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On the Information Rate and Repeat-Accumulate Code Design for
Phase Noise Channels

Alan Barbieri and Giulio Colavolpe, Senior Member, IEEE

Abstract—We investigate the information rate of channels
affected by phase noise, aiming at predicting the ultimate per-
formance limits in this scenario. Moreover, a closed-form upper
bound is also derived for phase shift keying (PSK) modulations.
Finally, we consider the design of nonsystematic irregular repeat-
accumulate (RA) codes for this channel trying to give new insights
on the codes to be employed for such an application.

Index Terms—Differential encoding, iterative detection and
decoding, detection and decoding in the presence of phase noise.

I. INTRODUCTION

IN SOME communication links, the adoption of low-cost
transmit and/or receive oscillators makes the phase noise

one of the major impairments. An example is represented by
the next generation digital video broadcasting satellite systems
(DVB-S2) [1], where unexpensive low-noise blocks in the
outdoor units and tuners in the indoor units introduce a strong
phase noise. Similarly, laser’s phase noise strongly degrade
the performance of the upcoming 100 Gbps long-haul optical
coherent systems [2].

In the literature, this phase noise is commonly modeled
as a Wiener process, although more accurate models have
been recently proposed for consumer-grade equipments to be
employed in DVB-S2 systems [3]. In this paper, however,
the Wiener model will be considered mainly because it is
characterized by a single parameter which allows effective
tuning of its strength, and also because a receiver designed
for the Wiener phase noise model also performs well for a
more accurate phase noise model, suggesting that there is no
significant practical difference between the simplified and the
more accurate models [4].

For channels affected by phase noise, a lot of papers have
addressed in detail the problem of detection (as examples, see
[4]–[7] and references therein) but nothing has been said, to
the best of our knowledge, from an information theoretic point
of view if we except the case of a constant channel phase offset
or error [8]–[10] and the case of ideal interleaving (and thus,
uncorrelated phase noise samples) [11]. Our aim here is to
analyze, through the computation of the information rate (IR),
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i.e., the average mutual information when the channel inputs
are independent and uniformly distributed (i.u.d.) random
variables, the ultimate performance loss due to the presence
of phase noise. In addition, by designing, through EXtrin-
sic Information Transfer (EXIT) charts [12], specific repeat-
accumulate (RA) codes for such an application, we discuss
the common practice of employing, in satellite applications,
channel codes designed for memoryless channels [1].

The theoretical framework over which our investigation is
based, is represented by the method, independently proposed
by several authors in recent years, for the evaluation of the IR
for finite-state channels [13]. Although the considered phase
noise channel is not finite-state, this approach will be pursued
by resorting to a proper auxiliary channel and deriving lower
bounds on the information rate achievable by a maximum-
likelihood decoder for the auxiliary channel.

Regarding code design for channels with phase noise, we
would like to mention the alternative approach described
in [14]. In that paper, low-density parity-check (LDPC) codes
over rings are designed by dividing the codewords into sub-
blocks of adjacent symbols under the assumption that the
phase variations over each of them are small. Two classes of
check nodes are then created: the “global check nodes”, spread
across many sub-blocks, that converge irrespective of possible
rotations of a multiple of the rotational invariance angle for the
employed constellation, and “local check nodes” inserted to
resolve the phase ambiguity on each sub-block. At the receive
end, the joint detection/decoding process is modified accord-
ingly. Global check nodes are used first and different phase
estimates are produced, one for each sub-block. The sub-block
phase ambiguities are then solved by exploiting local check
nodes. Although very interesting from a conceptual viewpoint,
this approach has the following drawbacks. First of all, as the
authors explicitly admit, it is not able to tackle large amounts
of phase noise, such as those considered in this paper. In
addition, the stronger the phase noise, the lower the optimal
sub-block size and hence the larger the decoding complexity.
Finally, the detection/decoding procedure has an intrinsic loss
of a few tenth of dBs (also when the channel phase is constant)
since it does not include the local check nodes during the
first stage and for the degraded performance of the turbo
phase estimator whith reduced sub-block size. On the contrary,
the codes described in this paper, for which phase ambiguity
is solved through the intrinsic differential encoding, do not
require an ad-hoc decoding procedure. Hence, the algorithms
in [7], with a practically optimal performance irrespective of
the amount of phase noise, can be employed at the receiver.

The rest of the paper is organized as follows. The exact
system model is described in Section II, whereas in Section III
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the algorithm in [13] is briefly reviewed and specialized for
the problem at hand. In Section IV, a very simple but useful
upper bound on the IR for 𝑀 -ary phase shift keying (𝑀 -
PSK) modulations is obtained in closed-form. In Section V,
a technique based on EXIT charts [12] is pursued for the
design of irregular RA code design for this scenario whereas
in Section VI numerical results are presented. Finally, in
Section VII some conclusions are drawn.

II. SYSTEM MODEL

We consider the transmission of a sequence of complex
modulation symbols x = {𝑥𝑘}, independent, identically,
and uniformly distributed, belonging to an 𝑀 -ary complex
alphabet 𝒳 = {𝑥(𝑖)}𝑀−1

𝑖=0 , over an additive white Gaussian
noise (AWGN) channel affected by an unknown time-varying
channel phase. Considering a linear modulation at the trans-
mitter side and assuming that one sample per symbol is
adequate (as in the absence of strong phase variations within
a few symbol periods), if transmit and receive filters are such
that there is absence of intersymbol interference, we have the
following observation model

𝑦𝑘 = 𝑥𝑘𝑒
𝑗𝜃𝑘 + 𝑤𝑘 (1)

where noise samples w = {𝑤𝑘} are independent and iden-
tically distributed, complex, circularly symmetric, Gaussian
random variables, each with mean zero and variance equal
to 2𝜎2. We will denote the sequence of received samples by
y = {𝑦𝑘}. Given a generic sequence v = {𝑣𝑘}, we will also
denote by v𝑛 = {𝑣𝑘}𝑛𝑘=1 the sequence composed by its first
𝑛 elements.

A common model for the phase noise process {𝜃𝑘} is the
random-walk (Wiener) model described by

𝜃𝑘+1 = 𝜃𝑘 +Δ𝑘 (2)

where {Δ𝑘} is a discrete-time white real Gaussian process
with mean zero and variance 𝜎2

Δ, and 𝜃0 is uniformly dis-
tributed in the interval [0, 2𝜋). Hence, it follows that

𝑝(𝜃𝑘∣𝜃𝑘−1, 𝜃𝑘−2, . . . , 𝜃0) = 𝑝(𝜃𝑘∣𝜃𝑘−1) = 𝑝Δ(𝜃𝑘−𝜃𝑘−1) (3)

where we define 𝑝Δ(𝜑) as the probability density function
(pdf) of the increment Δ𝑘 mod 2𝜋, i.e.,

𝑝Δ(𝜑) =

∞∑
ℓ=−∞

𝑔
(
0, 𝜎2

Δ;𝜑− ℓ2𝜋
)

, 𝜑 ∈ [0, 2𝜋) (4)

having denoted by 𝑔(𝜂, 𝜌2;𝑥) a real Gaussian pdf with mean
𝜂, variance 𝜌2, and argument 𝑥. The sequence of phase
increments {Δ𝑘} is supposed unknown to both transmitter
and receiver and statistically independent of x and w.

We also consider the following finite-state auxiliary channel
model in which the channel phases 𝜽 = {𝜃𝑘} belong to a finite
set such that

𝜃𝑘 ∈
{
2𝜋

𝐿
ℓ

}𝐿−1

ℓ=0

(5)

the larger the number of discretization levels 𝐿, the better the
approximation. Taking into account (2) and (4), it is possible

to find the transition probabilities of the discretized model as

𝑃𝑖,𝑗 = 𝑃

(
𝜃𝑘+1 =

2𝜋

𝐿
𝑗
∣∣∣𝜃𝑘 =

2𝜋

𝐿
𝑖

)

=

∫ (𝑗−𝑖+ 1
2 )

2𝜋
𝐿

(𝑗−𝑖− 1
2
) 2𝜋

𝐿

∞∑
ℓ=−∞

𝑔
(
0, 𝜎2

Δ;𝜑− ℓ2𝜋
)
𝑑𝜑

=

∞∑
ℓ=−∞

[
𝑄

(
(𝑗 − 𝑖 − 1

2
)
2𝜋

𝐿𝜎Δ
− 2𝜋ℓ

𝜎Δ

)

− 𝑄

(
(𝑗 − 𝑖+

1

2
)
2𝜋

𝐿𝜎Δ
− 2𝜋ℓ

𝜎Δ

)]
(6)

where 𝑄(𝑥)
Δ
= 1√

2𝜋

∫∞
𝑥 𝑒−

𝑡2

2 𝑑𝑡 is the Gaussian 𝑄 function.

III. EVALUATION OF THE INFORMATION RATE

A lower bound for the information rate of the channel at
hand is the information rate achievable by a receiver designed
for the auxiliary channel with discretized phase, defined by (1)
and (5), when the actual channel is the original one with
Wiener phase noise. We also expect that the larger the value
of 𝐿, the tighter this lower bound. This issue, which is an
instance of mismatched decoding [15], cannot be addressed in
closed form, but can be solved by means of the simulation-
based method described in [13], which only requires the
existence of an algorithm for exact maximum a posteriori
(MAP) symbol detection over the auxiliary channel. For the
considered auxiliary channel, MAP symbol detection is an
instance of the well known Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [16] working on a trellis with 𝐿 states.

The achievable IR for the mismatched receiver can be
evaluated as

𝐼(x;y) = lim
𝑛→+∞

1

𝑛
𝐼(x𝑛;y𝑛)

= lim
𝑛→+∞

1

𝑛
𝐸

{
log

𝑝(y𝑛∣x𝑛)

𝑝(y𝑛)

} [
bit

symb.

]
(7)

where 𝑝(y𝑛∣x𝑛) and 𝑝(y𝑛) are probability density func-
tions according to the auxiliary channel model, while the
outer statistical average is with respect to the input and
output sequences evaluated according to the actual channel
model [13]. Both 𝑝(y𝑛∣x𝑛) and 𝑝(y𝑛) can be evaluated re-
cursively through the forward recursion of the MAP detection
algorithm matched to the auxiliary channel model [13]. Let
us recall that the mismatched receiver can assure error-free
transmissions when the transmission rate at the modulator
input does not exceed 𝐼(x;y) bit/symbol.

IV. UPPER BOUND FOR 𝑀 -PSK MODULATIONS

It would be also desirable to find some closed-form bounds
for the IR. To obtain a closed-form result, a simple hypothesis,
which is however largely verified in all practical channel
conditions, is to consider 𝜎Δ ≪ 2𝜋, such that the pdf of
the phase increment (4) is practically Gaussian. We need the
following preliminary result:

Theorem 1: For an 𝑀 -PSK modulation, in the absence of
thermal noise (i.e., 𝜎 = 0), the average mutual information is
a non-decreasing function of 𝑀 .

Proof: Let us build a 2𝑀 -PSK modulation with this
trick: for every time epoch 𝑘 the transmitted phase 𝛼𝑘 ∈
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{
𝜋
𝑀𝑚

}2𝑀−1

𝑚=0
is evaluated in this way: 𝛼𝑘 = 𝛼′

𝑘+
𝜋
𝑀 𝑠𝑘, where

𝛼′
𝑘 ∈ {2𝜋

𝑀 𝑚
}𝑀−1

𝑚=0
and 𝑠𝑘 ∈ {0, 1} with equal probability. It

is like splitting the 2𝑀 -PSK constellation into two 𝑀 -PSK
constellations, where at each time epoch 𝑘 the constellation is
selected by the flag 𝑠𝑘.

Let us moreover define the sequence z = {𝑧𝑘} of observed
samples as 𝑧𝑘 = [𝛼𝑘 + 𝜃𝑘]

𝜋
−𝜋. We also define 𝜶 = {𝛼𝑘}

and s = {𝑠𝑘}. Since the thermal noise is absent, this channel
model is equivalent to (1), so we have to prove that

𝐼(𝜶; z) ≥ 𝐼(𝜶; z∣s = 0) (8)

which is equivalent, in terms of entropies [17] to

ℎ(z)− ℎ(z∣𝜶) ≥ ℎ(z∣s = 0)− ℎ(z∣𝜶, s = 0) . (9)

The entropy ℎ(z) is defined as follows

ℎ(z) = lim
𝑛→+∞

1

𝑛
ℎ(z𝑛)

= − lim
𝑛→+∞

1

𝑛
𝐸[log(𝑝(z𝑛))] (10)

and similarly for the conditional entropy ℎ(z∣𝜶) with
𝑝(z𝑛∣𝜶𝑛) in place of 𝑝(z𝑛).

Both terms ℎ(z∣𝜶) and ℎ(z∣𝜶, s = 0) are an average of
terms of the form ℎ(z∣𝜶 = �̂�) but the first one over the
entire 2𝑀 -PSK sequence space whereas the second one on
the set of sequences with s = 0. Clearly ℎ(z∣𝜶 = �̂�) = ℎ(𝜽)
is independent of the sequence 𝜶, and thus also ℎ(z∣𝜶) =
ℎ(z∣𝜶, s = 0). This ends the proof, since ℎ(z) ≥ ℎ(z∣s = 0)
because conditioning reduces entropy.
We would like to point out that this result does not hold in
the presence of thermal noise.

We can now prove the following Theorem:
Theorem 2: For any 𝑀 -PSK modulation over the Wiener

phase noise channel, with a parameter 𝜎Δ, the average mutual
information is upper bounded by

𝐼(x;y) ≤ log2

(√
2𝜋/𝑒

𝜎Δ

)
. (11)

Proof: By using Theorem 1 and the fact that the average
mutual information is a non-decreasing function of the signal-
to-noise ratio, it is sufficient to prove that (11) is valid for 𝜎 =
0 and 𝑀 → +∞. This is moreover equivalent to considering
a channel with an input 𝜶 uniformly distributed in [−𝜋,+𝜋]
transmitted over a channel such that 𝑧𝑛 = [𝛼𝑛 + 𝜃𝑛]

+𝜋
−𝜋. Now,

by direct computation of

𝐼(𝜶𝑛; z𝑛) =

∫
𝑝(𝜶𝑛)

∫
𝑝(z𝑛∣𝜶𝑛) log2

𝑝(z𝑛∣𝜶𝑛)

𝑝(z𝑛)
𝑑z𝑛𝑑𝜶𝑛

(12)

it can be shown that 𝐼(𝜶𝑛; z𝑛) ≤ (𝑛−1) log2

(√
2𝜋/𝑒

𝜎Δ

)
, from

which (11) follows directly.
This upper bound states that very dense PSK constellations,

in which log2 𝑀 is greater than the bound, do not reach
the value log2 𝑀 even in the absence of thermal noise (i.e.,
for high signal-to-noise ratio values). Furthermore, it shows
that, as it was expected, the maximum mutual information
decreases when the speed of variation of the phase noise (𝜎Δ)
increases. Moreover, it will be shown that this bound is very

+
∏−1+

∏
+

from
channel

CND

CND

MAP

DET
VND

CND+ MAP DET

Fig. 1. Iterative receiver for a nonsystematic RA code.

tight, since 𝑀 -PSK modulations such that log2 𝑀 is much
larger than the bound have an average mutual information
that reaches the bound for large enough signal-to-noise ratio
values.

A similar nice result cannot be obtained for non-equal
energy signals since the information carried by the amplitude
variations is not affected by the time-varying nature of the
phase.

V. RA CODE DESIGN

We now provide a possible solution to the problem of find-
ing good codes for this scenario. We use EXIT charts [12] and
linear programming to find the parity check degree distribution
of a nonsystematic irregular RA code such that, for a given
signal-to-noise ratio value, the code exhibits the largest rate.
We apply a design strategy similar to that applied in [18] for
a multiple-input multiple-output channel.

The iterative receiver for this case, whose scheme is shown
in Fig. 1, is the serial concatenation of three soft-input soft-
output (SISO) blocks: the variable node decoder (VND), the
check node decoder (CND) and the MAP SISO detector for
a differentially encoded modulation (MAP DET). This MAP
SISO detector is based on phase quantization and is described
in [7].1 An interleaver (Π) is placed between the CND and
the VND. For the optimization procedure, it is necessary to
join the CND and the MAP SISO detector in a macroblock
(CND+MAP DET in the figure) [18]. It is worth noticing
that pilot symbols are not necessary (as it would be in the
absence of differential encoding), since the detector exploits
the differential nature of the transmitted data in order to avoid
phase ambiguities. We use here a different notation than that
of [18]. Let 𝐷𝑣 be the number of different variable node
degrees and denote these degrees by 𝑑𝑣,𝑖, 𝑖 = 1, . . . , 𝐷𝑣. The
average variable node degree is

𝑑𝑣 =

𝐷𝑣∑
𝑖=1

𝑎𝑖𝑑𝑣,𝑖 (13)

where 𝑎𝑖 is the fraction of nodes having degree 𝑑𝑣,𝑖. Moreover,
we denote by 𝜆𝑖 the fraction of edges incident to variable
nodes of degree 𝑑𝑣,𝑖. Clearly both the 𝑎𝑖 and 𝜆𝑖 sum up to
one. Similarly, we denote by 𝐷𝑐, 𝑑𝑐,𝑖, 𝑏𝑖, and 𝜌𝑖 the number of
different check node degrees, the 𝑖-th degree, and the fractions
of check nodes and edges having degree 𝑑𝑐,𝑖, respectively.
Since the number of edges at the VND and CND are the
same, we have 𝑑𝑐 = 𝑅𝑑𝑣 , 𝑅 being the code rate.

1As specified in Section VI, we employ a number of quantization levels
typical of low-complexity practical detectors.
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In order to obtain a linear optimization problem, the check
node distribution has to be chosen a priori. The optimization
algorithm consists of finding a variable node degree distribu-
tion, namely the 𝑑𝑣,𝑖 along with their 𝜆𝑖 (for a given value
of 𝐷𝑣) such that the code rate 𝑅 is maximized and the EXIT
chart tunnel is open.

Let us consider the average mutual information from the
variable node decoder, available in [18], and that going into the
VND. This latter average mutual information is a cumbersome
function, computable only through numerical simulations,
parameterized by the thermal noise and phase noise variances
(𝜎2 and 𝜎2

Δ, respectively) and by the check node degree
distribution [18]. The optimization problem at hand can be
expressed as a linear programming problem, similar to those
reported in [19], where the objective function to be maximized
is the code rate 𝑅, which is equivalent to

max
{𝜆𝑖}𝑖

∑
𝑖

𝜆𝑖/𝑑𝑣,𝑖

and the constraints are the open tunnel condition [18], that
can be formulated as to have an increasing average mutual
information exchanged by the SISO components, and∑

𝑖

𝜆𝑖 = 1 ,
∑
𝑖

𝜆𝑖/𝑑𝑣,𝑖 ≤ 𝑑𝑐

the second ensuring a code rate not greater than one.
The optimization algorithm proceeds as follows. First of all,

the check node distribution and the minimum and maximum
tolerable values for the variable node degrees are chosen. Since
we are considering a non-systematic RA code, the iterative
procedure can start only in the presence of check nodes with
degree one. Indeed, a small amount of degree-one check nodes
must be inserted in order to allow the bootstrap of the decoding
algorithm (the so-called code doping [18]). We impose a
biregular structure for the check node degrees, i.e., 𝑑𝑐,1 = 1
with 𝑏1 = 0.2 and 𝑑𝑐,2 = 𝑑𝑐 with 𝑏2 = 0.8, where 𝑑𝑐 is also
optimized by the optimization program.

The signal-to-noise ratio is incremented step by step starting
from a minimum value. For each value, several candidate
values of 𝑑𝑐 are tried, from 𝑑𝑐 = 2 to 𝑑𝑐 = 10, the
linear programming problem is solved for each value and the
distribution {𝜆𝑖}𝑖 that maximizes the code rate, as well as the
rate itself, are evaluated. The value of 𝑑𝑐 which guarantees the
largest rate is chosen. It is worth noticing, however, that the
linear problem could not have a valid solution (i.e., a solution
for which all constraints are satisfied). This happens when
the signal-to-noise ratio value is too small with respect to
the modulation and the channel conditions to have a reliable
communication.

VI. NUMERICAL RESULTS

We now present, for different modulation formats, the infor-
mation rate of channels with Wiener phase noise as a function
of 𝐸𝑏/𝑁0, 𝐸𝑏 being the received signal energy per information
bit and 𝑁0 the one-sided noise power spectral density. As a
matter of comparison, two curves for the AWGN channel have
been added to some of the figures: the unconstrained capacity,
given by the recursive equation

𝑅 = log2

(
1 +𝑅

𝐸𝑏

𝑁0

)
(14)
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Fig. 2. Information rate for QPSK modulation.

and the information rate which instead depends on the mod-
ulation format.

In order to obtain very tight lower bounds for the informa-
tion rate in the presence of phase noise, in our simulations
we used 𝐿 = 1024 discretization levels for the channel phase
and sequences of length of 𝑛 = 105 symbols. We indeed
verified that a further increase of these values do not lead to
significantly different results. This number of discretization
levels is much higher than that necessary for a practical
receiver, based on phase discretization, to obtain near optimal
performance.

In Fig. 2, the IR for the phase noise channel is shown for a
quaternary PSK (QPSK) modulation compared with capacity
and IR of the AWGN channel. Two different values of 𝜎Δ are
considered. As it can be observed, for any given information
rate, there is a variable energy loss of the curves for the phase
noise channels. Indeed, as expected, the loss is proportional
to the variance of the phase noise increments, i.e., the larger
the 𝜎Δ value, the larger the energy loss. For instance, at an
information rate of 1 bit/symbol, the channel with 𝜎Δ = 2
degrees exhibits a loss of about 0.2 dB with respect to the
constrained capacity of the AWGN channel, while the loss
increases to about 0.7 dB for the channel with 𝜎Δ = 6
degrees. Clearly, the IR of a QPSK modulation over any
channel cannot go over 2 bit/symbol. In this figure, the reader
can observe a particular behavior of the information rate curve
𝐼 as a function of 𝐸𝑏/𝑁0, that will be even more clear in the
following figures. In fact, there exists a value of 𝐼 such that, for
lower values, 𝐸𝑏/𝑁0 increases. If we plot the information rate
𝐼 as a function of 𝐸𝑆/𝑁0, this behavior obviously disappears
since, for physical reasons, 𝐼 is a non decreasing function of
𝐸𝑆/𝑁0. On the other hand, 𝐸𝑆 is related to 𝐸𝑏 through the
equation 𝐸𝑆 = 𝐼𝐸𝑏. Hence, given a value of 𝐸𝑏/𝑁0, we have
to solve the fixed-point equation 𝑓(𝑥) = 𝑥, where 𝑥 = 𝐸𝑆

𝑁0

and 𝑓(𝑥) = 𝐼
(

𝐸𝑆

𝑁0

)
𝐸𝑏

𝑁0
, that must be solved for 𝑥 ≥ 0 and

𝑓(𝑥) ≥ 0 (in the first quadrant). In the case of the AWGN
channel, for every value of 𝐸𝑏/𝑁0 we always have just one
solution (excepting the trivial one for (𝑥, 𝑓) = (0, 0)) of the
fixed-point equation. In the case of a phase noise channel, for
some values of 𝐸𝑏/𝑁0 we have two solutions. The value of
𝐸𝑏/𝑁0 such that 𝐸𝑏/𝑁0 increases when 𝐼 decreases is the
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Fig. 3. Information rate for a 32-APSK modulation.
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value 𝑥0 of 𝑥 such that

𝑑𝑓(𝑥)

𝑑𝑥

∣∣∣
𝑥=𝑥0

= 1 , 𝑓(𝑥0) = 𝑥0 .

Curves similar to those in Fig. 2 for QPSK are reported in
Fig. 3 for an amplitude/phase shift keying (APSK) modulation
with 32 symbols. APSK constellations are the composition
of a set of PSK constellations with different radius. They
are particularly suited for satellite communications, thanks
to their robustness to channel non-linearities and thus they
have been standardized for the future DVB-S2 communication
systems [1]. 32-APSK is in particular built by 3 concentric
PSKs (an inner 4-PSK, a medium 12-PSK and an outer 16-
PSK). Due to the higher density of the considered constellation
with respect to QPSK, the energy loss for a given IR from the
AWGN curve is larger than in the QPSK case. For instance,
at an IR of 3.5 bits/symbol, the losses are 0.6 dB and 1.3 dB
for the channels with 𝜎Δ = 2 degrees and 𝜎Δ = 6 degrees,
respectively.

In Fig. 4, the mutual information of 𝑀 -PSK modulations
for several different values of 𝑀 are plotted together with the
upper bound (11) (the horizontal line), which in the considered
case of 𝜎Δ = 6 degrees, becomes 𝐼(x;y) ≤ 3.85 bit/symbol.
As it can be seen, all modulations such that log2 𝑀 ≥ 4 are
not able to reach their maximum value log2 𝑀 not even for
very large signal-to-noise ratio values and in practice perform
identically. Moreover, the bound is very tight, since the curves
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TABLE I
BEST MODULATIONS FOR DIFFERENT SIGNAL-TO-NOISE RATIO VALUES.

𝐸𝑏/𝑁0 Modulation

⋅ < 0.2 dB 16-QAM

0.2dB < ⋅ < 10 dB 64-QAM

10 dB < ⋅ 256-QAM

of all constellations with 𝑀 ≥ 16 converge to the horizontal
line for a sufficiently large 𝐸𝑏/𝑁0 value.

It is well known that, on the AWGN channel, larger
constellations yield better IR. On the contrary, as we said
in Section IV, on the channel with both thermal and phase
noise, there can be an optimal constellation, different for every
considered signal-to-noise ratio value, which behaves better
than any other in a given set. We take into account all the
following modulations: 𝑀 -PSK with log2 𝑀 = 2, 3, 4, 5, 6,
𝑀 -QAM with log2 𝑀 = 4, 6, 8 and 32-APSK, on a channel
with 𝜎Δ = 6 degrees. The corresponding figure is not reported
here since it would be not clear due to the large number of
curves. However, we manually checked, for various 𝐸𝑏/𝑁0,
the modulation which reaches the largest rate. The results are
reported in Table I.

Some interesting observations can be drawn from these
results. First of all, amplitude modulations seem to always
outperform the PSKs. This can be explained by the fact that
the information conveyed by the amplitude variations is not
affected by the time-varying phase but by the thermal noise
only. Indeed, 𝑀 -QAM modulations clearly overcome the
bound (11) for PSK modulations. Moreover, it can be seen that
at low signal-to-noise ratio values, less dense constellations
perform better.

Finally, in Fig. 5 we show the best code rate found as
a function of 𝐸𝑏/𝑁0 (𝐸𝑏/𝑁0 = 𝑅𝐸𝑆/𝑁0, 𝐸𝑆 being the
received signal energy per information symbol), compared
with the IR, for a BPSK modulation with a phase noise
characterized by 𝜎Δ = 20 degrees. As mentioned, at the
receiver end, the MAP SISO detector described in [7] is
employed with 𝐿 = 12 phase discretization levels. This value
is sufficient to give a practically optimal performance. We set
the maximum variable node degree to 25 and the minimum
to 3. RA codes for both the AWGN channel and the channel
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TABLE II
DESIGNED CODES FOR A CHANNEL WITH PHASE NOISE AND COMPARISON WITH AWGN. TWO VALUES OF 𝐸𝑆/𝑁0 HAVE BEEN CONSIDERED.

AWGN PN with 𝜎Δ =6 degrees
𝐸𝑠
𝑁0

𝑑𝑐 𝑑𝑣,𝑖 𝜆𝑖 𝑅 𝐸𝑠
𝑁0

𝑑𝑐 𝑑𝑣,𝑖 𝜆𝑖 𝑅

-4
dB

3
2
8
22
23

0.28
0.34
0.36
0.02

0.395 -4
dB

3
2
7
8
25

0.24
0.13
0.22
0.41

0.37

1
dB

4
3
14
15
23

0.57
0.21
0.08
0.14

0.74 1
dB

4
3
14
15
24

0.57
0.12
0.18
0.13

0.73

affected by phase noise were designed, for different signal-
to-noise ratio values. As it can be seen, for both channel
models the optimization procedure we used was able to obtain
codes with a theoretical threshold with only a negligible loss
with respect to the constrained capacity, at least for rates
not larger than 0.8. Better results for such large rates could
be obtained by considering also variable nodes of degree 2,
which was however excluded in our optimization because the
presence of degree-2 variable nodes makes the code distance
spectrum poor and thus tends to increase the floor of the
resulting code [18]. Moreover, it is possible to see that the
code rate exhibits a saturation, i.e., there exists a maximum
value which is never exceeded. This behavior is due to the
constraint on the maximum check node degree, which in turn
translates to a maximum value of the rate. Bit error rate results,
not shown here, demonstrate that for code lengths of a few
thousands of bits, the performance is within 1 dB from the
theoretical results, thus confirming the effectiveness of the
adopted optimization.

The optimized degree distributions, for the AWGN and
the phase noise channel, are substantially different and codes
designed for the AWGN channel exhibit a significant loss on
the phase noise channel. An example is shown in Table II
where, for a phase noise channel with 𝜎Δ = 6 degrees, the
parameters of the optimized codes are shown for two values of
𝐸𝑆/𝑁0 and compared with those of the codes optimized for
the AWGN channel. In this case also, the maximum variable
node degree has been set to 25 and the minimum to 3. The
corresponding code rates are also reported along with the
optimized value of 𝑑𝑐.

The fact that codes designed for the AWGN and the phase
noise channel are substantially different, is also mentioned
in [14] and has been observed for the LDPC codes of the DVB-
S2 system which were designed for the AWGN channel—they
are highly suboptimal on a channel with strong phase noise,
at least when the performance is phase noise limited [4].

VII. CONCLUSIONS

The evaluation of the information rate for a channel affected
by a Wiener phase noise has been discussed. The derivation
is based upon the approach in [13] for channels with mem-
ory. The results obtained by computer simulations are very
interesting, since the presence of a phase noise incurs an
energy loss which is in line with the loss observed in practical
coded systems. Moreover, a simple closed-form bound for
the information rate of PSK modulations has been presented.
Finally, a procedure for the optimization of irregular repeat-
accumulate codes was carried out, based on EXIT charts,

showing that codes with negligible losses with respect to the
capacity can be designed also for the channel with phase noise.
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