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Blind Compensation of Linear Amplitude Distortions
Dario Fertonani, Alan Barbieri, Giulio Colavolpe, and Daniel Delaruelle

Abstract—The estimation and the compensation of particular
amplitude distortions, typically affecting the consumer-grade
receivers in broadband satellite communications, are considered.
The distortion filter is modeled as a linear function of the fre-
quency with unknown slope. We present a novel slope estimator,
analytically derived by exploiting the spectral properties of the
distorted signal, which results to be unbiased and does not exhibit
false locks in the scenarios of practical interest. Since an ideal
slope compensator would require an unmanageable filtering, we
focus on a low-complexity compensation filter that ensures nearly
the same performance. Extensive simulation results prove the
effectiveness and the robustness of the proposed solution, which
can also work blindly at very low values of the signal-to-noise
ratio.

Index Terms—Blind compensation, broadband satellite commu-
nications, channel estimation, linear amplitude distortions.

I. INTRODUCTION

D ESPITE the large amount of literature dealing with the
estimation and the compensation of unknown parame-

ters [1], the future broadband satellite transmissions, as those
based on the DVB-S2 standard [2], [3], raise new issues on
the synchronization stage. One of the most critical problems is
the presence of an amplitude distortion on the received signal,
mainly due to the low noise block (LNB) and the coaxial cable
at the consumer side [3]. After measurements on these devices,
a model based on a linear filter whose amplitude response lin-
early depends, with unknown slope, on the frequency was pro-
posed [4]. In conditions of broadband signaling, namely from 30
MHz ahead, the effect of the so-called slope distortion on the
performance of the system is disruptive, and it must be prop-
erly estimated and compensated [4]. There exist various tech-
niques for channel estimation that can cope with very general
distortion models (see [5], [6] and references therein), but the
general-purpose effectiveness of these solutions is paid in terms
of complexity. In particular, when a very accurate estimation is
required, the presence of a known-data training sequence is as-
sumed [6]. In this paper, we address the problem of designing an
ad-hoc compensation algorithm, characterized by a very limited
complexity, that provides an accurate blind estimation, even at
very low values of the signal-to-noise ratio.
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A novel fully-digital slope compensator is presented in both
open-loop and closed-loop configurations [1]. The proposed
estimation algorithm exploits the properties of the autocorrela-
tion function of the received signal, and results computationally
very simple. We describe a low-complexity compensation filter
based on the first-order Taylor expansion of the ideal one, which
should exhibit an hyperbolic frequency amplitude response
and thus is impractical from a complexity viewpoint. We also
considered higher-order approximations, but no significant
improvement was found in scenarios of practical interest. The
effectiveness of the proposed solutions is first proved by theo-
retical performance analyses, and then confirmed by extensive
simulation results. In particular, the designed compensator
results such robust that it can work blindly at very low values
of the signal-to-noise ratio.

The remainder of this paper is organized as follows. In
Section II, we describe the basic system model. In Section III,
the proposed compensator is presented in both open-loop and
closed-loop configurations. In Section IV, it is shown how
to modify the compensator in order to make it effective in
typical satellite communication scenarios. In Section V, some
simulation results showing the performance of the proposed so-
lutions are reported. Finally, Section VI gives some concluding
remarks.

II. SYSTEM MODEL

Let be a zero-mean complex-valued signal with limited
single-sided bandwidth , and let us suppose that is dis-
torted into by the slope filter

(1)

where is an unknown deterministic parameter ranging in the
interval . We will often exploit the time-domain
interpretation of (1), according to which the slope filter produces
a replica of the input signal plus a scaled version of its time
derivative. In all scenarios of practical interest, the parameters

and are such that

(2)

To derive the basic slope compensator, we also assume that the
autocorrelation function of the input signal is real-
valued—we will explain how to cope with more general models
in Section IV. The aim of this work is to design a fully-dig-
ital slope compensator working on the samples ,
under the assumption that the sampling interval satisfies the
Nyquist condition [7].
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Fig. 1. Basic block diagram.

Referring to the block diagram shown in Fig. 1, the functions
and , respectively the power spectral density (PSD)

of and , satisfy the equation

(3)

Hence, applying the inverse Fourier transform to (3), we can
write the following relationship between the corresponding au-
tocorrelation functions

(4)

where and are the first and the second derivative of
with respect to . Thanks to the hypothesis of real-valued
and provided that , taking the imaginary part

of (4), we can write

(5)

Since we are interested in fully-digital compensators working
on the samples , let us consider (where can be any
positive integer such that ), so that the following
equality results

(6)

In Section III, we will exploit (6) to derive an estimator of the
parameter , which will be presented in both open-loop and
closed-loop configurations.

III. SLOPE COMPENSATION

A. Open-Loop Compensation

If the statistical average in (6) is replaced by a
temporal mean over a set of realizations, the following open-
loop estimator results

(7)

It is easy to prove that the estimator (7) is unbiased, that is
, under the assumption of zero-mean input signal [8].

A classical figure for evaluating the effectiveness of an unbi-
ased estimator is the mean squared error (MSE) of the estimate

. Unfortunately, a simple closed form of the MSE
for the estimator (7) does not exist, but a significant example
where it can be exactly computed is reported in Section V. A
comparison with the Cramer-Rao bound (CRB) [1] is also given,
showing that the performance of the proposed estimator is very
close to the theoretical limit.

Once achieved an estimate of the value of the slope param-
eter, the distortion has ideally to be compensated by means of a
filter exhibiting the transfer function1

(8)

the last equality holding provided that , which is a
condition assured by the hypothesis (2). Compensation filters of
manageable complexity can be obtained by truncating the sum-
mation in (8): although higher-order approximations could in
general be considered, we will focus on the first-order approx-
imation

(9)

since, as shown in Section V and as expected under the hy-
pothesis (2), it suffices for providing an excellent performance
when values of and of practical interest are consid-
ered. The complexity of the compensation filter (9) is partic-
ularly low: only one adder, one multiplier, and one derivative
filter (scaled by a factor ) are required. The design of nu-
merical differentiators is a widely-studied topic and it is known
that the best solution consists of a FIR filter [9]. We consider a
discrete-time 10th-order FIR filter (implying a 5-sample group
delay), which provides an excellent accuracy in approximating
the ideal derivative filter over a bandwidth of about 37\% of
the sampling rate, as shown in Fig. 2. Hence, the sampling rate
must be designed by taking into account that the bandwidth over
which the FIR filter approximates the ideal derivative filter must
be larger than , that is

(10)

The condition (10) could be obviously relaxed by resorting to
higher-order FIR differentiators, which approximate the transfer
function of the ideal derivative filter over a larger bandwidth.

Let us point out that the estimator (7) requires to perfectly
know the value of : an error in the value of
causes a proportional bias in the estimate . Since it is often dif-
ficult to get a spectral characterization of as detailed as re-
quired to achieve a reliable estimation of the value of ,
the relevance of this open-loop compensator is mainly theoret-
ical. This drawback can be solved by resorting to the closed-loop
compensator described in Section III-B.

1To keep the notation simpler, the frequency responses of the filters are written
as if we were working in the continuous-time domain.
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Fig. 2. Normalized amplitude responses of the ideal differentiator and of the
considered 10th-order FIR filter.

B. Closed-Loop Compensation

Let us consider the block diagram reported in Fig. 3, and let
, that is the estimate of at the sampling epoch , be updated

according to the classical closed-loop recursion [1]

(11)

where is the step size of the loop and is a properly defined
error signal.2 The crucial point of the algorithm is the design
of the slope error detector (SED), that is the generation of
in (11), such that the residual error vanishes on
average for increasing values of . Our aim is to design a SED
such that

(12)

since it is known [1] that, in the range over which it is satisfied,
this condition ensures the effectiveness of the closed-loop esti-
mator.

By applying to the scheme in Fig. 3 considerations similar to
those leading to (6), it can be proved that

(13)

where are the samples at the output of the compensator,
and is the third-order derivative of with respect
to , evaluated in . Hence, if we define

(14)

2In Fig. 3 and in the discussion on the closed-loop compensator, we slightly
abuse the notation by writing frequency responses involving the time-varying
coefficient ^� . Anyway, the step size  is assumed small enough that the esti-
mates f^� g result slowly varying and the frequency responses involving them
are practically well defined.

Fig. 3. Block diagram of the closed-loop compensator.

with , the S-curve [1] turns out to be

(15)

In the region of practical interest, the latter term in (15) is by far
negligible with respect to the former, thus the obtained S-curve
satisfies the target equation (12), proving that the described
closed-loop compensator is unbiased and that no false locks
can occur. Let us remark that this closed-loop estimator only
requires to know the sign of , instead of its exact value
as required by the open-loop estimator (7), thus resulting easy
to be implemented even in the case of partial knowledge on the
spectral properties of .

IV. APPLICATION TO SATELLITE COMMUNICATIONS

Let us now consider a satellite communication system em-
ploying linearly modulated digital transmissions. The complex
envelope of the received signal, before being distorted by the
slope filter (1), can be written as [5]

(16)

where are complex-valued modulation symbols, is the
equivalent shaping pulse at the receiver, is the signaling pe-
riod, , , and are the frequency, phase, and timing offsets, and

is additive white Gaussian noise. We assume that are
zero-mean and independent, and that is the inverse Fourier
transform of a root-raised-cosine function with known
roll-off parameter [5]. Moreover, the unknown offsets , ,
and are assumed constant.

The signal , that is the received signal after being
distorted by the slope filter (1), is generally fed to an anti-alias
filter (AAF) and sampled at a proper rate. The resulting samples
are then processed by an automatic frequency control (AFC)
loop, which has to perform a coarse non-data-aided frequency
synchronization. The classical frequency-recovery algorithms
exploit the spectral properties of the received signal [1], com-
pletely neglecting the slope distortion. Unfortunately, at large
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Fig. 4. Slope compensator for the system described in Section IV.

signaling bandwidths, namely from 30 MHz ahead, the slope
effect heavily alters such properties, thus causing large biases
in the AFC loops and dramatically affecting the performance
of the whole system [4]. In particular, such large biases cannot
be tolerated by the timing-recovery algorithms typically imple-
mented in satellite systems. Hence, a proper slope compensator
must be placed before the AFC loop.

It is known [5] that the PSD of the signal (16) satisfies
the equation

(17)

where is a positive constant depending on the signal-to-noise
ratio. It is worth to point out that the function has even
symmetry only if , whereas the proposed slope compen-
sator was derived in the hypothesis of an input signal which, be-
fore being distorted, has a real-valued autocorrelation or, equiv-
alently, a PSD function with even symmetry. Hence, the com-
pensator cannot work in the presence of a non-zero frequency
offset, as it actually is since the compensator should be placed
before the AFC loop. This problem can be solved by exploiting
the fact that the function is flat when is such that

. Let us fed to an ideal rectangular low-pass
filter with bandwidth , obtaining the output .
If the condition

(18)

is satisfied, the PSD of is such that

(19)

and exhibits even symmetry, as required. This choice would en-
sure the effectiveness of the compensator, but it is not viable
since the useful signal would be distorted by . Hence,
the final solution is to place the low-pass filter in the feedback
path, as shown in Fig. 4, so that the filter does not af-
fect the signal path. All these considerations still hold even if the
ideal rectangular filter is replaced by any low-pass filter with
even symmetry—in particular, we adopted a 5th-order Butter-
worth filter in the computer simulations. Let us point out that,
when the system parameters are such that (18) results critical,
the best solution is to place the closed-loop slope compensator
inside the AFC loop, that is after the frequency compensator but
before the frequency error detector [1], so that (18) can be sat-
isfied after a transient stage.

V. SIMULATION RESULTS

In this Section, the performance of the proposed slope
compensators is assessed by means of computer simulations.
To prove the robustness of the compensators, their behavior in
the presence of the noise only is first reported. Then, a typical
DVB-S2 scenario is considered.

Let complex white Gaussian noise with bandwidth input
the distortion filter (1), and let us sample the distorted signal
at the Nyquist rate. When the value of the slope parameter is

, it is possible to derive (by means of the standard method
described in [10]) the closed-form expression of the CRB for ,
which turns out to be

(20)



452 IEEE TRANSACTIONS ON BROADCASTING, VOL. 54, NO. 3, SEPTEMBER 2008

Fig. 5. Performance of the proposed open-loop compensator: the marks corre-
spond to simulation results, while the lines correspond to the closed-form ex-
pression (21). The related CRB (20) is also reported as a benchmark.

where is the number of observed samples , as well as
that of the MSE for the open-loop estimator (7), which results

(21)

independently on the power of the noise (provided that it is
non-zero)—we point out that the computation of (7) requires
the observation of samples . In Fig. 5 the CRB
and the MSE, both normalized with respect to , are plotted
versus the number of processed samples . Some simulation re-
sults are also reported in Fig. 5, showing a perfect match of (21).
Since, for large values of , the MSE quadratically worsens
with the value of , the best choice is to set . This choice
ensures a degradation with respect to the CRB by a factor lower
than 2.5 in terms of MSE for a given number of processed sam-
ples, or, equivalently, in terms of number of samples to be pro-
cessed to achieve a given MSE.

Hereafter, the reported results refer to the closed-loop com-
pensator described in Section III-B. In Fig. 6, the most important
figures for evaluating the effectiveness of a closed-loop compen-
sator, namely the acquisition time and the steady-state MSE, are
reported, with the latter as a function of the former. Fig. 6 refers
to the case of complex white Gaussian noise as input signal, lim-
ited to a bandwidth of 35 MHz by means of a 5th-order Butter-
worth filter, and to a sampling rate equal to 100 MHz according
to (10). The slope parameter is set to , which is a typical
value in DVB-S2 scenarios [4], and the acquisition time
is here defined as the number of samples to be processed, on
average, to achieve an estimate ns, starting from

. The marks related to simulation results are reported
together with interpolating functions enlightening the (approxi-
mately) linear relationship between the acquisition time and the
MSE when both of them are plotted in logarithmic scale. For a
given , different marks refer to different values of the step size

. As in the previous case, the curves do not vary with the power
of the noise (provided that it is non-zero). Values of from 1 to 4
are considered, with the exception of since such a choice
gives a very poor performance (in this case, ).
The best performance is again obtained by setting : for a

Fig. 6. Performance of the proposed close-loop compensator: the marks corre-
spond to simulation results, while the lines are interpolating linear functions.

Fig. 7. Normalized power spectral density of the difference between the signal
as it should be after an ideal slope compensator and the signal as it actually is
in the absence/presence of the proposed closed-loop compensator.

given target MSE this solution is the fastest, or, equivalently, for
a given target acquisition time this solution is the most accurate.
Considering values of MSE lower than as a target,3 a min-
imum of about samples is thus to be processed even in the
case of the best-performance curve—we notice that, when the
symbol rate is of tens of Mbaud as in most DVB-S2 scenarios,
the required acquisition time is in the order of few hundredths
of second.

Let us finally consider a typical DVB-S2 scenario, charac-
terized by an octal phase-shift keying (8-PSK) modulation, a
signal-to-noise ratio of 5 dB, a symbol rate of 45 Mbaud, a
roll-off parameter , and a slope parameter . In
such conditions, the slope distortion heavily alters the spectral
properties of the received signal [4]. Hence, a significant mea-
sure of the effectiveness of a slope compensator in the steady-
state condition is the PSD of the error due to the residual slope,
that is the difference between the signal as it should be after
an ideal compensator and the signal as it actually is. The re-
sults reported in Fig. 7, related to the closed-loop compensator

3This target results from simulations on the robustness of DVB-S2 systems
not employing slope compensators [4]. It can be seen as the maximum tolerable
value.
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whose block diagram is shown in Fig. 4, prove that this solu-
tion is noticeably effective in reducing both the peak values and
the overall power of the error. In this case, the sampling rate is
equal to 90 MHz, and the compensator is implemented by set-
ting and . It is clear that the proposed blind
compensator practically recovers the original signal and, con-
sequently, there is no need for complex data-aided equalization
techniques to mitigate the residual slope distortion [4].

VI. CONCLUSIONS

We have presented a novel compensator for amplitude dis-
tortions modeled as linear functions of the frequency. The com-
pensator has been analytically derived by exploiting the spectral
properties of the distorted signal, and its effectiveness has been
proved by means of both theoretical analyses and simulation re-
sults. In particular, the designed compensator can work blindly
at very low values of the signal-to-noise ratio. Hence, thanks
to its performance and to its very low complexity, the proposed
solution results much more convenient than the traditional gen-
eral-purpose algorithms for channel equalization.
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