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Abstract—We propose novel techniques to reduce the complexity
of the well-known Bahl, Cocke, Jelinek, and Raviv (BCJR) algo-
rithm when it is employed as a detection algorithm in turbo equal-
ization schemes. In particular, by also considering an alternative
formulation of the BCJR algorithm, which is more suitable than
the original one for deriving reduced-complexity techniques, we
describe three reduced-complexity algorithms, each of them par-
ticularly effective over one of the three different classes of channels
affected by intersymbol interference (minimum-phase, maximum-
phase, and mixed-phase channels). The proposed algorithms do not
explore all paths on the trellis describing the channel memory, but
they work only on the most promising ones, chosen according to the
maximum a posteriori criterion. Moreover, some optimization tech-
niques improving the effectiveness of the proposed solutions are
described. Finally, we report the results of computer simulations
showing the impressive performance of the proposed algorithms,
and we compare them with other solutions in the literature.

Index Terms—Complexity reduction, intersymbol interference
(ISI), maximum a posteriori (MAP) symbol detection, turbo
equalization.

I. INTRODUCTION

W E CONSIDER the algorithm by Bahl, Cocke, Jelinek,
and Raviv (BCJR) [1], known to be optimal in imple-

menting maximum a posteriori (MAP) symbol detection for
channels with finite memory, and we propose new solutions to
reduce its complexity. This paper focuses on turbo equaliza-
tion schemes for channels affected by intersymbol interference
(ISI) [2], [3], but the described techniques can also be adopted in
other applications of the BCJR algorithm, such as the decoding
of convolutional codes [1] and the MAP symbol detection over
noncoherent channels [4] or flat fading channels [5].

The BCJR algorithm works on a trellis representing the finite-
state machine that describes the channel, and its complexity is
proportional to the number of trellis states. Since this number
grows exponentially with the channel memory, it becomes of-
ten necessary to design low-complexity suboptimal algorithms
ensuring a possibly negligible performance loss. The majority
of the reduced-complexity algorithms in the literature maintains
the three-stage structure of the BCJR algorithm (forward recur-
sion, backward recursion, and completion stage), and obtains the
complexity reduction by performing a simplified trellis search.
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The various suboptimal algorithms can be approximately clas-
sified based on two different rationales, which are described in
the following.

In the first class, inspired by the reduced-state sequence de-
tection (RSSD) [6]–[8] originally designed to reduce the com-
plexity of the classical Viterbi algorithm (VA), we mention the
reduced-state BCJR (RS-BCJR) algorithm [9] and the general-
ized reduced-state algorithms proposed in [10]. They exploit the
fact that the forward and backward recursions of the BCJR algo-
rithm reduce to the VA when the max-log approximation [11] is
adopted. Hence, the concept of survivor results. Then, assuming
that only a part of the information corresponding to the full state
is embedded in a properly defined reduced state, they recover
the missing information by decision feedback, in a way similar
to the RSSD. The RS-BCJR algorithm is particularly effective
on minimum-phase channels. This algorithm generally provides
a high-quality soft output. For this reason, when employed in
turbo equalization schemes, it ensures a good convergence of the
iterative process. The algorithms presented in [10], which ex-
tend the concept of state reduction, achieve a good performance
on a larger subset of ISI channels, but the corresponding per-
formance loss with respect to the full-state BCJR algorithm in-
creases when they are employed in turbo equalization schemes,
because of the poor quality of the generated soft output.

The algorithms in the second class perform a reduced search
on the original full-complexity trellis, instead of a full search on
a reduced-state trellis. The M-BCJR algorithm [12] belongs to
this class. It provides a good performance/complexity tradeoff
on a large subset of ISI channels, but it is not effective in pro-
ducing a high-quality soft output [13]. As a consequence of the
fact that the M-BCJR algorithm gives a predominant role to the
forward recursion, since only the trellis paths selected during
this stage are explored in the backward recursion, it cannot cope
with maximum-phase or mixed-phase channels. A couple of so-
lutions to this problem, based on an independent trellis search
in the backward recursion, were proposed in [14] and [15].

Among the reduced-complexity algorithms that do not belong
to the described classes, we mention the algorithm described
in [16], based on a confidence criterion used to detect reliable
symbols early on during decoding, and the algorithm presented
in [17], which addresses the particular case of sparse ISI chan-
nels, that is, channels with a number of nonzero interferers much
lower than the channel memory.

We present three reduced-search algorithms, each of them
particularly effective over one of the three different subsets
into which the ISI channels can be partitioned, namely
minimum-phase, maximum-phase, and mixed-phase channels
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[18]. In all the proposed solutions, while performing the
reduced-complexity trellis searches, the paths to be explored
are selected using the MAP criterion. We show that the clas-
sical formulation of the BCJR algorithm does not allow the
MAP-based selection of the best paths during the backward
recursion. Hence, we resort to an alternative formulation, show-
ing that it is fundamental for deriving reduced-complexity al-
gorithms for channels with mixed or maximum phase, whereas
the traditional formulation is more effective for minimum-phase
channels. The algorithms are further generalized by deriving a
state-partitioning technique, which provides a better flexibility
to different channels and modulation formats, and optimized by
adopting a simple solution, thereby improving the quality of the
produced extrinsic information [19].

The remainder of this paper is organized as follows. In
Section II, we describe the system model and present two
equivalent formulations of the BCJR algorithm. In Section III,
the proposed reduced-complexity algorithms are described. In
Section IV, we report the results of computer simulations com-
paring the performance of various detection algorithms. In
Section V, some concluding remarks are drawn.

II. SYSTEM MODEL

A. Turbo Equalization

In the considered transmission system, a sequence of M -ary
complex-valued code symbols, obtained by the encoding of a
sequence of information bits, is transmitted from epoch 0 to
epoch K − 1. These code symbols are permuted by a proper
interleaver, and the resulting sequence a = {ak}K−1

k=0 is linearly
modulated and transmitted over an ISI channel that also intro-
duces additive white Gaussian noise (AWGN). At the output of
a whitened matched filter, assuming ideal synchronization, the
received sample at time epoch k can be expressed as [20]

yk =
L∑

i=0

fiak−i + wk (1)

where {wk}K−1
k=0 are complex independent Gaussian random

variables with mean zero and variance σ2 per component, L is
the channel memory, and f = {fi}L

i=0 represents the discrete-
time equivalent channel impulse response. We assume ideal
knowledge on σ2 and f (see [21], and references therein for the
case of joint detection and channel estimation).

The receiver attempts to recover the information bits by means
of the turbo equalization scheme depicted in Fig. 1. The key
point of this scheme is the iterative exchange of information
between the soft-input soft-output (SISO) modules forming the
receiver [2], [3]. The focus of this paper is on the SISO detector,
that is, a block that computes the a posteriori probability (APP)
P (ak |y) of each modulation symbol ak at each time epoch
k, given the received sequence y = {yk}K−1

k=0 and the a priori
probabilities {P (ak )}K−1

k=0 . With regard to each symbol ak , the
actual output of the detector is not P (ak |y), but the so-called
extrinsic information Ek (ak ) = P (ak |y)/P (ak ). It is worth to
notice that the presence of a proper interleaver allows the de-
tector to consider the modulation symbols independent of each

Fig. 1. Block diagram of a system employing turbo equalization.

other, so that the factorization P (a) =
∏K−1

k=0 P (ak ) can be ex-
ploited to derive the detection algorithm. On the other hand,
in this paper, the SISO decoder is simply considered as a block
that, based on the extrinsic information provided by the detector,
updates the probabilities of code symbols. These probabilities
will be assumed as a priori probabilities by the SISO detector.
To improve the reliability of the hard decisions on the informa-
tion bits, the described process is iteratively repeated a number
of times that strictly depends on the characteristics of both the
code and the channel.

B. BCJR Algorithm

An overview of the BCJR algorithm [1], which is known to
be the optimal detection algorithm for the turbo equalization
schemes, is given in the following. Together with the classical
formulation of the algorithm, we also present an alternative
formulation that will be exploited to derive the proposed low-
complexity algorithms.

Let us define, at time epoch k, the state σk as

σk = (ak−L , ak−L+1 , . . . , ak−2 , ak−1) (2)

and the branch metric function as

Fk (ak , σk ) = P (ak ) exp


− 1

2σ2

∣∣∣∣∣yk −
L∑

i=0

fiak−i

∣∣∣∣∣
2

 . (3)

The BCJR algorithm is characterized by the following forward
and backward recursions:

αk+1(σk+1)=
∑
ak

∑
σk

T (ak , σk , σk+1)Fk (ak , σk )αk (σk ) (4)

βk (σk )=
∑
ak

∑
σk + 1

T (ak , σk , σk+1)Fk (ak , σk )βk+1(σk+1) (5)

where T (ak , σk , σk+1) is the trellis indicator function equal to
1 if ak , σk , and σk+1 satisfy the trellis constraints and 0 other-
wise. The state metrics αk (σk ) and βk (σk ) have the following
probabilistic meanings1:

αk (σk ) ∝ P (σk |yk−1
0 ) (6)

βk (σk ) ∝ p(yK−1
k |σk ) (7)

1In this paper, the proportionality symbol∝ is used when two quantities differ
for a positive multiplicative factor, irrelevant for the detection process.
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where yk2
k1

= {yk}k2
k=k1

. The metrics α0(σ0) and βK (σK ) are
initialized according to the available information on the first
state σ̄0 and the last state σ̄K . For example, when σ̄0 and σ̄K

are known to the receiver, α0(σ̄0) and βK (σ̄K ) can be set to 1
while the other metrics are initialized to 0. Finally, in the com-
pletion stage, the APP P (ak |y) is computed by marginalizing
P (σk+1 |y) as

P (ak |y) =
∑
σk + 1

S(ak , σk+1)P (σk+1 |y) (8)

where the indicator function S(ak , σk+1) is equal to 1 if σk+1
is compatible with ak and 0 otherwise. Simple manipulations of
(6) and (7) prove that

P (σk+1 |y) ∝ αk+1(σk+1)βk+1(σk+1) . (9)

Thus, the completion (8) becomes

P (ak |y) ∝
∑
σk + 1

S(ak , σk+1)αk+1(σk+1)βk+1(σk+1) . (10)

An alternative formulation of the BCJR algorithm can be
derived by starting from a factorization of the APPs of the states
different with respect to (9). If we give the following alternative
definitions of the branch metric

F̃k (ak , σk ) = P (ak−L ) exp


− 1

2σ2

∣∣∣∣∣yk −
L∑

i=0

fiak−i

∣∣∣∣∣
2


(11)

and of the recursions

α̃k+1(σk+1)=
∑
ak

∑
σk

T (ak , σk , σk+1)F̃k (ak , σk )α̃k (σk )

(12)

β̃k (σk )=
∑
ak

∑
σk + 1

T (ak , σk , σk+1)F̃k (ak , σk )β̃k+1(σk+1)

(13)

it is straightforward to prove that, in this case, the state metrics
have the following probabilistic meanings:

α̃k (σk ) ∝ p(yk−1
0 |σk ) (14)

β̃k (σk ) ∝ P (σk |yK−1
k ) (15)

so that

α̃k (σk )β̃k (σk ) ∝ αk (σk )βk (σk ). (16)

As in the classical BCJR algorithm, when σ̄0 and σ̄K are known,
the metrics α̃0(σ̄0) and β̃K (σ̄K ) are set to 1 while the others
are initialized to 0. Finally, by combining (10) and (16), the
completion can be written as

P (ak |y) ∝
∑
σk + 1

S(ak , σk+1)α̃k+1(σk+1)β̃k+1(σk+1). (17)

By comparing (12) with (4), (13) with (5), and (17) with (10), it
is clear that this alternative formulation does not modify, at all,
the complexity of the algorithm, since the only difference is the
presence of the term P (ak−L ) instead of P (ak ) in the branch

metric. Hence, the two formulations of the algorithm coincide
only if the modulation symbols are equally likely.

The reduced-complexity algorithms described in the follow-
ing exploit the probabilistic meanings of the state metrics; thus,
it is worth to remark them. Let us focus on (6) and (7): the max-
imization of the metric αk (σk ) provides the selection, based
on the first k − 1 received samples, of the state σk according
to the MAP criterion, while the maximization of the metric
βk (σk ) provides the selection, based on the remaining received
samples, of the state σk according to the maximum-likelihood
(ML) criterion. Vice versa, the relations (14) and (15) show
that maximizing α̃k (σk ) provides an ML-based selection, while
maximizing β̃k (σk ) provides a MAP-based selection. This re-
verse symmetry motivates the choice for referring, hereafter, to
the first formulation as classical and to the second as reverse.

We would like to mention that, although this paper focuses on
a detection approach based on the whitened matched filter front
end, this is not the only way to perform MAP symbol detection
over ISI channels. The application of the proposed techniques
for complexity reduction to a couple of alternative detection
approaches, based on a different front end, is discussed in the
Appendix.

III. PROPOSED ALGORITHMS

A. Rationale

The number of trellis states can be considered as a mea-
sure of the complexity of the BCJR algorithm. Hence, for a
fixed value of the frame length K, the complexity is propor-
tional to ML and grows exponentially with the channel memory.
Long channel impulse responses and large modulation alpha-
bets, thus, make the implementation of the BCJR algorithm
impractical and motivate the search for suboptimal algorithms
with a convenient performance/complexity tradeoff. To obtain
reduced-complexity algorithms, we adopt the reduced search
technique [12]: the algorithms still work on a full-state trellis,
that is, no state reduction [9] is performed, but they explore only
a subset of the possible paths on the trellis. Since the lower the
metric (either forward or backward) of a state, the more negli-
gible its contribution to the summations of the recursions and
completion, it is natural to explore only the paths extending from
the states with the largest metrics. Let us suppose to keep mem-
ory, at each time epoch, only of the S largest forward and the S
largest backward metrics, and to explore only the paths extend-
ing from the related states while performing the recursions. In
the state metrics computation, the contribution corresponding to
unexplored paths is considered null. If we consider the number
S of saved metrics as a measure of the complexity of the algo-
rithms, the reduction factor with respect to the full-complexity
BCJR is about ML/S. More detailed complexity comparisons
will be presented later.

By connecting the states whose forward metrics have been
saved, a set of forward-selected paths (FSPs) is progressively
built, and the same can be done in order to define a set of
backward-selected paths (BSPs). As shown in Section II-B, the
selection of the most promising paths can follow either a MAP
or an ML criterion, depending on which formulation of the
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recursions is chosen between the classical and the reverse ones.
These different criteria, which are equivalent only when the
modulation symbols are equally likely, have a significant impact
on the performance of the reduced-search algorithms since they
generate potentially different sets of selected paths. It is intuitive
to conjecture that the MAP approach is to be preferred, and
extensive computer simulations confirm this fact. In order to
combine the recursions providing MAP measures, that is, the
classical forward recursion and the reverse backward recursion,
the following completion can be adopted:

P (ak |y) ∝
∑
σk + 1

S(ak , σk+1)αk+1(σk+1)β̃k+1(σk+1)
P (σk+1)

(18)

where

P (σk ) =
L∏

i=1

P (ak−i) . (19)

In this case, the computational complexity increases slightly
with respect to traditional formulations as (10) or (17), because
of the presence of the term 1/P (σk+1) in the summations.

The values of the forward (respectively, backward) metrics
related to states that do not belong to the set of FSPs (respec-
tively, BSPs) are not available during the completion stage.
The unavailable metrics are traditionally replaced by zero, thus
neglecting the terms containing them while computing the sum-
mations. In this case, it is easy to prove that any state can give
a nonzero contribution to the completion only if it belongs to
both FSPs and BSPs, so that the effective trellis is given by the
intersection of FSPs and BSPs. This heavily degrades the per-
formance of the reduced-complexity algorithms when the sets
of FSPs and BSPs are built independently of each other, since
their intersection could be almost empty. For this reason, it is
suggested in [12] not to build any set of BSPs and to perform
the backward search over the set of FSPs, thus giving a predom-
inant role to the forward recursion. In the next section, we will
propose three different solutions, each of them being effective
on a different subset of the whole set of channel types.

B. Description of the Algorithms

The ISI channels can be partitioned into three subsets, namely
minimum-phase, maximum-phase, and mixed-phase channels,
depending on the vector f . The mathematical definition of the
phase of a channel2 implies that, in the case of minimum-phase
channels, the channel energy is mainly located in the first taps
[18]. As a consequence of this fact, the estimates of the APPs
provided by the forward recursion are much more reliable than
those provided by the backward recursion [15]. Hence, relatively
to minimum-phase channels, the best choice is to perform the
following sequence of steps:

1) classical forward recursion (4) selecting the FSPs;
2) classical backward recursion (5) over the FSPs;
3) classical completion (10) over the FSPs.

2The minimum-phase and the maximum-phase channels are defined in [18].
Here, all the remaining channels are referred to as the mixed-phase channels.

This solution, which will be referred to as forward-trellis (FT)
algorithm, reduces to the M-BCJR algorithm [12] when none
of the optimization techniques described in the next section is
employed.

Vice versa, in the case of maximum-phase channels, the last
taps contain the greatest part of the channel energy [18]; conse-
quently, the most reliable estimates of the APPs are provided by
the backward recursion [15]. Thus, it is convenient to perform
the following sequence of steps:

1) reverse backward recursion (13) selecting the BSPs;
2) reverse forward recursion (12) over the BSPs;
3) reverse completion (17) over the BSPs.

This solution will be referred to as backward-trellis (BT)
algorithm.

Finally, in the case of mixed-phase channels, no physical
reason to privilege one recursion instead of the other exists,
so that the best choice is to build the sets of FSPs and BSPs
independently of each other. The resulting algorithm can be
summarized by the following sequence of steps:

1) classical forward recursion (4) selecting the FSPs;
2) reverse backward recursion (13) selecting the BSPs;
3) completion (18) combining the FSPs and the BSPs.

In this case, the order of executing the recursions is irrelevant
(they could be even implemented in parallel). This solution
will be referred to as double-trellis (DT) algorithm. From a
computational viewpoint, this algorithm causes a slight increase
in complexity, since it requires to compare and sort the metrics
in both the recursions, while the FT and BT algorithms require
this procedure only in one recursion.

C. Optimization of the Algorithms

As stated before, a traditional completion replacing the un-
available metrics by null values works on a subset of paths
given by the intersection of FSPs and BSPs. While in the case
of the FT (respectively, BT) algorithm, the intersection coin-
cides with the set of FSPs (respectively, BSPs), in the case of
the DT algorithm, the intersection could even be empty, since
the sets of FSPs and BSPs are built independently of each other.
This issue is addressed in [14], where the authors propose a
completion on a window of multiple trellis sections, thus im-
plying a significant increase in the computational complexity of
the completion stage. We propose a simpler solution allowing
the completion stage to work not on the intersection but on the
union of the sets of FSPs and BSPs, so that all the metrics saved
during the recursions can give a contribution to the final result.
As also discussed in [15] and [22], the way to do this consists
of replacing the unavailable metrics in (18) by proper nonzero
values. At every time epoch k, let αMIN

k be the lowest metric
saved during the classical forward recursion, and let β̃MIN

k be
the lowest metric saved during the reverse backward recursion.
When a given state σk+1 does not belong to the set of FSPs
at time epoch k + 1, any nonzero value lower than or equal to
αMIN

k+1 could be a reasonable choice for replacing the unavail-
able metric αk+1(σk+1) while performing the completion (18).
Since we found, by means of extensive computer simulations,
that overestimating the unavailable metrics provides a better
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performance than underestimating them, we choose the largest
value in the allowed range. Hence, when the factor αk+1(σk+1)
in (18) is not available, we replace it by αMIN

k+1 . Similarly, when

β̃k+1(σk+1) is not available, we replace it by β̃MIN
k+1 . When both

the factors are not available, we instead ignore the whole prod-
uct αk+1(σk+1)β̃k+1(σk+1). In Section IV, it is shown that the
increase in computational complexity due to this solution, which
will be referred to as nonzero (NZ) completion, is not crucial.

Typically, even when they provide a hard output almost equal
to the optimal one, the reduced-complexity algorithms estimate
their hard decisions to be much more reliable than they really are.
Extensive computer simulations show that even the proposed al-
gorithms, especially the FT and BT ones, tend to overestimate
the reliability of the decisions when the reduction factor ML/S
is large. Unfortunately, the fact that optimistic soft output is
produced dramatically affects the convergence of turbo equal-
ization. In [23], referring to the particular case of the soft-output
VA (SOVA) [24], the authors conjecture that the low-quality soft
output is due to the correlation between the intrinsic information
P (ak ) and the extrinsic information Ek (ak ) = P (ak |y)/P (ak )
generated by the SOVA, and propose to mitigate this effect by
passing the extrinsic information through an adaptive attenuator.
We adopt a much simpler solution that consists of saturating,
for each time epoch k, the extrinsic information so that the ratio
between the lowest extrinsic information and the largest one
must be at least equal to γ, where γ is a proper parameter in the
range [0, 1]. Hence, instead of the computed values {Ek (ak )},
the modified values {Êk (ak )} are fed to the SISO decoder,
according to the definition

Êk (ak ) = max{Ek (ak ), ES
k } (20)

where, for each time epoch k, the threshold value ES
k is com-

puted as

ES
k = γ max

ak

{Ek (ak )} . (21)

The crucial point is the choice of the value of γ: when it is too
low, the decoder is nearly forced to confirm the decisions of the
detector, whereas, when it is too large, the information produced
by the detection algorithm is practically destroyed. The opti-
mization of the parameter γ, which can be performed by means
of computer simulations, leads to values significantly depending
on the signal-to-noise ratio and the reduction factor of interest.
This output saturation (OS) practically does not increase the
complexity of the algorithms, but, as shown in Section IV, it
can provide a significant performance improvement.

Finally, we describe a generalization of the reduced search
technique, which is based on a state-partitioning (SP) approach
staying in the middle between the rationales of the M-BCJR
algorithm, the RS-BCJR algorithm, and the algorithms based
on decision-feedback sequence estimation (DFSE), as that pro-
posed in [22]. This approach ensures a better flexibility to dif-
ferent channel types and can provide significant performance
improvements, especially in the case of nonbinary modulation
formats. While building the set of FSPs (that is, only in the case

of the FT and DT algorithms), let us define

σ′′
k = (ak−Qf

, ak−Qf +1 , . . . , ak−1) (22)

σ′′
k = (ak−L , ak−L+1 , . . . , ak−Qf −1) (23)

Qf being a nonnegative design parameter, such that σk =
(σ′

k , σ′′
k ). We will adopt the notation state of the recent sym-

bols for σ′
k and state of the older symbols for σ′′

k . The set of
FSPs is built by saving, for each possible value of σ′

k , only the
states σ′′

k that give the S ′′ best metrics αk (σk ). Hence, the saved
metrics per time epoch are Sf = MQf S ′′, and unlike the case of
the basic algorithms presented before, they are not necessarily
the Sf highest ones. By expanding the factor P (σk |yk−1

0 ) in (6)
as

P (σk |yk−1
0 ) = P (σ′

k |yk−1
0 )P (σ′′

k |σ′
k ,yk−1

0 ) (24)

the rationale of the proposed process can be understood: condi-
tioning to each combination of the recent symbols σ′

k , we save
only the S ′′ highest APPs of the older symbols σ′′

k . Hence, the
set of FSPs is defined as maintaining complete information on
the state of the recent symbols and partial information on the
state of the older symbols. While building the set of BSPs (that
is, only in the case of the BT and DT algorithms), we adopt a
different partitioning, and define the state of the recent symbols
ω′

k and the state of the older symbols ω′′
k as

ω′
k = (ak−L+Qb

, ak−L+Qb +1 , . . . , ak−1) (25)

ω′′
k = (ak−L , ak−L+1 , . . . , ak−L+Qb −1) (26)

Qb being a nonnegative design parameter, such that σk =
(ω′

k , ω′′
k ). Conditioning to each combination of the older sym-

bols ω′′
k , we save only the S ′ highest APPs of the recent symbols

ω′
k , according to

P (σk |yK−1
k ) = P (ω′′

k |yK−1
k )P (ω′

k |ω′′
k ,yK−1

k ). (27)

The number of saved metrics per time epoch is, thus, Sb =
MQb S ′. Symmetrically with respect to the forward recursion,
the set of BSPs is defined as maintaining complete information
on the state of the older symbols and partial information on
the state of the recent symbols. We could not find a general
rule to choose, for a fixed complexity, the values of parameters
Qf , Qb , S ′, and S ′′ providing the best performance, but they
can be easily optimized by means of computer simulations. The
basic algorithms presented before can be obtained by setting
Qf = Qb = 0 and Sf = Sb = S.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed algorithms is
assessed by means of computer simulations in terms of bit error
rate (BER) versus Eb/N0 , Eb being the received signal energy
per information bit and N0 the one-sided power spectral density
of the passband noise. For each considered scenario, a compari-
son with the performance of the BCJR, M-BCJR, and RS-BCJR
algorithms is given. To ensure better numerical stability, all the
algorithms are implemented in the logarithmic domain [11]. The
channels considered in the computer simulations are reported in
Table I.
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TABLE I
CHARACTERISTICS OF THE CONSIDERED CHANNELS

Fig. 2. Performance of different reduced-complexity algorithms for a coded
BPSK transmission over the minimum-phase channel C1 .

In Fig. 2, we consider a BPSK transmission over the
minimum-phase channel C1 . A (3, 6)-regular LDPC code of
rate 1/2 and code word length of 4000 bits is used, and a de-
tection instance is executed before each iteration of the SISO
decoder, for a maximum of 40 iterations. The process also stops
if, by checking the code syndrome, a valid code word is found
before the 40th iteration. No interleaver is used because of the
random nature of the LDPC code. As stated in the previous sec-
tion, in such a system, it is convenient to adopt the FT algorithm
optimized by saturating the extrinsic information to a proper
minimum value. Fig. 2 shows that the proposed algorithm, im-
plementing the OS technique with γ = 1/10, outperforms both
the M-BCJR and RS-BCJR.3 We remark that the OS technique,
which in this case is the only difference between the FT-OS
and the M-BCJR algorithms, provides a gain of about 2.5 dB.
An alternative way to improve the performance of the M-BCJR
algorithm consists of performing more than one iteration of the
LDPC decoder for each iteration of the detector. In this sce-
nario, we found that the M-BCJR algorithm gains about 0.5
dB of power efficiency when at least three consecutive decod-
ing iterations are performed. Hence, the OS technique is the
most convenient solution, since it is both simpler (the saturation
is definitely less complex than performing additional decoding
iterations) and more effective by about 2.0 dB.

In Fig. 3, we consider the maximum-phase channel C2 . The
coding scheme and the modulation are the same as adopted in
the system of Fig. 2. The performance of the RS-BCJR and
M-BCJR algorithms, as expected on maximum-phase channels,
is absolutely unacceptable. The performance of the BT* algo-
rithm, which are identical to the BT algorithm with the exception

3All the reported values of γ were chosen according to optimizations per-
formed by means of computer simulations.

Fig. 3. Performance of different reduced-complexity algorithms for a coded
BPSK transmission over the maximum-phase channel C2 .

Fig. 4. Performance of different reduced-complexity algorithms for a coded
BPSK transmission over the mixed-phase channel C3 .

that it builds the set of BSPs on the basis of the classical back-
ward recursion instead of the reverse one, is also reported. Fig. 3
proves that the proposed redefinition of the backward recursion
ensures an impressive performance gain with respect to the tra-
ditional approach. A further gain of almost 1 dB is ensured by
the OS technique, with γ = 1/25.

In Fig. 4, we consider the mixed-phase channel C3 . Again, the
coding scheme and the modulation are the same as adopted in the
system of Fig. 2. With respect to the M-BCJR algorithm, the pro-
posed DT algorithm loses about 0.5 dB if implemented with no
optimization technique, while it gains about 1.5 dB when the NZ
technique is adopted. Fig. 4 also confirms the effectiveness of the
OS technique: in the considered case, a further gain of about 0.5
dB is obtained by saturating the extrinsic information evaluated
by the algorithm and setting γ = 1/30. The curve related to the
DT* algorithm, which is identical to the DT algorithm with the
exception that it builds the set of BSPs on the basis of the classi-
cal backward recursion instead of the reverse one, gives a further
proof of the need for a MAP-based selection of the set of BSPs.
The M-BCJR algorithm loses about 2 dB from the DT-NZ-OS
algorithm, while the RS-BCJR algorithm is ineffective on this
mixed-phase channel. All the considered reduced-complexity
algorithms work on eight states per trellis epoch, thus providing
a reduction factor roughly equal to 4 with respect to the 32-state
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TABLE II
REDUCTION FACTORS WITH RESPECT TO THE BCJR ALGORITHM

BCJR algorithm. More detailed measures of the reduction fac-
tors are given in Table II for each of the three stages of the algo-
rithms, together with the overall reduction factors. These results
refer to the number of nontrivial4 multiply accumulate (MAC)
operations only, while the operations of evaluating the branch
metrics, sorting the state metrics, and saturating the output are
not taken into account. In some cases, pointed out by means of
an asterisk, the reduction factors cannot be evaluated in closed
form, and the reported results are obtained by means of com-
puter simulations related to a value of Eb/N0 ensuring, for the
corresponding algorithm, a BER of about 10−6 . As expected,
the M-BCJR algorithm provides the highest reduction factor
since the backward recursion is forced to explore only the set of
FSPs. It is worth to remark that the slight decrease of the reduc-
tion factor due to the adoption of the NZ completion is largely
compensated by the provided performance gain. Similar results
have been obtained for other ISI channels and are not reported
here.

We also investigated if the implementation of reduced-
complexity algorithms requires a greater number of iterations
to reach convergence with respect to the BCJR algorithm. For
all scenarios discussed so far, we found that the mean number
of iterations to reach convergence does not significantly depend
on the detection algorithm when a target BER lower than 10−5

is considered—less than one additional iteration is required on
average with respect to the optimal BCJR algorithm. Hence,
the only performance degradation due to the implementation
of reduced-complexity algorithms is the loss in terms of power
efficiency.

In Fig. 5, we consider a BPSK transmission over the mixed-
phase channel C4 . A nonrecursive convolutional code with rate
1/2 and generators (5, 7)8 is used, followed by a random in-
terleaver. The considered code words have size 2000 bits, and
a detection instance is executed before each iteration of the
SISO decoder, performing 20 iterations. The curve related to
perfect equalization (AWGN curve) is reported as reference.
In this case, the DT-NZ algorithm reaches the optimal per-
formance by keeping eight states, providing a significant gain
with respect to the M-BCJR and RS-BCJR algorithms. Fig. 5
also shows the effectiveness of the SP technique: by keep-
ing six states and setting the partitioning parameters Qf = 1
and Qb = 0, the DT-NZ-SP algorithm behaves as the full-
complexity algorithm, whereas, by keeping six states without
any partitioning (DT-NZ algorithm), the performance noticeably
worsens.

4The terms giving a null contribution because of the unsatisfied indicator
functions T (ak , σk , σk+1 ) or S(ak , σk+1 ) are not considered.

Fig. 5. Performance of different reduced-complexity algorithms for a coded
BPSK transmission over the mixed-phase channel C4 .

Fig. 6. Performance of different reduced-complexity algorithms for a coded
QPSK transmission over the mixed-phase channel C3 .

In Fig. 6, we finally consider a QPSK transmission over the
mixed-phase channel C3 , so that the full-complexity BCJR al-
gorithm works on a 1024-state trellis. The coding scheme is
the same as adopted in Fig. 5. While the DT-NZ algorithm is
not particularly effective on this scenario, the implementation
of the SP technique ensures an astonishing performance gain
with respect to the other reduced-complexity algorithms, when
they all work on 16 states per trellis epoch. As in the previous
case, the state partitioning is implemented by setting Qf = 1
and Qb = 0. The resulting loss with respect to the BCJR algo-
rithm is lower than 1 dB at a BER of 10−6 , with a complexity
64 times lower.

V. CONCLUSION

The design of reduced-complexity detection algorithms for
turbo equalization schemes has been addressed. In particular,
three low-complexity algorithms have been proposed, explain-
ing how to choose among them based on the channel type.
The proposed solutions have been derived from an alternative
formulation of the BCJR algorithm, exactly equivalent to the
original one when full-complexity implementations are consid-
ered, but much more suitable for deriving reduced-complexity
algorithms. The MAP criterion has been adopted in order to
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select the most promising paths to be explored while perform-
ing the reduced-complexity searches on the trellis. Some op-
timization techniques providing a significant performance im-
provement have also been described. The proposed algorithms
exhibit a very good flexibility to different coding structures and
modulation formats, and impressively outperform the existing
reduced-complexity algorithms.

APPENDIX

The complex envelope of the continuous-time received signal,
in the case of linearly modulated transmissions over an ISI-
AWGN channel, can be written as

r(t) =
K−1∑
m=0

am h(t − mT ) + w(t) (28)

where T is the signaling interval, h(t) is the continuous-time
channel impulse response, and w(t) is a complex white Gaussian
process with two-sided power spectral density N0 per compo-
nent. The pulse h(t) has support for t ∈ [0, (L + 1)T ], and its
bandwidth Bh is assumed to be limited.5 A couple of alternative
detection approaches for this problem, namely the Forney ap-
proach [20], based on a whitened matched filter front end, whose
output is given by (1), and the Ungerboeck approach [25], based
on the matched filter front end, are known since the early 1970s.
Both of them, although originally proposed for MAP sequence
detection, have been extended to the case of the MAP symbol
detection strategy. In fact, the original probabilistic derivation
of the BCJR algorithm, as proposed in [1] and recalled in Sec-
tion II, is based on the Forney observation model. On the other
hand, although it does not seem possible to derive a MAP symbol
detection extension of the Ungerboeck approach by means of
probabilistic considerations, a solution has been recently found
in [26] by applying the sum–product algorithm over a proper
factor graph [27]. Unfortunately, although the resulting algo-
rithm differs from the original BCJR algorithm in the expression
of the branch metrics only, the fact that the forward and back-
ward state metrics do not have a probabilistic meaning implies
that the reduced-complexity techniques proposed in this paper
cannot be extended to the Ungerboeck approach. In the fol-
lowing, we recall a further alternative scheme for MAP symbol
detection over ISI channels derived from [28].

Let us assume to sample r(t) at a rate N/T (where N is an
integer), after filtering it by means of an ideal low-pass filter
with bandwidth BLP = N/(2T ).6 A set of sufficient statistics
for detection can be obtained only if N > 2TBh [28]. In this
case, the resulting samples can be written as

rj =
K−1∑
m=0

am h
(
j

T

N
− mT

)
+ wj (29)

5Since duration and bandwidth cannot both be limited, at least one of these
assumptions must be an approximation.

6The following results can be generalized easily to the case of a more re-
alistic low-pass filter, provided that its frequency response exhibits a vestigial
symmetry with respect to f = N/(2T ) [28].

where {wj} are complex independent Gaussian random vari-
ables with mean zero and variance σ2

N = N0N/T per com-
ponent. By setting j = kN + n, with n ∈ {0, 1, . . . , N − 1},
k ∈ {0, 1, . . . ,K − 1}, and defining

hi,n = h
(
iT + n

T

N

)
(30)

we can write (29) as

rkN +n =
L∑

i=0

hi,nak−i + wkN +n . (31)

By following the probabilistic considerations in [1] and redefin-
ing the branch metrics as

Fk (ak , σk ) = P (ak ) exp
[
−Rk (ak , σk )

2σ2
N

]
(32)

F̃k (ak , σk ) = P (ak−L ) exp
[
−Rk (ak , σk )

2σ2
N

]
(33)

where

Rk (ak , σk ) =
N −1∑
n=0

∣∣∣∣∣rkN +n −
L∑

i=0

hi,nak−i

∣∣∣∣∣
2

(34)

it is straightforward to extend the BCJR algorithm to the channel
model (31). We found that all the recursive relations described
in Section II-B still hold, with the following modifications of
the probabilistic meanings

αk (σk ) ∝ P (σk |rkN −1
0 ) (35)

βk (σk ) ∝ p(rK N −1
kN |σk ) (36)

α̃k (σk ) ∝ p(rkN −1
0 |σk ) (37)

β̃k (σk ) ∝ P (σk |rK N −1
kN ) . (38)

Finally, the APPs of the modulation symbols can still be com-
puted according to

P (ak |r) ∝
∑
σk + 1

S(ak , σk+1)αk+1(σk+1)βk+1(σk+1) (39)

∝
∑
σk + 1

S(ak , σk+1)α̃k+1(σk+1)β̃k+1(σk+1). (40)

It is worth to remark that this oversampling-based detection
algorithm works on the same trellis as adopted by the original
BCJR algorithm based on the Forney observation model, and
that the only modifications are the branch metrics (32) and (33),
which are slightly more complex than the original (3) and (11).
Moreover, since the probabilistic meanings of the state metrics
are the same described in Section II-B for the original BCJR
algorithm, the reduced-complexity techniques proposed in this
paper can be applied to such a detection scheme. Hence, this
oversampling-based algorithm appears to be a convenient solu-
tion when the whitened matched filter, for any reason, cannot
be implemented.
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[3] M. Tüchler, R. Koetter, and A. C. Singer, “Turbo equalization: Principles
and new results,” IEEE Trans. Commun., vol. 50, no. 5, pp. 754–767,
May 2002.

[4] G. Colavolpe, G. Ferrari, and R. Raheli, “Noncoherent iterative (turbo)
detection,” IEEE Trans. Commun., vol. 48, no. 9, pp. 1488–1498, Sep.
2000.

[5] P. Hoeher and J. Lodge, ““Turbo DPSK”: Iterative differential PSK de-
modulation and channel decoding,” IEEE Trans. Commun., vol. 47, no. 6,
pp. 837–843, Jun. 1999.
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