itera-
tions of the overall scheme is allowed. The phase noise affecting
the channel is modeled as a Wiener process with σ∆ = 6◦. From
Fig. 2, it can be observed that, despite the presence of this strong
phase noise, the low-complexity Tikh algorithm exhibits only
a negligible performance loss with respect to the known-phase
case and to the practically optimal dp-algorithm (with L = 16).

For comparison purposes, we show (curve labeled Tikh-sep-
algorithm) the performance of the algorithm in [10]. This algo-
rithm is also based on Tikhonov parameterization, but performs
a phase tracking separate from the decoding of the differential

code, and thus does not exploit the differential code constraints.
In order for this algorithm to bootstrap, a pilot symbol for every
20 code symbols has been inserted in the frame, thus decreasing
the effective information rate. This results in an increase in the
required SNR of about 0.21 dB. Despite the presence of pilot
symbols that help the algorithm in tracking the phase changes,
the relevant performance loss is significant. The reason is related
to the weakness of the concatenated code. In fact, a stronger code
would be able to provide, after a few iterations, reliable deci-
sions on some code symbols, thus providing additional pilot
symbols to help the phase tracking.

We also show the performance of two other algorithms previ-
ously proposed in the literature. The first one is based on linear
prediction [4] and is an improvement of the noncoherent algo-
rithm described in [3]. It works on an expanded trellis of Mν−1

states (2ν−1 in this case of BPSK), where ν is the prediction
order. Although complexity reduction techniques such as those
described in [27] can be adopted, the full-complexity receiver
has been considered, since we are interested in the best achiev-
able performance. In Fig. 2, the case of ν = 5 is considered, and
practically, no performance improvement is obtained with larger
values of ν. As can be observed, although this algorithm still
exploits the knowledge of the channel statistics and works on
an expanded trellis, its performance is far from that of the pro-
posed algorithms. A large performance loss is also observed for
another algorithm in the literature, namely, the A-SISO-MULT
algorithm proposed in [5]. The performance curve shown in
Fig. 2 refers to the A-SISO-MULT algorithm working on the
trellis of the differential code. Perfect knowledge of the channel
phase at the beginning and end of each codeword is assumed.
This can be obtained, at least in the absence of phase noise, by
inserting a sufficient number of known symbols although, for
simplicity, the relevant decrease in the effective information rate
has not been considered. This algorithm does not employ the
knowledge of the channel phase statistics. However, the perfor-
mance loss is not due to this fact, but due to the error propagation
in the multiple phase estimates based on the per-survivor pro-
cessing. In fact, if we assume, in the phase estimation process,
a perfect knowledge of the transmitted symbols, that is, we con-
sider a perfectly initialized genie-aided phase-locked loop (PLL)
with an optimized equivalent bandwidth, we practically obtain
the same performance obtained with the proposed algorithms
whose excellence is, hence, further demonstrated.

In Fig. 3, we consider a nonsystematic rate-1/2 irregular RA
code [20], [21] mapped on a quartenary PSK (QPSK) mod-
ulation before the differential encoder. The codewords have
length of 880 symbols, and a maximum of 25 iterations is
allowed. The RA code has been designed following the ap-
proach in [28], and the relevant degree distributions are re-
ported in Table I. The statistics of the phase noise are those
characterizing consumer-grade equipment operating at the car-
rier frequency of the second-generation digital video broadcast-
ing satellite system (DVB-S2). A complete description of this
DVB-S2 compliant phase noise model can be found in [10]
and references therein. In Fig. 3, the case of a baud rate of 10
MBd has been considered. Although the Wiener model does not
apply to this case, the proposed algorithms work well with a
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Fig. 3. Performance for an optimized RA code mapped over a QPSK modu-
lation. The DVB-S2 phase noise model is considered (10 MBd).

TABLE I
DEGREE DISTRIBUTIONS OF THE EMPLOYED RA CODE

properly optimized value of σ∆ = 2.5◦. From the figure, it can
be observed that the Tikh-algorithm has about the same perfor-
mance of the much more complex dp-algorithm (with L = 32),
and the two algorithms exhibit a loss with respect to the known
phase case of only 0.2 dB. We would like to point out that this
very good result has been obtained without the insertion of pilot
symbols. The other algorithms in the literature are not reported
here, since they are characterized by a larger performance loss.

We would like to discuss the role of the parameter σ∆ . In the
derivation of the proposed algorithms this parameter has been
assumed to be known to the receiver, whereas in a practical
implementation, only its nominal value is known. However, the
phase noise statistics depend on the characteristics of the local
oscillators whose variations are limited and, on the other hand,
the sensitiveness of the receiver to this parameter is very low.
This is shown for the Tikh algorithm with reference to the system
whose performance is reported in Fig. 3. In fact, as already
mentioned, the optimal value of σ∆ , optimized by means of
computer simulations, is σ∆ = 2.5◦. However, the performance
loss for σ∆ = 5◦ is negligible, whereas it is lower than 0.3 dB
for σ∆ = 0.5 degrees (see Fig. 3). As a final remark, we would
like to remember that, in other receivers in the literature, there
are parameters to be optimized for the channel at hand. For
example, the equivalent bandwidth in a classical PLL must be
optimized for the phase noise under consideration.

We now consider another RI serially concatenated scheme
recently proposed in [17] and [18], which is again based on an
inner differential encoder. This scheme is, in brief, composed of
an outer rate-2/3 parity code, an “S-random” interleaver with
parameter S = 10 [29] and, after a mapping onto an 8-PSK con-
stellation, a differential encoder. The interleaver size is of 15 000
bits and the employed 8-PSK constellation exploits a labeling
properly optimized in order to reduce the error floor [17], [18].

Fig. 4. Performance for a serially concatenated scheme composed by a
rate-2/3 parity code mapped onto an 8-PSK constellation and a differential
encoder. The DVB-S2 phase noise model is considered (10 MBd).

Up to 50 iterations are allowed for the iterative decoder. The
phase noise model is identical to the one considered in Fig. 3,
namely, the DVB-S2 compliant phase noise model assuming a
baud rate of 10 MBd. A simple algorithm for detection in the
presence of phase uncertainties has also been proposed in [17],
[18]. This algorithm will be denoted as “Howard–Schlegel algo-
rithm” (HS-algorithm) and is an improvement, for time-varying
channels, of the algorithm based on expectation–maximization
in [8]. Although this algorithm performs a detection separate
from the decoding of the differential code, in [17] and [18], it
is shown that no pilot symbols are necessary to bootstrap. For
the considered phase noise, a decay factor [17], [18] α = 0.99,
optimized by simulations, has been used. In Fig. 4, we show the
performance of the proposed Tikh-algorithm (with σ∆ = 0.6◦)
and that of the HS-algorithm. The Tikh-algorithm clearly out-
performs the one by Howard and Schlegel in this scenario, since
this latter algorithm exhibits a very large error floor and is not
able to get down below a BER of 10−4 .

To further highlight the properties of the compared detection
schemes, we also use the recently proposed technique known as
extrinsic information transfer (EXIT) chart analysis [30], which
is a powerful tool designed to evaluate the system performance
of concatenated schemes in the waterfall region. This technique
has been widely used to numerically evaluate (in a way much
faster than the Monte Carlo BER simulations) the convergence
threshold of iteratively decoded concatenated systems [10] and
to design error-correcting codes [28], [31] with low thresholds.
Fig. 5 represents the average mutual information (AMI) at the
output of the inner decoder (Iout,inner) as a function of the AMI
at its input (Iin,inner), for the case of perfect knowledge of the
channel, the Tikh-algorithm, and the HS-algorithm. All curves
except one (specified) refers to Eb/N0 = 4 dB. The EXIT chart
is completed by the curve of the input AMI of the decoder
for the outer code (Iin,outer) as a function of the AMI at its
output (Iout,outer). The EXIT analysis clearly shows that, at
Eb/N0 = 4 dB, both the known-phase detector and the proposed
Tikh-algorithm are above threshold (i.e., open tunnel), while the
tunnel is closed for the algorithm proposed in [17], [18] also
at Eb/N0 = 4.5 dB. It is also interesting to note that, for large
enough extrinsic information coming from the outer decoder,



2132 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 11, NOVEMBER 2007

Fig. 5. EXIT chart for the same serially concatenated scheme of Fig. 4 and
the same phase noise model. All curves except one (specified) were obtained at
Eb /N0 = 4 dB.

Fig. 6. Performance for a SC-TCM scheme composed of a rate-2/3 CC and
an RI 16-QAM TCM encoder. The phase noise follows the Wiener model with
σ∆ = 1◦.

when all symbols practically become pilots, the proposed Tikh-
algorithm behaves approximately as the known-phase case, that
is, the phase estimation becomes extremely reliable. On the other
hand, this valuable property is missing in the HS-algorithm.

We now consider the extension of the proposed algorithms to
a generic RI code. In Fig. 6, we consider the RI serially con-
catenated TCM denoted as “Code 2” in [14, p. 2004]. In this
scheme, a rate-2/3 outer convolutional code is concatenated,
through an “S-random” interleaver with parameter S = 10 [29],
to an RI-TCM code over the 16-quadrature amplitude modu-
lation (16-QAM). The overall system efficiency is 2 bits per
channel use, and the length of the employed interleaver is of
12 288 bits. At the receiver, a maximum of 25 iterations is al-
lowed. In the figure, for a Wiener phase noise with σ∆ = 1◦, we
show the performance of the dp-algorithm using L = 32, and
also of the Tikh-algorithm and the Tikh-sep-algorithm when one
pilot for every 20 code symbols has been inserted to allow the
algorithm bootstrap, and of the A-SISO-MULT working on the
code trellis and with a perfect initialization of the forward and
backward recursions. Due to the approximations involved in the
derivation of the proposed algorithms, at the receiver side, it is
better to adopt σ∆ = 2.2◦. As can be seen, our algorithms out-
perform the A-SISO-MULT that has a high error floor, and de-

spite the absence of the pilot symbols, for this powerful code, the
Tikh-algorithm has a much better performance than that of the
Tikh-sep-algorithm. The Tikh-algorithm exhibits a loss of only
0.05 dB with respect to the dp-algorithm with a significant com-
plexity reduction, since only one complex and four real param-
eters must be updated in the forward and backward recursions.

VII. CONCLUSION

In this paper, the problem of MAP symbol detection for RI
trellis-coded modulations transmitted over channels affected by
phase noise has been faced. A simplified, although exact, version
of the algorithm has been derived based on a reduced number
of forward–backward estimators of the phase pdf and a final
completion. For the practical implementation of the forward–
backward estimators, two algorithms have been proposed. The
first one is based on the phase discretization and becomes opti-
mal for a large enough number of discretization levels. To reduce
the computational complexity, some approximations have been
introduced in order to derive a new algorithm which exhibits
a very good performance and a lower complexity. For serially
concatenated RI schemes, an accurate performance compari-
son with previously proposed solutions as well as with ideal
receivers has been accomplished.

APPENDIX

In this appendix, we prove the three properties introduced in
Section III. For the first two properties, we concentrate on the
forward recursion, since the extension to the backward recursion
is trivial. The forward recursion can be expressed as [by using
(11) in (8)]

P (ck |rk
0 )p(θk |ck , rk

0 )

= p(rk |ck , θk )
∑
ak

P (ak )
∫

p(θk |θk−1)

·P (ck−1 = cka∗
k |rk−1

0 )p(θk−1 |ck−1

= cka∗
k , rk−1

0 )dθk−1 .

(A1)

The first two properties can be demonstrated by induction.
First of all, P (c0 |r0) = 1/M , since the initial state of the dif-
ferential encoder is supposed to be unknown to the receiver,
and p(θ0 |c0 , r0) ∝ p(r0 |c0 , θ0). Now, supposing that the two
properties hold at time k − 1, we can easily prove that they
also hold at time k by evaluating (A1) for ck = ckej (2π/M )i ,
exploiting Property 1, for P (ck−1 |rk−1

0 ), and Property 2, for
p(θk−1 |ck−1 , rk−1

0 ), by applying a suitable change of vari-
able, and noting that, for each angle ε, p(θk |θk−1 − ε) =
p(θk + ε|θk−1).

We now consider the third property, involving the completion
(10). By exploiting the first property, the extrinsic information
can be written as the sum of M terms of the form∫ ∫

p(θk−1 |ck−1 , rk−1
0 )p(θk |ck

= ck−1ak , rK
k ) · p(θk |θk−1) dθk dθk−1 . (A2)
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Let us now consider the term corresponding to the value ck−1 =
ck−1e

j (2π/M )i . Since ak is fixed, and by exploiting the second
property, this term is clearly equal (after a change of variables
in the integrals) to the term (A2) for any value of i.
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