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in the Presence of Class-A Noise
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Abstract—Digital communications over channels impaired by
impulse noise are considered. We first address the problem from
an information-theoretical viewpoint, discussing the performance
limits imposed by the channel model. Then, we describe and
compare a couple of practical communication schemes employing
powerful channel codes and iterative decoding, with focus on a
very simple and robust detection scheme that does not require
the estimation of the statistics of the impulse noise.

Index Terms—Impulse noise, soft-output detection, achievable
information rate.

I. INTRODUCTION

THE power delivery networks and some mobile radio
scenarios are often characterized by interferences that

exhibit a significant impulsive nature. Among the various
statistical models for these phenomena, generally referred to as
“impulse noise”, the most widely used in the literature is the
class-A model [1], which is adopted also in this letter. The
performance of such systems is generally studied under the
assumption of ideal knowledge of the statistical properties of
the impulse noise [2]–[4]. These statistics, which are actually
unknown to the receiver, can be effectively estimated [5], but
the estimation algorithms unfortunately affect the complexity
of the system and cannot properly cope with time-varying
channels [5]–[8]. A blind approach, based on detection metrics
that do not require the knowledge of the channel parameters
nor their estimation, is thus of great interest.

We first resort to information-theoretical arguments and dis-
cuss the ultimate performance limits imposed by the channel,
then we consider practical communication schemes employing
powerful codes and iterative decoding [9], [10]. In particular,
we propose a detection scheme that does not require to know
nor to estimate the statistics of the impulse noise, and compare
it with an ideal receiver that perfectly knows such statistics
and with the soft-limiting receivers [11], which are usually
considered as a reference benchmark for robust detection over
class-A channels. These comparisons prove the effectiveness
of the proposed solution, which performs practically as the
ideal one and much better than the classical soft-limiting
receivers.

II. CHANNEL MODEL

A sequence cK
1 = {ck}K

k=1 of M -ary complex-valued
symbols, possibly obtained by properly encoding a sequence
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of information bits, is linearly modulated and transmitted over
an additive white Gaussian noise (AWGN) channel that also
introduces impulse noise.1 Assuming ideal synchronization
and absence of intersymbol interference, we can write the
received samples as [1]

yk = ck + nk , k ∈ {1, 2, . . . , K} (1)

where nK
1 is a sequence of independent and identically

distributed noise samples. At each time epoch k, the statistical
properties of the sample nk are completely defined by the
channel state sk, which belongs to the set of the non-negative
integers N, and assumes the value i ∈ N with probability [1]

Pi =
e−AAi

i!
(2)

where A is a positive parameter characterizing the channel,
generally referred to as “impulsive index”. In particular,
the sample nk is a complex circularly-symmetric Gaussian
random variable with variance depending on sk, so that the
probability density function (PDF) of nk conditioned to sk

can be written as [1]

p(nk|sk = i) =
1

2πσ2
i

exp
{
−|nk|2

2σ2
i

}
, i ∈ N (3)

where σ2
i is the variance per component of the noise samples

when sk = i. Hence, the PDF of the generic sample nk results

p(nk) =
∞∑

i=0

Pi p(nk|sk = i) =
∞∑

i=0

Pi

2πσ2
i

exp
{
−|nk|2

2σ2
i

}
.

(4)
The variances {σ2

i } can be written as

σ2
i =

(
1 +

i

AΓ

)
σ2

0 , i ∈ N (5)

where σ2
0 can be interpreted as the variance per component of

the background Gaussian noise, while Γ is a positive parameter
describing the power of the impulse noise [1]. Namely, since
the average power of the noise samples is

E{|nk|2} = 2
∞∑

i=0

Piσ
2
i = 2σ2

0 +
2σ2

0

Γ
(6)

the channel introduces, in addition to the background Gaussian
noise with average power 2σ2

0 , an impulsive contribution with
average power 2σ2

0/Γ.
By properly setting the values of the parameters A and Γ,

a large variety of channels with different statistical proper-
ties can be described [1], [2]. In this work, we focus on
scenarios where the presence of impulsive noise, that is the
event {sk > 0}, is relatively infrequent with respect to the

1For any sequence {vk}, we denote the subsequence {vk}n2
k=n1

by vn2
n1 .
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Fig. 1. Signal-to-noise ratio required to achieve an information rate of 1 bit
per channel use.

presence of background noise only, that is the event {sk = 0}.
Hence, we assume that P0 > 1/2, or, equivalently, that the
parameter A satisfies the inequality

A < loge(2) � 0.693 . (7)

On the other hand, no particular restriction on the value of Γ
is assumed.

III. THEORETICAL PERFORMANCE LIMITS

Before describing practical communication systems, we
analyze the ultimate performance limits imposed by the
channel. In particular, we are interested in evaluating the
maximum number of information bits that can be transmitted
per channel use, on average, to achieve an arbitrarily small
bit-error rate (BER) when no upper limit on the length of cK

1

is imposed. This corresponds to evaluating the information
rate I(C, Y ) between the sequences cK

1 and yK
1 [12]. We

will restrict ourselves to the case of a stationary source and
symbols cK

1 belonging to an M -ary phase-shift keying (PSK)
alphabet. In this case, by resorting to the arguments in [13]
or simply by exploiting the symmetry of both the channel and
the alphabet, it is easy to prove that a memoryless source
that emits equally likely symbols achieves the maximum
allowed information rate. Such a source is thus considered
hereafter. Although, for the considered system, the information
rate I(C, Y ) cannot be written in a closed-form expression,
we can easily evaluate it by numerical integration, exploiting
the memoryless nature of both the source and the channel [12].
Some significant outcomes of such computations are reported
and discussed in the following.

In Fig. 1, it is shown how the value of the signal-to-noise
ratio (SNR) required to achieve an information rate of 1 bit
per channel use varies when different channels are considered
and a quaternary PSK (QPSK) modulation is adopted. In this
letter, we define the SNR as |ck|2/(2σ2), that is with respect
to the background Gaussian noise only, so that the impulse
noise is not involved in the definition. Together with the curves
related to class-A channels, we also reported the corresponding
curves related to the AWGN channel and to a system with ideal
channel-state information (CSI), that is a system that knows
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Fig. 2. Signal-to-noise ratio required to achieve an information rate of
1.75 bits per channel use.

the actual realization of the state process sK
1 underlying the

class-A channel.2 All following considerations qualitatively
hold irrespectively of the values of the impulsive index and the
target information rate, but, as shown in Fig. 2, the differences
between the various performance limits are more significant
as these values increase—when the impulsive index is small
enough, all curves collapse on that related to the AWGN
channel. It is interesting to note that the curves related to class-
A channels without CSI exhibit a non-monotonic behavior
with respect to Γ. In particular, there exists a value Γ0 such
that, for Γ < Γ0, the lower the value of Γ the better the
performance, up to an asymptotic value worsening as the
impulsive index and/or the target information rate increase.
This behavior, which is somehow surprising since it implies
that the system can take advantage of a larger power of the
impulsive interferers,3 can by explained by considering that
the gap between the CSI system and the real system is due
to a non-ideal channel-state identification. In fact, the curves
related to CSI systems exhibit a monotonic behavior with
respect to Γ, proving that the theoretical power efficiency
worsens as the power of the impulse noise increases when
ideal channel-state identification is available, as expected.
This allows us to conjecture that the beneficial effect of an
increasing power of the impulse noise is due to the fact
that, when it is large enough, the system can better detect
the presence of interfering impulses and, consequently, better
approach the performance of the CSI system. Such conjectures
are confirmed by the fact that the gap between real systems
and CSI systems tends to vanish as the value of Γ tends to
zero, that is when the impulse noise is much more powerful
than the background noise and thus is easier to detect.

2The information rate of CSI systems equals the statistical average of the
information rates over the channel states [13].

3Although similar conclusions are drawn in [4] while discussing the
numerical simulations, our results prove that the non-monotonic behavior is
not due to any particular coding scheme, but is instead an intrinsic feature of
the channels affected by impulse noise.
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IV. PRACTICAL COMMUNICATION SCHEMES

A. Optimal Detection

In a typical environment, the statistics of the impulse noise
are such that, when no channel encoding is adopted, the system
is basically impulse-noise limited and an error floor in the
BER curve occurs [2]–[4]. We thus consider a communication
system that adopts a powerful channel code, such as turbo-
like or low-density parity-check (LDPC) codes, and performs
iterative decoding [9], [10]. For each time epoch k and for
each trial value c̃k belonging to the modulation alphabet, the
optimal detector should send to the decoder a likelihood mes-
sage Ik(c̃k), simply referred to as “metric” in the following,
such that4

Ik(c̃k) ∝ p(yk|c̃k) =
∞∑

i=0

Pi

2πσ2
i

exp
{
−|yk − c̃k|2

2σ2
i

}
(8)

where p(yk|c̃k) is the PDF of the received sample yk condi-
tioned to the transmission of the symbol c̃k. In the case at
hand, after straightforward manipulations of (8) based on (2)
and (5), we can write the generic metric Ik(c̃k) as

Ik(c̃k) = exp
{
−|yk − c̃k|2

2σ2
0

}
+

∞∑
i=1

Ai

i!
AΓ

(AΓ + i)
exp

{
−|yk − c̃k|2

2σ2
0

AΓ
AΓ + i

}
(9)

pointing out that the first term is exactly the optimal metric
for AWGN channels, whereas the second term can be seen
as a correction term accounting for the presence of impulse
noise. The summation in (9) involves an infinite series, and
thus it is not suitable for practical uses. Hence, we define the
parameter iMAX as the minimum integer such that

∞∑
i=iMAX+1

Pi < 10−10 (10)

and, slightly abusing the notation, we refer to the metric
obtained by neglecting the terms with index i > iMAX in (9)
as “optimal metric”. When the hypothesis (7) is satisfied, we
get iMAX ≤ 10 irrespectively of the value of the impulsive
index A.

B. Suboptimal Detection

According to (9), the evaluation of the optimal metrics re-
quires that the receiver knows the values of σ2

0 , A and Γ. Since
these parameters are actually unknown to the receiver, the
optimal metric can be just considered as an ideal solution. A
possible practical approach consists of estimating the statistics
of the noise by means of proper algorithms [5]. Since the esti-
mation of the power of the background Gaussian noise is not
critical, a perfect knowledge of the value of σ2

0 is assumed in
this letter. On the other hand, the algorithms for the estimation
of the values of A and Γ, besides increasing the complexity of
the receiver, cannot properly cope with impulse noise whose
statistics are significantly time-varying [5]. Hence, the design
of detection schemes that do not require the knowledge of the

4We use the proportionality symbol ∝ when the sides can differ by a
positive multiplicative factor irrelevant for the decoding process.
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values of A and Γ nor their estimation is of great interest for
their simplicity and robustness [6]–[8]. A couple of possible
solutions are compared in the following.5

We first consider the classical “soft limiting” (SL) met-
ric [11]

ISL
k (c̃k) = exp

{
−|zk − c̃k|2

2σ2
0

}
(11)

where, at each time epoch k, the sample zk is obtained by
properly cutting the amplitude of the received sample yk.
Formally, given a suitable threshold value VT > 0, we can
write

zk = f(�{yk}) + jf(�{yk}) (12)

where the non-linear function f(·) is defined as

f(x) =

⎧⎨
⎩

x if |x| ≤ VT

VT if x > VT

−VT if x < −VT

. (13)

The rationale of the SL metric is discussed in [11].
In this letter, we propose an alternative solution, basically

extending our proposal in [7]. In Fig. 3, the behavior of the
optimal metric Ik(c̃k) is shown as a function of |yk − c̃k|,
for different values of A and Γ. Under the hypothesis (7), the
dominant term in (9) is the first one when the value of the
Euclidean distance |yk − c̃k| is low, so that all curves match
the classical AWGN metric

IAWGN
k (c̃k) = exp

{
−|yk − c̃k|2

2σ2
0

}
(14)

at the left side of Fig. 3, irrespectively of the actual statistics
of the impulse noise. On the other hand, at the right side
of Fig. 3, that is for large values of |yk − c̃k|, the second
term is the dominant one in (9) and the curves thus differ
depending on the statistics of the impulse noise. Hence, in that
region, any metric that is blind with respect to the values of A
and Γ cannot approximate with accuracy the ideal metric. We
exploit the fact that the knowledge of the values of A and Γ is

5Other solutions addressed to a different model of the impulse noise are
presented in [6], but they are not considered here since they are not suitable
for receivers employing iterative decoding [7], [8].
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required only for the description of the “tails” of the metric,
and propose the following threshold approximation

Ik(c̃k) = max
{

IAWGN
k (c̃k), Δ

}
(15)

where Δ ∈ [0, 1] is a design parameter discussed later. The
rationale of the approximation (15), which is just a saturation
of the AWGN metric (not of the received sample, unlike the SL
metric) to a constant threshold and thus is very simple from a
computational viewpoint, is explained in the following. First,
when the Euclidean distance |yk − c̃k| is low, the proposed
metric matches the AWGN metric, as an effective metric
should definitely do according to Fig. 3. On the other hand,
when the received sample is far away from the constellation,
that is when the Euclidean distance |yk − c̃k| is very large for
all possible values of the modulation symbol c̃k, the proposed
metric is saturated to the minimum threshold Δ irrespectively
of the value of c̃k, so that the detector produces the so-called
“erasure” decision. In this case, the presence of impulsive
contributions in addition to the background noise is very
likely, and a receiver that does not know the statistics of the
impulse noise cannot produce any more reliable decision than
an erasure. To better realize these statements, it is useful to
consider the results reported in Fig. 4, which refer to a binary
PSK (BPSK) modulation with alphabet {1,−1} and a class-A
channel characterized by A = 10−1, Γ = 10−1, and an SNR of
0 dB. In Fig. 4, it is shown how the log-likelihood ratio (LLR),
that is the natural logarithm of the ratio between the metric
corresponding to the hypothesis c̃k = 1 and that corresponding
to the hypothesis c̃k = −1, varies with respect to the received
sample yk when different metrics are considered. The behavior
of the optimal metric exhibits two key points, namely the need
for producing very low-magnitude LLRs when the received
sample is far away from the constellation, that is when the
presence of interfering impulses is very likely, and the need
for exploiting the imaginary component of yk—unlike the
AWGN channels, the real and imaginary components of the
class-A noise are not independent. Fig. 4 definitely proves
that the proposed metric, here implemented with Δ = 10−3,
approximate this behavior much better than the considered
alternatives. In particular, both the AWGN metric and the SL
metric, here implemented with VT = 1.3, cannot exploit the
imaginary component of yk (thus not reported in Fig. 4) and
dramatically fail in producing low-magnitude LLRs when the
presence of interfering impulses is very likely. In conclusion,
it is easy to predict that the proposed metric will significantly
outperform them when systems requiring high-quality soft-
output detection are considered. On the other hand, the gener-
ation of erasure decisions (that is null LLRs in Fig. 4) makes
the proposed metric less suitable for hard-output detection.

We now discuss the choice of the threshold parameter Δ,
which is crucial for the performance of the proposed metric.
Following the arguments in [8], one can derive a rule of
thumb for choosing the value of Δ given the statistics of
the impulse noise. On the other hand, extensive computer
simulations, some of which are reported in Section V, show
that the proposed metric is very robust, and that values of Δ
in the order of 10−3 result effective irrespectively of the
actual statistics of the impulse noise, provided that a powerful
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channel code is adopted. Such a robustness is due to the fact
that the value of Δ does not affect the key features required
for good soft-output detection, namely the generation of low-
magnitude LLRs when the presence of interfering impulses
is very likely, and the capability of exploiting that the real
and imaginary components of the received samples are not
independent.

V. SIMULATION RESULTS

In this section, the performance of the described detection
schemes is assessed by means of computer simulations. The
reported results refer to QPSK transmissions over channels
characterized by different statistics of the impulse noise. A
(3, 6)-regular LDPC code of rate 1/2 is applied to sequences
of 2000 information bits. At the receiver side, the LDPC
decoder performs 40 self-iterations before producing the de-
cisions on the information bits [10]. The iterative process can
also stop before the 40th iteration if, by checking the code
syndrome, a valid codeword is found.

We first consider a channel with impulse noise characterized
by A = 10−1 and Γ = 10−1. Fig. 5 shows the performance
of the system when different metrics are used, in terms of
BER versus SNR. As a comparison, the performance over an
AWGN channel is also reported. Although, according to (6),
the impulse noise increases the power of the overall noise of
about 10 dB with respect to the AWGN channel, the optimal
metric provides a performance degradation lower than 1.5 dB,
canceling out the greatest part of the impulse noise thanks
to the powerful coding scheme. We notice that the proposed
metric, here implemented with Δ = 10−3, ensures the same
performance as the optimal one, resulting the most convenient
performance/complexity tradeoff. Let us point out that the
saturation to the minimum threshold Δ, which actually is the
only difference between the proposed metric and the AWGN
metric, provides a gain of more than 12 dB at the expense of
a practically null increase in complexity. On the other hand,
the simulation results also confirm the conjectures carried
out in Section IV-B on the ineffectiveness of the SL metric
when employed in systems requiring high-quality soft-output
detection. In fact, although the threshold value VT has been
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optimized for each value of the SNR, we notice that the SL
metric exhibits a performance degradation larger than 2 dB
with respect to the proposed one.

Fig. 6 shows the values of the SNR corresponding to a BER
equal to 10−5 when different statistics of the impulse noise are
considered. The performance of the optimal metric and that of
the proposed one working with Δ = 10−3 are compared. We
remark the robustness of the proposed metric, which provides
a negligible performance degradation with respect to the ideal
benchmark irrespectively of the statistics of the impulse noise.
In practice, when the proposed metric is adopted, we can just
set Δ = 10−3 and there is no need for information on the
values of A and Γ.

This fact, together with the very low computational com-
plexity, definitely makes the proposed solution the most conve-
nient one. The same conclusion holds even when a simplified
model is assumed for the impulse noise [7]. Moreover, it is
worth to notice that the results reported in Fig. 6 greatly agree

with the theoretical discussion carried out in Section III.
In particular, it is confirmed that the impulse noise, irrespec-

tively of its power, can be practically canceled out when the
impulsive index is small enough (with the same LDPC code,

over an AWGN channel, a BER equal to 10−5 is achieved
when the value of the SNR is about 2 dB), and that there
exists a value Γ0 such that, for Γ < Γ0, the system can take
advantage of a larger power of the impulse noise.

VI. CONCLUSIONS

The performance of communication systems over channels
impaired by impulse noise has been analyzed. We have
discussed the ultimate performance limits of these systems by
exploiting information-theoretical arguments, and presented a
detection metric that, besides being characterized by a minimal
computational complexity, does not require the knowledge
of the statistics of the impulse noise. When combined with
powerful channel codes, the proposed scheme has been shown
to perform practically as the ideal one, much better than
the classical soft-limiting detectors, and fairly close to the
theoretical limit.
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