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Novel SISO Detection Algorithms for Nonlinear Satellite Channels
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Abstract—We propose novel detection algorithms for linear
modulations transmitted over nonlinear satellite channels. These
algorithms are derived by using a Volterra-series expansion of
the useful signal and by applying the sum-product algorithm
to a suitably-designed factor graph. Being soft-input soft-output
(SISO) in nature, the proposed detectors can be adopted in turbo
processing without additional modifications. When compared
with the optimal detection algorithm for these channels, whose
complexity is exponential in the channel memory, the proposed
schemes result very appealing in terms of tradeoff between
performance and computational complexity. Particularly, they
can approach the optimal performance with a complexity only
linear in the channel memory.

Index Terms—Nonlinear satellite channels, Soft-input Soft-
output (SISO) detection, turbo detection.

I. INTRODUCTION

WE consider a satellite system where nonlinear distor-
tions may originate from the presence of a high power

amplifier (HPA) and can cause significant performance im-
pairments. We assume a realistic model and consider a typical
satellite channel consistent with the DVB-S2 standard [1].

Many efforts in the literature of the last decades have been
devoted to nonlinear channel compensation techniques that can
be applied at the transmitter side, such as signal predistortion
[2], [3] and data predistortion [4]. In this paper, we consider
a different approach to minimize the effect of nonlinearities
to the overall system performance, and investigate possible
low-complexity detection algorithms to be employed as inner
detector in a turbo-equalization scheme. The algorithms must
be able to cope with a possibly large intersymbol interference
(ISI) introduced by input and output multiplexing (IMUX and
OMUX) filters placed before and after the HPA. Assuming that
the transfer characteristics of the HPA are perfectly known
at the receiver, the optimal maximum-a-posteriori (MAP)
symbol detector for this nonlinear channel is perfectly defined.
However, it exhibits an exponential complexity in the channel
memory and is prohibitively complex for practical purposes.
Hence, alternative low-complexity suboptimal schemes re-
quire to be investigated. Similarly to low-complexity detection
schemes designed in the literature for linear ISI channels [5],
detection algorithms for nonlinear channels are based on a
Gaussian approximation of the (linear and nonlinear) ISI
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term (e.g., see [6], [7]). Surprisingly, in these works only
one sample per symbol interval is employed at the receiver
although often it does not represent a sufficient statistic. In
[6], the resulting detection algorithm has a complexity which is
linear in the channel memory. However, the Gaussian approx-
imation of the (linear and nonlinear) ISI terms with a variance
independent of the considered time instant, although varying
with the iterations and computed starting from the soft-outputs
provided by the decoder, yields a performance which results
to be inadequate when the ISI term is significant. On the
other hand, the algorithm in [7] relies on a more accurate
signal model, based on a Volterra-series expansion [8], but
has a much larger complexity (at least quadratic in the channel
memory).

We investigate new detectors able to cope with the joint
effects of nonlinearities and ISI. They rely on a Volterra-
series expansion of the satellite channel, largely adopted in the
past for modeling digital satellite channels and for designing
equalizers and predistorters [8], [9], and on the use of the
framework based on factor graphs (FGs) and the sum-product
algorithm (SPA) [10]. The derived algorithms result to be
similar, in structure, to those described in [11].

II. SYSTEM MODEL

Let us consider a linear modulation, with a properly nor-
malized shaping pulse 𝑝(𝑡) and symbol interval 𝑇 , and assume
that the transmitted symbols {𝑥𝑛}, belonging to a given zero-
mean 𝑀 -th order complex constellation, are independent,
uniformly distributed, and normalized to have unit power.
The transponder model, shown in Fig. 1, is composed of
an IMUX filter ℎ𝑖(𝑡), aimed at removing the adjacent chan-
nels, a HPA, and an OMUX filter ℎ𝑜(𝑡) which counters the
spectral broadening caused by the nonlinear amplifier. The
HPA is a nonlinear memoryless device. The resulting system
is nonlinear with memory and describes a “single-carrier per
transponder” operation. The received signal is also corrupted
by additive white Gaussian noise whose low-pass equivalent
𝑤(𝑡) has power spectral density 2𝑁0. The low-pass equivalent
of the received signal has thus expression

𝑟(𝑡) = 𝑠(𝑡) + 𝑤(𝑡) ,

where 𝑠(𝑡) is the signal at the output of the OMUX filter.
An approximate model for signal 𝑠(𝑡) is based on a Volterra-

series expansion [8]. Assuming the satellite channel static
and perfectly known at the receiver, we define the impulse
response of the system up to the HPA as ℎ(𝑡) = 𝑝(𝑡)⊗ ℎ𝑖(𝑡),
where symbol ⊗ denotes “convolution”. Signal 𝑥(𝑡) at the
HPA input will read

𝑥(𝑡) =
∑
𝑘

𝑥𝑘ℎ(𝑡− 𝑘𝑇 ) (1)
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Fig. 1. System model.

whereas signal 𝑦(𝑡) at the HPA output can be expressed as a
function of 𝑥(𝑡) by using the following polynomial expansion
in which only odd-order terms appear [8]

𝑦(𝑡) =
[∑

𝑚

𝛾2𝑚+1
1

22𝑚

(
2𝑚+ 1

𝑚

)
∣𝑥(𝑡)∣2𝑚

]
𝑥(𝑡) . (2)

In (2), parameters 𝛾𝑖 are complex to take into account for
the phase distortions induced by the nonlinear device. With
good approximation, the HPA can be modeled as a cubic
nonlinearity and we can rewrite (2) as

𝑦(𝑡) ≃ 𝛾1
∑
𝑘

𝑥𝑘ℎ(𝑡− 𝑘𝑇 )

+
3

4
𝛾3
∑
𝑖

∑
𝑗

∑
ℓ

𝑥𝑖𝑥𝑗𝑥
∗
ℓℎ(𝑡− 𝑖𝑇 )ℎ(𝑡− 𝑗𝑇 )ℎ∗(𝑡− ℓ𝑇 ). (3)

In (3), we have used (1) to explicit the dependence on the
transmitted symbols and to separate linear and nonlinear
effects. The signal 𝑦(𝑡) is then filtered through the OMUX
filter. Hence, signal 𝑠(𝑡) can be expressed as

𝑠(𝑡) ≃ 𝛾1
∑
𝑘

𝑥𝑘ℎ
(1)(𝑡− 𝑘𝑇 )

+
3

4
𝛾3

∑
𝑖

∑
𝑗

∑
ℓ

𝑥𝑖𝑥𝑗𝑥
∗
ℓℎ

(3)(𝑡− 𝑖𝑇, 𝑡− 𝑗𝑇, 𝑡− ℓ𝑇 ) , (4)

where

ℎ(1)(𝑡) = ℎ(𝑡)⊗ ℎ𝑜(𝑡) ,

ℎ(3)(𝑡1, 𝑡2, 𝑡3) =

∫ ∞

−∞
ℎ𝑜(𝜏)ℎ(𝑡1 − 𝜏)ℎ(𝑡2 − 𝜏)ℎ∗(𝑡3 − 𝜏)𝑑𝜏 .

When multiplied by 𝛾1 and 3
4𝛾3, ℎ(1)(𝑡) and ℎ(3)(𝑡1, 𝑡2, 𝑡3)

take the form of the so-called Volterra kernels of first and
third order, respectively. In the following, in order to derive
low-complexity detection algorithms, we introduce a further
approximation. In the triple summation in (4), we only take
the terms for 𝑖 = ℓ or 𝑗 = ℓ, and obtain

𝑠(𝑡) ≃
∑
𝑘

𝑥𝑘

[
𝛾1ℎ

(1)(𝑡−𝑘𝑇 )+3

4
𝛾3
∑
𝑖

∣𝑥𝑖∣2ℎ̄(3)(𝑡−𝑖𝑇, 𝑡−𝑘𝑇 )
]
,

(5)
where

ℎ̄(3)(𝑡1, 𝑡2) = ℎ
(3)(𝑡2, 𝑡1, 𝑡1)

+ ℎ(3)(𝑡1, 𝑡2, 𝑡1)− 𝐼(𝑡1 − 𝑡2)ℎ(3)(𝑡2, 𝑡2, 𝑡2) . (6)

In (6), 𝐼(𝑡) is an indicator function, equal to one if 𝑡 = 0 and
to zero otherwise.

The extension to the case of fifth-order nonlinearity model
will be discussed later.

III. DETECTION ALGORITHMS

When the system is assumed to have finite memory, the
optimal receiver based on the MAP sequence or symbol
detection strategy consists of a bank of filters followed by
a proper trellis processor. The number of trellis states, and
thus the complexity of optimal receiver, is exponential in the
channel memory 𝐿. We point out that, in principle, the real
channel memory can be much larger that that assumed by the
receiver—the choice of 𝐿 is often dictated by implementation
complexity reasons. In the following, we will consider phase
shift keying (PSK) and amplitude/phase shift keying (APSK)
modulations typically employed in satellite transmissions [1].

1) PSK modulations: In this case, being ∣𝑥𝑛∣2 = 1, the
signal (5) becomes

𝑠(𝑡) ≃
∑
𝑘

𝑥𝑘ℎ̄(𝑡− 𝑘𝑇 ) , (7)

where ℎ̄(𝑡) = 𝛾1ℎ(1)(𝑡)+ 3
4𝛾3

∑
𝑖 ℎ̄

(3)(𝑡− 𝑖𝑇, 𝑡). The channel
can thus be approximated as a linear channel with ISI and
related detection algorithms employed accordingly. In partic-
ular, the receiver front end is represented by a filter matched
to pulse ℎ̄(𝑡). When the channel memory 𝐿 is large, an
excellent performance/complexity tradeoff is provided by the
suboptimal graph-based algorithm described in [11], which has
been derived by applying the SPA to a suitably-designed FG,
and is characterized by a complexity that grows only linearly
with the channel memory. The algorithm can be applied to the
signal model (7) with no modifications.

2) APSK modulations: Digital communication systems typ-
ically adopt higher-order amplitude/phase modulations for
spectrally efficient applications. However, such modulations
have large envelope fluctuations that cause non-negligible
distortions when the signal is amplified. To mitigate this
detrimental effect, DVB-S2 systems use multilevel APSK con-
stellations which have lower peak-to-average-power ratio and
good performance in nonlinear environments. Nevertheless,
unlike PSK constellations, APSKs are affected by the so-called
constellation centroids warping [12], which is responsible
for a reduction in the distance among APSK rings and a
differential phase rotation among them. If we still consider the
approximate Volterra representation of the useful signal (5)
and approximate the terms ∣𝑥𝑖∣2 with E{∣𝑥𝑖∣2} = 1, this
approximation leads to the same low-complexity algorithm
described for PSK modulations. Simulation results show that
this suboptimal detector exhibits a large performance degra-
dation with respect to the optimal detector. For this reason,
we look for more efficient receivers, still designing detection
algorithms by using the FG/SPA framework. We introduce a
novel FG describing the nonlinear system and apply the SPA
to this graph to compute approximate a posteriori probabilities
(APPs) of the transmitted symbols. We rewrite the signal (5)
using the approximation ∣𝑥𝑖∣2 = E{∣𝑥𝑖∣2} only for 𝑖 ∕= 𝑘 and
preserve the term ∣𝑥𝑘∣2, which helps the detection algorithm
to take into account of the warping effect suffered by the
constellation points. The new signal model assumed by the
receiver becomes

𝑠(𝑡) =
∑
𝑘

𝑥𝑘

[
𝑔(1)(𝑡− 𝑘𝑇 ) + ∣𝑥𝑘∣2𝑔(3)(𝑡− 𝑘𝑇 )

]
, (8)
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where

𝑔(1)(𝑡) = 𝛾1ℎ
(1)(𝑡) +

3

4
𝛾3

∑
𝑖∕=0

ℎ̄(3)(𝑡− 𝑖𝑇, 𝑡)

𝑔(3)(𝑡) =
3

4
𝛾3 ℎ̄

(3)(𝑡, 𝑡) .

We assume to have a proper set of sufficient statistics,
extracted from the received signal, collected in a vector r
of proper length. MAP symbol detection of symbols {𝑥𝑛}
requires the evaluation of the APPs 𝑃 (𝑥𝑛∣r). We can factorize
the probability mass function of the transmitted sequence as

𝑃 (x) =
𝑁−1∏
𝑛=0

𝑃𝑛(𝑥𝑛) ,

where 𝑃𝑛(𝑥𝑛) is the a priori probability that the symbol 𝑥𝑛 is
transmitted with index 𝑛. The conditional probability density
function of r given the modulation symbols x is

𝑝(r∣x) ∝ exp

(
− 1

2𝑁0

∫ ∞

−∞
∣𝑟(𝑡) − 𝑠(𝑡)∣2𝑑𝑡

)
. (9)

We consider a detector designed assuming that the useful
signal component 𝑠(𝑡) is given by (8). Hence, substituting (8)
in (9), defining the following coefficients

ℎ
(1)
𝑖 =

∫ ∞

−∞
𝑔(1)(𝑡)𝑔(1)

∗
(𝑡− 𝑖𝑇 ) 𝑑𝑡

ℎ
(3)
𝑖 =

∫ ∞

−∞
𝑔(3)(𝑡)𝑔(3)

∗
(𝑡− 𝑖𝑇 ) 𝑑𝑡

ℎ
(1,3)
𝑖 =

∫ ∞

−∞
𝑔(3)(𝑡)𝑔(1)

∗
(𝑡− 𝑖𝑇 ) 𝑑𝑡

𝑟𝑖(𝛽) =

∫ ∞

−∞
𝑟(𝑡)

[
𝑔(1)

∗
(𝑡− 𝑖𝑇 ) + 𝛽𝑔(3)∗(𝑡− 𝑖𝑇 )

]
𝑑𝑡

and the following functions

𝐹𝑛(𝑥𝑛) = exp
[ 1

𝑁0
Re

{
𝑥∗𝑛𝑟𝑛(∣𝑥𝑛∣2)−

∣𝑥𝑛∣2
2
ℎ
(1)
0

− ∣𝑥𝑛∣6
2
ℎ
(3)
0 − ∣𝑥𝑛∣4ℎ(1,3)0 )

}]

𝐼𝑚(𝑥𝑛, 𝑥𝑛−𝑚) = exp
[
− 1

𝑁0
Re

{
𝑥∗𝑛𝑥𝑛−𝑚

(
ℎ(1)𝑚

+ ∣𝑥𝑛∣2∣𝑥𝑛−𝑚∣2ℎ(3)𝑚

)}]
,

𝐻𝑚(𝑥𝑛, 𝑥𝑛−𝑚) = exp

[
− 1

𝑁0
Re

{
𝑥∗𝑛𝑥𝑛−𝑚∣𝑥𝑛−𝑚∣2ℎ(1,3)𝑚

}]

we can factorize the joint APP of the transmitted sequence as

𝑃 (x∣r) ∝ 𝑃 (x) 𝑝 (r∣x)

∝
𝑁−1∏
𝑛=0

[
𝑃𝑛(𝑥𝑛)𝐹𝑛(𝑥𝑛)

𝐿∏
ℓ=1

𝐼ℓ(𝑥𝑛, 𝑥𝑛−ℓ)

𝐿∏
𝑚=−𝐿
𝑚 ∕=0

𝐻𝑚(𝑥𝑛, 𝑥𝑛−𝑚)
]
,

(10)

where 𝐿 is the assumed channel memory. The corresponding
factor graph is depicted in Fig. 2 for the case 𝐿 = 2. Nodes
𝐺𝑖 in the graph collect all factors in (10) which depend on
the same two symbols. As an example, we have

𝐺2(𝑥8, 𝑥6) = 𝐼2(𝑥8, 𝑥6)𝐻2(𝑥8, 𝑥6)𝐻−2(𝑥6, 𝑥8) .

𝑃8𝑃7

𝐺2

𝑃6

𝐹6 𝐹7

𝐺2 𝐺2𝐺1𝐺1 𝐺1

𝐹8𝑥8𝑥6 𝑥7

Fig. 2. Three sections of the factor graph corresponding to (10).

This FG has the same structure of the graph considered
in [11] for linear channels although the factors are different.
It has cycles and the application of the SPA to it leads to an
approximate marginalization of (10). However, it is easy to
prove that it cannot contain any cycle of length lower than
six, irrespectively of 𝐿. Hence, the SPA can be confidently
adopted, since it generally provides a good approximation of
the exact marginalizations when the length of the cycles is
at least six [10]. The algorithm resulting from the application
of the SPA to the described FG has a complexity which is
linear in 𝐿. This is related to the adopted factorization having
the appealing property that nodes 𝐺𝑖, whose number linearly
increases with the 𝐿, have degree two (i.e., they have two
edges) independently of channel memory. Due to the presence
of cycles in the FG, the SPA cannot lead to a unique schedule
nor to a unique stopping criterion for message passing [10].
Among various possible algorithms deriving from different
schedules, we adopt a parallel-schedule SPA [11].

Extension to the fifth-order nonlinearity model: We can
model the HPA as a nonlinearity of the fifth order and write
the signal 𝑠(𝑡) assumed by the receiver as

𝑠(𝑡)=
∑
𝑘

𝑥𝑘

[
𝑔(1)(𝑡−𝑘𝑇 )+∣𝑥𝑘∣2𝑔(3)(𝑡−𝑘𝑇 )+∣𝑥𝑘∣4𝑔(5)(𝑡−𝑘𝑇 )

]

where

𝑔(1)(𝑡) = 𝛾1ℎ
(1)(𝑡) +

3

4
𝛾3

∑
𝑖∕=0

ℎ̄(3)(𝑡− 𝑖𝑇, 𝑡)

+
5

8
𝛾5

∑
𝑛∕=0

∑
𝑚 ∕=0

ℎ̄(5)(𝑡− 𝑛𝑇, 𝑡−𝑚𝑇, 𝑡) ,

𝑔(3)(𝑡) =
3

4
𝛾3 ℎ̄

(3)(𝑡, 𝑡) , 𝑔(5)(𝑡) =
5

8
𝛾5 ℎ̄

(5)(𝑡, 𝑡, 𝑡) .

The pulse ℎ̄(5)(𝑡1, 𝑡2, 𝑡3) is proportional to the approximate
fifth-order Volterra kernel. The approximation consists of
holding only the terms in the form ∣𝑥𝑝∣4𝑥𝑞 among the
5-symbols products 𝑥𝑖𝑥∗𝑗𝑥ℓ𝑥

∗
𝑛𝑥𝑚 which appear in the polyno-

mial expansion. This new signal model can lead to the same
factorization (10) of the joint APP of the transmitted sequence
and hence to the same FG of Fig. 2, where factor nodes 𝐺𝑖

still connect only two symbols. The expressions of the relevant
factors in the graph are more involved but the computational
load per iteration remains unmodified.

IV. SIMULATION RESULTS

We consider coded transmissions with iterative detec-
tion/decoding at the receiver side [5], where an iteration
consists of a single local iteration of the detector and a single
activation of the decoder. We consider channel coding and
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Fig. 3. BER curve for QPSK rate-1/2, 8PSK rate-2/3 and 16APSK rate-
3/4.

modulation formats in the DVB-S2 standard. In particular,
we assume that QPSK, 8PSK, and 4+12-APSK modulations
are adopted with low-density parity-check codes of rate 1/2,
2/3 and 3/4, respectively. In all cases, we use codewords of
length 64800 bits and a maximum of 50 iterations is allowed.
At the transmitter, pulse 𝑝(𝑡) has a root raised cosine-shaped
spectrum with roll-off 0.3, and the IMUX and OMUX filters
and the nonlinear transfer characteristics of the HPA amplifier
are given in [1, Figures H.13 and H.12]. In the case of QPSK
and 8PSK, the 3dB-bandwidth of the IMUX/OMUX filters
is 1.15/𝑇 , and it is 1.35/𝑇 for the 4+12-APSK modulation.
For each modulation format and for each considered receiver,
we optimized the working point of the amplifier, which is
generally given in terms of the output back-off (OBO).

In Fig. 3, we report the bit error rate (BER) performance of
the proposed low-complexity algorithms versus 𝐸𝑏/𝑁0+OBO,
𝐸𝑏 being the received signal energy per information bit.
The performance of the optimal MAP symbol detector is
also shown as a reference benchmark. To limit the receiver
complexity, the detectors assume that the memory associated
with the interference is of three symbols. Larger values of
the channel memory make the simulation of the optimal
detector practically unfeasible for the highest order modu-
lations we are considering. The BER results show that for
PSK schemes the low-complexity detection algorithm has
near-optimal performance, being the loss with respect to the
optimal detector about 0.1 dB. The performance loss of the
suboptimal algorithm is slightly larger in the case of the 4+12-
APSK modulation and it is 0.5 dB for the algorithm based
on the fifth-order nonlinearity model. The simulation results
related to the optimal detector for 4+12-APSK, yet sufficient
for estimating the performance loss due to the proposed
algorithms, are incomplete, since it is nearly unfeasible to
obtain reliable BER curves for detectors working on a 4096-
state trellis.

Finally, we assess the computational complexity of the con-
sidered detection algorithms implemented in the logarithmic
domain. We assume that the computation of a non linear
function is performed by using a look-up table (LUT). The
operations performed at the first iterations only have been

TABLE I
COMPUTATIONAL LOAD PER SYMBOL AND PER ITERATION.

Optimal Low-complexity
additions LUT additions LUT

Q-PSK 3633 699 224 0
8-PSK 59877 11767 832 0

16-APSK 970701 192495 3200 0

neglected. As far as the low-complexity algorithm is con-
cerned, for computing messages between two variable nodes
in the FG, we also used the approximation log(𝑒𝑥1 + 𝑒𝑥2) ≈
max(𝑥1, 𝑥2), and hence only a difference is required. The
number of additions between two real arguments and accesses
to LUT per symbol and per iteration is reported in Table I.
Note that, since the choice of the nonlinearity order does not
impact the computational load per iteration, the table reports
only one entry for the APSK case. This table clearly shows
that the proposed algorithms have a complexity much lower
than that of optimal detector.

V. CONCLUSIONS

We have proposed suboptimal low-complexity soft-input
soft-output detection algorithms for nonlinear channels. Non-
linear channels and linear modulation formats typical of
satellite transmissions have been considered. The proposed
algorithms exhibit a complexity which increases only linearly
with the channel memory and a very convenient perfor-
mance/complexity trade-off.
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