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Abstract—The problem of non-cooperative resource allocation
in multicell uplink OFDMA systems is considered in this paper.
Non-cooperative games for subcarrier allocation and transmit
power control are considered, aiming at maximizing the users’
SINRs and, most notably, the users’ energy-efficiency, measured
in bit/Joule and representing the number of error-free delivered
bits for each Joule of energy used for transmission. The theory of
potential games is used to come up with several non-cooperative
games admitting Nash equilibrium points. Since the proposed
resource allocation games exhibit a computational complexity
that may be in some cases prohibitive, approximate, reduced-
complexity, implementations are also considered. For comparison
purposes, some considerations on social-optimum solutions are
also discussed. Numerical results confirm that the proposed re-
source allocation schemes are effective in increasing the network
energy-efficiency (as compared to rate-maximizing schemes), thus
permitting to optimize the use of the energy stored in the battery.
Moreover, the proposed approximate implementations exhibit a
performance very close to that of the exact procedures.

Index Terms—OFDMA, Potential games, power control, sub-
carrier allocation, Nash equilibrium, social optimum, energy
efficiency.

I. INTRODUCTION AND WORK MOTIVATION

Resource allocation is one of the most critical building
blocks of a wireless network. Indeed, through a wise design
of resource allocation schemes the performance of a wireless
network may be optimized according to a number of relevant
parameters such as the data-rate, the radiated power, the num-
ber of supported users, and so on. Among these parameters,
one that has been gaining momentum in the last decade is
the energy-efficiency, which is measured in bit/Joule, and
is defined here as the number of successfully (i.e., error-
free) delivered bits for each energy-unit used for transmission.
Indeed, especially when considering the uplink of a wireless
network, wherein the transmitting devices are mobile terminals
powered by a battery, maximizing energy-efficiency results in
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a prolonged battery life and in a greater amount of data that
can be transmitted for a given amount of energy to be used for
transmission. Nonetheless, maximizing energy-efficiency may
be of interest also in the downlink of a wireless network, given
the worldwide growing concern about the energy-consumption
of data networks.

Regarding energy-efficiency maximization, the paper [1],
adopting a game-theoretic approach to implement a non-
cooperative power control scheme, is a pioneering work that
has paved the way to many interesting subsequent works both
aiming at energy efficiency maximization and using the tools
of game theory. Indeed, game theory, a branch of mathematics
studying the interactions among several autonomous subjects
with contrasting interests, can be well used in multiuser wire-
less networks to model the interactions between selfish active
users, who are indeed in mutual competition for the available
bandwidth and, in general, for the shared available network
resources [2]. As examples, the reader is referred to [1], [3],
[4]. Here, for a multiple access wireless data network using
code division multiple access (CDMA), non-cooperative and
cooperative games are introduced, wherein users choose their
transmit powers in order to maximize their energy efficiency.
While the above studies consider the issue of power control
assuming that a conventional matched filter is available at the
receiver, the paper [5] considers for the first time the problem
of joint linear receiver design and power control so as to
maximize the utility of each user. In particular, it is shown
here that the inclusion of receiver design in the considered
game brings remarkable advantages. The approach of [5] is
then extended in [6], [7], wherein transmitter optimization,
i.e., spreading code allocation, is also considered in addition
to power allocation and linear receiver choice, and in [8],
wherein joint spreading code adaptation and power control
for a multicell CDMA system is considered.

While all of the above cited works refer to the CDMA
multiplexing strategy, non-cooperative resource allocation al-
gorithms for energy efficiency maximization in orthogonal
frequency division multiple access (OFDMA), the leading
multiple access strategy for the forthcoming fourth generation
of wireless networks, is a much less investigated subject.
Regarding resource allocation for OFDMA systems, in [9],
[10] the downlink of multiuser OFDM systems is considered;
in particular, in [9] the problem of joint subcarrier, bit, and
power allocation is tackled. Instantaneous CSI is assumed and
subcarrier reuse is not allowed. The resources are allocated
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in order to minimize the overall transmit power from all
users, subject to individual rate constraints, and an adaptive
algorithm is proposed that first assigns the subcarriers based on
instantaneous CSI, and then performs bit and power allocation.
In [10], the constraint that each subcarrier must be assigned
to no more than one user is relaxed, and subcarrier reuse
is allowed. In this context, a two-step resource allocation
algorithm is proposed: in the first step, subcarrier assignment
is performed for individual rate maximization, whereas in
the second step, transmit power allocation for each subcarrier
is carried out for system’s sum-rate maximization subject to
total transmit power and bit-error rate (BER) constraints. Both
studies indicate that significant performance improvements are
obtained with respect to static resource allocation schemes, due
to the multiuser diversity achieved when instantaneous CSI
information is exploited. In [11] the downlink of a multicell
OFDMA system is analyzed. The CSI assumption is relaxed,
and subcarrier and transmit power allocation algorithms are
proposed for individual outage probability minimization with
rate constraints. Resource allocation in the uplink of a single-
cell OFDMA systems is analyzed in [12]. There, a low-
complexity greedy subcarrier allocation algorithm and an itera-
tive waterfilling algorithm are proposed for system’s sum-rate
maximization. The results indicate that the optimal solution
for the downlink case is not optimal for the uplink, thus
motivating a number of subsequent studies on the uplink
of single-cell and multicell OFDMA networks. In [13], the
uplink of multicell OFDMA network is considered, and a
resource allocator aiming at minimizing the total transmitted
power subject to individual rate constraints is studied. The
results indicate that the proposed algorithm converges to a
stable resource allocation policy only when the interference
load is below a certain threshold. In [14], a game-theoretic
approach to resource allocation in the uplink of multicell
OFDMA wireless networks is taken. First, a non-cooperative
game in which each user selfishly tries to minimize his own
transmitted power subject to a transmission rate constraint is
proposed. The resources that each user can allocate are the
subcarriers to use, the modulation format, and the transmit
power on each subcarrier. However, the proposed game is not
guaranteed to converge to a Nash Equilibrium, and for this
reason a virtual referee is introduced to dictate the resource
allocation and force it to a stable and efficient equilibrium
point. In [15], an auction approach to subcarrier, modulation,
and coding scheme allocation in single-cell and multicell
OFDMA networks is proposed. As for multicell networks, the
users in each cell are divided in interior and edge users, and
the simplification is made to assume that the inner users in
each cell do not interfere with adjacent cells. Several low-
complexity algorithms for sum-rate maximization are proposed
that exhibit near-optimal performance. Other relevant papers
dealing with resource allocation (mainly aimed at rate max-
imization) and the game-theoretic framework are [16], [17].
Finally, in the recent paper [18], non-cooperative transmit
power control and cooperative subcarrier allocation are jointly
performed for energy-efficiency maximization in a multicell
OFDMA system.

This paper considers the problem of resource allocation for

the uplink of a multicell wireless network. In particular, we
consider the problem of subcarrier allocation and transmit
power control on the chosen subcarriers. In order to obtain
resource allocation games converging to a Nash equilibrium
(NE), we resort here to the theory of potential games [20].
Roughly speaking, in a potential game each change in the
utility enjoyed by a given player due to an unilateral change
of strategy by that player is paired by a similar change in a
global function called the potential function. In a potential
game, the best response strategy always leads to a Nash
equilibrium (NE), and users, by acting selfishly, serve the
greater good without knowing it. Potential games are a quite
recent discovery for the communications and signal processing
scientific community, and very few papers have considered
their application to resource allocation problems in this area
[22]–[26].

This paper is organized as follows. Next section contains
some background material on potential games and a descrip-
tion of the considered multicell OFDMA wireless network.
Section III focuses on a simple 2-user system and provides
some useful theoretical insights for asymptotic regimes. Sec-
tion IV discusses subcarrier selection games for maximizing
the received Signal-to-Interference plus Noise-ratio (SINR) for
fixed transmit power, whereas Section V describes a non-
cooperative transmit power control game for energy efficiency
maximization, assuming that subcarrier allocation has already
taken place. In Section VI we consider instead the more
challenging and interesting case of joint power control and
subcarrier choice for the maximization of the users’ energy
efficiency. Numerical results are shown and commented in
Section VII, while, finally, concluding remarks are given in
Section VIII.

II. PRELIMINARIES AND SYSTEM MODEL

In this section we give brief details on potential games,
introduce the general form of the system model for a mul-
ticell OFDMA wireless network and formulate the problem
statement.

A. Strategic games and potential games

In its strategic form, a game G can be described as a triplet
G = [K, {Sk} , {uk}], wherein K is the set of players (e.g.,
the communicating devices in a multiple access network), Sk
is the set of all possible strategies (i.e. the parameters’ choices
that may be taken in response to other players’ choices) for
the k-th player, and uk represents the utility function or payoff
of the k-th player; uk is a scalar function, to be maximized,
which depends on the strategies taken by all players of the
game.

Thus, a change in strategy from one player affects all other
players as well, and triggers a dynamic process, in which
players iteratively update their own strategies as a reaction to
changes in the strategies of the other players. This process is
usually referred to as best-response dynamics (BRD), since
in each iteration, given the strategies of the other players,
each player responds by choosing the strategy that maximizes
his own utility function. In this context, a crucial question is
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whether the BRD converges to an equilibrium point, or if the
players indefinitely go on changing their strategies in a restless
fashion. Here a key concept is the notion of Nash equilibrium
(NE). Let

(s1, s2, . . . , sK) ∈ S1 × S2 × . . .SK

denote a certain strategy K-tuple for the active users. The
point (s∗1, s

∗
2, . . . , s

∗
K) is an NE if for every user k, we have

uk(s∗k, s
∗
−k) ≥ uk(sk, s

∗
−k) ,

∀sk 6= s∗k , wherein the vector s−k, as customary in the game-
theoretic literature, denotes the vector of the strategies of all
users but the k-th one. Otherwise stated, at the NE, no user
can unilaterally improve its own utility by taking a different
strategy. Thus, at the NE, each user, provided that the other
users’ strategies do not change, is not interested in changing its
own strategy, which implies that any NE is also a fixed point
of the BRD. Thus, in a strategic-form game an NE may be
reached by running the BRD until convergence. However, this
is not always the case since the BRD is not always guaranteed
to be convergent.

We give now the formal definition of a potential game
[20]. A strategic game G = [K, {Sk} , {uk}] is called an
exact potential game if there exists a function V : S1 ×
S2 × . . .SK → R such that for any k ∈ K and for any
(sk, s−k), (s∗k, s−k) ∈ S1 × S2 × . . .SK , we have

uk(sk, s−k)−uk(s∗k, s−k) = V (sk, s−k)−V (s∗k, s−k) . (1)

Likewise, the game G is an ordinal potential game if the
aforementioned function V is such that

uk(sk, s−k) > uk(s∗k, s−k)⇒ V (sk, s−k) > V (s∗k, s−k) .
(2)

The function V is called the exact (respectively, ordinal)
potential of the game.

In an exact potential game, Nash equilibria include maxi-
mizers of the potential function (note that generally, the reverse
is not true), and, if the utility functions are continuous and the
strategy spaces are compact, the BRD will converge to an NE
of the game [20]. Roughly said, in a potential game wherein
the potential function is bounded from above, any BRD will
always converge to an NE: this is a very attractive property
that can be used, as we will be showing in the sequel of the
paper, to obtain convergent noncooperative games.

B. System model

Consider the uplink of a multicell OFDMA network with B
base stations (BSs); each cell consists of mobile users and their
assigned BS. Different links among cells are assumed to be
synchronized. Let N be the number of subcarriers associated
to the whole system and Kj the number of active users in
the j-th cell, such that

∑B
j=1Kj = K, where K is the total

number of active users in the network.
Since we are considering a multicell environment, each user

is affected by interference from users’ terminals outside its
own cell in addition to the interference of the ones within the
same cell. When a BS is designated to detect the received

signal from a given user’s transmitter, we say that the user
has been assigned to that BS. The BS assignment is denoted
by the K-dimensional vector a = (a1, . . . , aK), whose entry
ai ∈ {1, . . . , B}. We can note that there are BK different
possible assignments. We assume here that the BS assignment
vector a has been determined in a previous phase and we focus
on the resource allocation problem only. As an example, each
user can be assigned to his nearest BS.

Let us denote by hk,j(n) the channel gain between the k-th
user and the j-th BS on the n-th subcarrier and by pk(n) the
transmit power of the k-th user on the n-th subcarrier. For sim-
plicity, we assume a real channel model; in particular, in the
numerical simulations the channel coefficients will be modeled
as Rayleigh-distributed random variables with a mean square
value tied to the distance between transmitter and receiver.
Note also that all of the subsequent developments may be
trivially extended to the case of complex-valued channel gains.
Full channel information is assumed here and in the sequel of
the paper. Let us assume that each user can transmit on L
subcarriers.1 Let Fk be the set of L subcarriers allocated to
the k-th user, i.e., Fk = {Fk(1), . . . , Fk(L)} , k = 1, . . . ,K,
where Fk(l) ∈ {1, . . . , N} is the index of the `-th subcarrier
allocated to user k. Otherwise stated, the set Fk contains L
different indexes in {1, . . . , N}. Denote by rn,i the observable
received at the i-th BS on the n-th subcarrier frequency; we
have that

rn,i =

K∑
k=1

∑
`∈Fk∩{n}

√
pk(`)hk,i(`)bk(`) + wn,i , (3)

wherein bk(`) is the information symbol transmitted by the k-
th user on the `-th subcarrier frequency, and wn,i is the additive
noise term on the n-th subcarrier and at the i-th BS, modeled
as a zero-mean Gaussian random variate with variance σ2.

Given the fact that each user transmits on L subcarriers, a
set of L distinct SINRs (one for each used subcarrier) can be
defined for each user as follows, for any ` ∈ Fk:

γk,ak(`) =
pk(`)h2

k,ak
(`)

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj

⋂
{`}

pj(n)h2
j,ak

(n)

. (4)

III. A CLOSER LOOK AT A SIMPLE 2-USER SYSTEM

Before considering the general case, we examine a simple
system wherein the number of users is K = 2, the number of
available subcarriers is N = 2, and each user may transmit
on L = 1 subcarrier2. Each user selfishly chooses to transmit
on the subcarrier that grants the largest SINR. We consider
the case that the two users are served by two different BSs
(otherwise this would be a single-cell system), and, with no
loss of generality, we assume that a1 = 1 and a2 = 2, i.e.,

1In particular, of primary interest is the case in which KL > N . It might
be also questioned why each user should exactly transmit on L subcarriers;
we note, however, that this is a very practical situation encountered in many
of the current wireless standards. The case in which each user also optimizes
the number of active subcarriers is an interesting topic that is however out of
the scope of this paper.

2For additional details on this scenario, see also the recent paper [27].
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the first and second user are assigned to the first and second
BS, respectively. Although this is clearly a toy example, it
permits us to extrapolate some key features of a multicell
OFDMA system with universal frequency reuse, and, also, to
give immediate evidence of the fact that subcarrier allocation
based on greedy SINR-maximization games may not converge
to a stable equilibrium in a multicell system.

Denote by p1 and p2 the transmit power of the 1st and
2nd user, respectively. Regarding the problem of subcarrier
choice for SINR maximization, there may be four possible
outcomes: letting (si, sj), with i, j = 1, 2 denote the case in
which the first user transmits on subcarrier i and the second
user transmits on subcarrier j, we may have the following
configurations: (s1, s1), (s1, s2), (s2, s1), and (s2, s2). For the
case in which each user chooses to transmit on the subcarrier
ensuring the largest SINR, it is readily seen that:
• (s1, s1) is an NE of the game if the equations

h2
1,1(1)

σ2 + h2
2,1(1)p2

≥
h2

1,1(2)

σ2
,

h2
2,2(1)

σ2 + h2
1,2(1)p1

≥
h2

2,2(2)

σ2
,

(5)

are both satisfied;
• (s1, s2) is an NE of the game if the equations

h2
1,1(1)

σ2
≥

h2
1,1(2)

σ2 + h2
2,1(2)p2

,

h2
2,2(2)

σ2
≥

h2
2,2(1)

σ2 + h2
1,2(1)p1

,

(6)

are both satisfied;
• (s2, s1) is an NE of the game if the equations

h2
1,1(2)

σ2
≥

h2
1,1(1)

σ2 + h2
2,1(1)p2

,

h2
2,2(1)

σ2
≥

h2
2,2(2)

σ2 + h2
1,2(2)p1

,

(7)

are both satisfied; and, finally,
• (s2, s2) is an NE of the game if the equations

h2
1,1(2)

σ2 + h2
2,1(2)p2

≥
h2

1,1(1)

σ2
,

h2
2,2(2)

σ2 + h2
1,2(2)p1

≥
h2

2,2(1)

σ2
,

(8)

are both satisfied.
Now, a careful inspection of Eqs. (5)-(8) reveals the following.

- For vanishingly small σ2 (i.e., low thermal-noise regime
or interference-dominated regime), depending on the
channel coefficient realizations, either (s1, s2) or (s2, s1)
is the NE point, while, at the same time, (s1, s1) and
(s2, s2) can never be Nash equilibria points. Otherwise
stated, in the case in which the thermal noise power
vanishes, the two users transmit on orthogonal channels.

- For increasingly large σ2 (i.e., large thermal-noise
regime), each user, regardless of the behavior of the other
one, chooses the subcarrier with the largest channel co-
efficient. In this case the four possible outcomes (si, sj),

Table I
AN EXAMPLE OF PARAMETERS, FOR THE 2-USER CHANNEL, LEADING TO

A SYSTEM WHEREIN GREEDY SINR MAXIMIZATION WITH RESPECT TO
THE CHOICE OF THE SUBCARRIERS DOES NOT LEAD TO AN EQUILIBRIUM.

σ2 10−3

h2
1,1(1) 0.2881

h2
1,1(2) 1.1413

h2
1,2(1) 0.1958

h2
1,2(2) 0.0017

h2
2,1(1) 0.0638

h2
2,1(2) 0.0023

h2
2,2(1) 0.9975

h2
2,2(2) 1.7823

i, j = 1, 2 may all be an NE point, however, for a given
realization of the channel coefficients, a unique NE exists.

- In the case in which the channel coefficients h2
i,j(`)→ 0,

∀i 6= j and for ` = 1, 2, each user, regardless of the
behavior of the other one, again chooses the subcarrier
with the largest channel coefficient. In the considered
scenario, indeed, the system decouples in two isolated
cells, and each user has to pick one of two interference-
free subcarriers.

- In the general case in which no one of the above regimes
holds, no general conclusions can be given. It is however
evident that there may be certain realizations of the
channel coefficients which lead to a system with no NE
point. As an example, for the values reported in Table I,
one can easily verify that, if each user greedily maximizes
its SINR with respect to the subcarrier choice, no NE
point exists.

The above analysis reveals that, even in a simple 2-user
scenario, there may be conditions wherein non-cooperative
SINR maximization has no equilibrium. Numerical simula-
tions reveal that the occurrence of situations with no equilib-
rium increases as the number of users increases, especially in
the case, of primary practical interest, in which KL > N .
Moreover, even if an equilibrium exists, convergence of the
BRD is not guaranteed.

In the following we will show how, using the potential
games framework, non-cooperative games always converging
to an equilibrium can be conceived.

IV. SUBCARRIER ALLOCATION FOR SINR-MAXIMIZATION
GAMES

We are now interested in non-cooperative maximization of
each user’s SINR with respect to the choice of the allocated
subcarriers, assuming, for the moment, that the transmit pow-
ers are arbitrary and fixed. In particular, each user may transmit
on the N available subcarriers with a random, but fixed, power;
of course, at each iteration of the games that we are going to
discuss, each user only transmits on its chosen subcarriers, and
the transmit power on the N−L subcarriers is set to zero. The
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considered non-cooperative game can be formally expressed
as the triplet G = [K, {Sk} , {uk}], where

- K = {1, 2, . . . ,K} is the set of player, i.e., the active
users in the network;

- uk is the utility function the k-th player seeks to maxi-
mize; it must be a scalar increasing function of the k-th
user SINRs {γk,ak(`)}`∈Fk

. As an example, we might
consider the quantity

∑
`∈Fk

γk,ak(`).

- Sk is the set of strategies for the k-th user, i.e., the
(
N
L

)
possible configurations of the set Fk.

Otherwise stated, at each step the k-th user chooses the L
subcarriers (i.e., the set Fk) such that his utility uk is maxi-
mized, given that the set of subcarriers for all the other users
are fixed. Unfortunately, numerical evidence, as corroborated
also by the discussion of the previous section, shows that if
uk(Fk) =

∑
`∈Fk

γk,ak(`), the considered game does not always

admit an NE.
In order to obtain a non-cooperative game always admitting

an equilibrium, we can resort to the theory of potential games.
Based on the concepts of Section II, we have to design a
potential function V such that:
(a) ∀k = 1, . . . ,K, V can be expressed as V = gk(ζk, ωk),
wherein the scalar-valued argument ζk depends on the k-th
player strategy (and possibly on the other players’ strategies
as well), the scalar-valued argument ωk is independent of the
k-th player strategy, and gk(·, ·) is a monotonically increasing
function of its former argument;
(b) V is an increasing function of the SINRs γk,ak(`), for
all ` ∈ Fk and k = 1, . . . ,K: note that this property is not
strictly related to the theory of potential games, but we are
considering it here in order to ensure that maximizing the
potential V indirectly results in a maximization of the users’
SINRs, and, thus, in improved performance.
If we are able to find a function V fulfilling properties (a)
and (b), then choosing as utility function for the k-th user the
quantity ζk leads to an ordinal potential game. Moreover, if,
for any k, the decomposition V = ζk + ωk holds, then letting
uk = ζk leads to an exact potential game.

In this paper we propose to use as potential function
the negative of the inverse of the SINRs, summed over all
subcarriers and all the users3, i.e.:

V = −
K∑
k=1

∑
`∈Fk

1

γk,ak(`)
=

−
K∑
k=1

∑
`∈Fk


σ2 +

∑
j 6=k

∑
n∈Fj

⋂
{`}

pj(n)h2
j,ak

(n)

pk(`)h2
k,ak

(`)

 .

(9)

It is easily shown that, for any k, the potential V can be
expressed as shown in Eq. (10) at the top of the next page,

3Indeed it is easy to check that with such a choice both properties (a) and
(b) are fulfilled. Interestingly, since V is an increasing function of the SINRs
γk,ak (`), its maximization results on the average in a maximization of the
SINRs of the users. See [8], [22] to have other scenarios wherein such a
function has been used.

wherein ζk contains all the quantities depending on Fk (the
strategy set for the k-th user), and ωk is an additive term
(whose expression is not reported for the sake of brevity) inde-
pendent of the strategy of the k-th user. Given decomposition
(10), the following result follows.
Proposition 1: Consider a non-cooperative game G wherein
the k-th user aims at maximizing, with respect to the choice
of the set of subcarriers Fk, the utility function reported in
Eq. (11) at the top of the next page. The game G is an exact
potential game with potential function V in (9). Hence, the
BRD associated to G always converges to an NE.
Proof: The proof is simply given by decomposition (10) for
the potential function V , which fulfils both properties (a) and
(b), and by the properties of potential games.

A couple of remarks are now in order. First of all, the
potential V may have (actually has) local maxima, all of
these resulting in Nash equilibria, and there is no guarantee
that at a certain NE the global optimum has been achieved.
Otherwise stated, several Nash equilibria may exist, and we
may have suboptimal performance; numerical results, however,
will show that at equilibrium points performance is generally
better than that achieved before the game was played, so
this game results in a genuine performance improvement.
Secondly, despite the fact that the game considered in Propo-
sition 1 is obviously convergent, there is no guarantee that,
upon maximization of the utility function in (11), this actually
results in an increase for the SINRs achieved by the k-th user.
As a consequence, in playing the game, we assume that each
user chooses the strategy that maximizes the utility uk(Fk) in
(11), but it really adopts such a strategy only if this brings an
increase to the sum of the SINRs on its used subcarriers, i.e.,
to the performance metric

∑
`∈Fk

γk,ak(`); otherwise, the user

keeps on using its previous strategy. Note that this behavior
still results in a game that converges to an equilibrium (at
each stage of the game the potential function is either constant
or increasing), although the improved performance is at the
price of slower convergence speed, wherein by “improved
performance” we mean that adopting such a strategy (i.e.
changing strategy only when a user gains for himself) gives
better performance with respect to the case in which each user
always adopts its utility maximizing strategy.

A. Approximate implementations and a simple upper bound
The main drawback of the subcarrier assignment scheme

of the previous subsection is its computational complexity;
indeed, at each maximization step, each user is to perform
an exhaustive search over all the possible

(
N
L

)
choices of

L out of N subcarriers. This may be a prohibitive task
and approximate implementations of the game, with lower
computational complexity are to be sought. We suggest here
two possible strategies for complexity reduction.

At each maximization step, each user can make, in place of
an exhaustive search over the

(
N
L

)
possible configurations, a

search on a reduced set of configurations. Among the others,
we comment here on two possible alternatives:

a) the search can be made over a certain number, say Q, of
randomly selected configurations; and
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V = −
∑
`∈Fk

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj

⋂
{`}

pj(n)h2
j,ak

(n)

pk(`)h2
k,ak

(`)
−

K∑
i=1,i6=k

∑
`∈Fi


∑

n∈Fk

⋂
{`}

pk(n)h2
k,ai(n)

pi(`)h
2
i,ai(`)


︸ ︷︷ ︸

ζk

+ωk , (10)

uk(Fk) = −
∑
`∈Fk

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj

⋂
{`}

pj(n)h2
j,ak

(n)

pk(`)h2
k,ak

(`)
−

K∑
i=1,i6=k

∑
`∈Fi


∑

n∈Fk

⋂
{`}

pk(n)h2
k,ai(n)

pi(`)h
2
i,ai(`)

 . (11)

b) given the fact that there is a high probability that the
subcarriers with the lowest channel coefficients will be
discarded, the user can make a search over the Ñ sub-
carriers (with L ≤ Ñ < N ), with the largest channel
coefficients. Otherwise stated, the k-th user looks at the
Ñ carriers with the largest values of the coefficients
h2
k,ak

(·), and maximizes its utility over all the
(
Ñ
L

)
possible configurations of L out of Ñ subcarriers.

Note that both the above approximate strategies lead, at each
maximization step, to an increase of the potential function,
and are thus convergent to an equilibrium.

Finally, a moment’s thought gives a simple upper bound to
the performance, in terms of achieved SINR, of any resource
allocation procedure that can be conceived for the considered
scenario. Indeed, for the case in which each user transmits
with the same power pk on all its L assigned subcarriers,
any resource allocation procedure cannot beat the case in
which there is no interference and each user transmits on its L
best channels. Otherwise stated, lettingMk ⊂ {1, 2, , . . . , N}
contain the indices of the subcarriers with the L best channel
coefficients for the k-th user, i.e., |Mk| = L and, ∀` ∈
Mk, q /∈ Mk, h2

k,ak
(`) ≥ h2

k,ak
(q), then any subcarrier

assignment procedure achieves a set of SINRs {γk,ak(`)}`∈Fk

such that ∑
`∈Fk

γk,ak(`) ≤
∑
`∈Mk

pkh
2
k,ak

(`)

σ2
. (12)

Although the above bound reveals to be not so tight, especially
for increasingly large number of users, it is very simple to
evaluate and may be helpful to obtain an approximate and
rough indication of the performance frontier that a subcarrier
assignment scheme cannot beat.

V. POWER ALLOCATION GAME FOR ENERGY-EFFICIENCY
MAXIMIZATION

Let us now assume that subcarrier allocation has already
taken place, and let us focus on the problem of transmit power
control. The utility function that we consider here is the so-
called energy efficiency, which is usually defined as (see [1],
[3]- [6])

u(p) = R
D

M

f(γ)

p
, (13)

wherein R is the transmit data-rate, M is the packet length,
D ≤ M is the number of information symbols contained
in each packet, p is the transmit power, while, finally, f(γ)
approximates the probability of correct reception for a packet
of length M , and is usually chosen as [1], [3]- [6]

f(γ) =
(
1− e−γ

)M
, (14)

with γ the received SINR. It is easy to realize that the utility
in (13) is measured in bit/Joule. In our context, first of all note
that if user k is using subcarrier `, the corresponding SINR
can be written as

γk,ak(`) =
pk(`)h2

k,ak
(`)

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj∩{`}

pj(n)h2
j,ak

(n)

. (15)

As a consequence, the energy efficiency function for the k-th
user on the `-th subcarrier is

uk,` (pk(`)) = R
D

M

f(γk,ak(`))

pk(`)
(16)

where f(·) is reported in (14). Since each user transmits on L
subcarriers, it is reasonable to take as utility function for the
k-th user the function

uk
(
{pk(`)}`∈Fk

)
=
∑
`∈Fk

uk,` (pk(`)) . (17)

We thus consider a non-cooperative game wherein each user
aims at maximizing his energy efficiency (17) by tuning the
transmit power on his allocated subcarriers. To complete the
game formulation, a constraint on the maximum transmit
power is needed. To this end, two customary approaches are
usually followed:
(a) a constraint may be posed on the maximum transmit power
on a subcarrier basis, i.e., pk(`) ∈ [0, Pmax/L], ∀` ∈ Fk.
(b) a constraint may be posed on the total transmitted power
by each user, i.e.,

∑
`∈Fk

pk(`) ∈ [0, Pmax];

Approach (b) is the most commonly encountered, but (a)
also appears in the literature (see, for instance, [28]), and it
turns out to be useful when a power mask constraint is to be
fulfilled due to standard compliance; it should be also noted
that the set of transmit powers fulfilling constraint (a) is strictly
included in the set of powers fulfilling constraint (b), which
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thus defines a larger set of transmit powers. In the remainder
of this Section, we choose to adopt constraint (a), since the
utility (17) is not quasi-concave in the domain defined by4 (a),
which implies that a NE is not guaranteed to exist, and hence
computing the best response of each player would require
the solution of a non-convex problem. The more customary
constraint (b) will be instead used in the subsequent section
on joint subcarrier allocation and power control for energy
efficiency maximization. We have now the following result.
Proposition 2: Consider a non-cooperative game wherein the
k-th user tunes its transmit power (constrained to be not larger
than Pmax/L) on his subcarriers in order to maximize the
utility function reported in (17). This game admits a unique
NE point; at the NE, the transmit power for the k-th user
on the `-th subcarrier, p̃k(`) say, is expressed as p̃k(`) =
min{pk(`)∗, Pmax/L}, with pk(`)∗ the transmit power such
that γk,ak(`) = γ∗, with γ∗ the unique solution of the equation

γf ′(γ) = f(γ) . (18)

The best response dynamics converges to the unique NE point,
whatever the initial transmit power is.
Proof: Since the power transmitted by the k-th user on the
`-th subcarrier does not affect the SINR on the remaining
subcarriers of the same user, and given the additive nature of
the utility (17), it follows that each summand in (17) can be
optimized separately. The considered game for the k-th user is
thus decomposed in L parallel subgames, one for each of the
used subcarriers, having the utility function reported in (16).
The proof that each of these subgames admits a unique NE
point, as well as that the best response dynamic converges to
such NE point, as detailed in the text of this proposition, can
be given by replicating the same steps reported in [29]. We
omit the details for the sake of brevity.

VI. JOINT POWER AND SUBCARRIER ALLOCATION FOR
ENERGY-EFFICIENCY MAXIMIZATION

We consider now the more relevant and more challenging
scenario wherein each user can jointly allocate its transmit
powers and subcarrier frequencies so as to maximize his
energy-efficiency.

First of all, we should note that this scenario is much
more involved than the power allocation problem for fixed
subcarriers that has been discussed in Section V, and direct
extension of the approach employed in Section V to the case
at hand, is not possible. To see this, assume we employ the
approach of Section V, and consider for simplicity the case
in which each user transmits on only L = 1 subcarrier. Then,
for all k = 1, . . . ,K the k-th player’s utility function is given
by

uk
(
Fk, {pk(`)}`∈Fk

)
=
f(γk,ak(`))

pk(`)
, (19)

i.e., (17) with only L = 1 term in the sum. In the considered
scenario, for all k = 1, . . . ,K, player k computes his best

4Note that even if each uk,`(pk(`)) is quasi-concave with respect to pk(`),∑
`∈Fk

uk,`(pk(`)) is in general not jointly quasi-concave with respect to
{pk(`)}`∈Fk

, since the sum of quasi-concave functions is not guaranteed to
preserve quasi-concavity.

response by maximizing (19) with respect not only to pk(`),
but also with respect to the choice of the transmit subcarrier.
Now, since the choice of the subcarrier only affects the
numerator of (19) through the efficiency function f(γk,ak(`)),
and since f(·) is an increasing function of γk,ak(`), it follows
that, for all k = 1, . . . ,K, in order to maximize (19), player
k will choose the subcarrier that maximizes his individual
SINR γk,ak(`). Therefore, following the approach of Section
V leads to a BRD in which greedy SINR maximization is
to be carried out. But it has been shown in Section III that
even in the very simple scenario in which L = 1, greedy
SINR maximization is not guaranteed to converge, or even
admit NE points. Consequently, even in the simple scenario
in which each player transmits on only L = 1 subcarrier, the
conventional approach that has been employed in Section V
fails. Therefore, a different approach than that of Section V is
needed.

In order to devise a non-cooperative energy-efficient game
whose BRD is guaranteed to converge to an NE, again we will
make use of the framework of potential games. To this end, a
natural choice for the potential function would be

V =

K∑
k=1

∑
`∈Fk

uk,`(pk(`)) , (20)

with uk(`) the energy efficiency function defined in (16).
However, also this approach fails, since it is readily seen that
using the classical efficiency function f(γ) = (1 − e−γ)M it
is not possible to write the potential function as the sum of
terms depending on the strategy of a certain user plus other
terms independent of the said strategy. In order to circumvent
this difficulty, we propose the following approach.

First of all, we consider a different efficiency function,
namely:

f̃(γ) =
(
e−β/γ

)M
, (21)

with β a suitable constant to be specified in the sequel. Note
that, although f̃(γ) in (21) does no longer approximate the
probability of correct reception of a data-packet of M symbols,
just as the classical efficiency function it is still an S-shaped
increasing function of γ, approaching zero for γ → 0 and
approaching unity for γ → +∞. Plugging (21) into the energy
efficiency definition (16), we thus obtain the following energy
efficiency function on the generic subcarrier `

ũk,`(pk(`)) =

(
e−β/γk,a(k)(`)

)M
pk(`)

. (22)

Note that ũk,`(pk(`)) is still a quasi-concave function, and
letting β = γ∗/M , with γ∗ the unique solution of (18) we are
guaranteed that the maximizer of ũk,`(pk(`)) coincides with
that of the classical energy-efficiency uk,`(pk(`)) in (16). From
now on we thus embrace such a choice for the constant β. A
further justification of the validity of the efficiency function
f̃(γ) as a substitute for f(γ) is obtained by considering the
ratio [

f(γ)

f̃(γ)

]1/M

=
1− e−γ

e−β/γ
. (23)
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Figure 1. The quantity (1− e−γ)/e−β/γ is plotted here versus γ for the
case that M = 100.

It is seen that for large γ, (23) converges to one. Moreover,
in order to address how large γ is required to be for (23) to
approach unity, in Fig. 1 (23) has been plotted for the case
in which M = 100 (which leads to γ∗ = 6.4dB) versus γ
ranging from -20dB to 10dB. It is seen that for γ > 0dB (that
is the region of interest) (23) is very close to 1.

Next, instead of the sum in (20), we consider the product
of energy efficiencies (22)

K∏
k=1

∏
`∈Fk

ũk,`(pk(`)) . (24)

As will be shown in the sequel, unlike (20), (24) lends
itself to the derivation of a non-cooperative potential game.
Moreover, just as (20), (24) is linked to the global performance
of the system, since it is the product of the utilities of all
players. Therefore, it is of interest to reach NE where (24) is
maximized. Finally, a potential function can be defined as the
natural logarithm of (24). Otherwise stated, we consider the
following potential function

V = ln

(
K∏
k=1

∏
`∈Fk

ũk,`(pk(`))

)
=

−
K∑
k=1

∑
`∈Fk

(
βM

γk,ak(`)
+ ln pk(`)

)
.

(25)

Note that since the natural logarithm is a monotonically
increasing function, maximizing (25) is equivalent to maximiz-
ing (24). It is also interesting to remark that we have now the
term − ln pk(`), which is a pricing factor discouraging users
from transmitting at a too large power. Upon straightforward
manipulation, the potential in (25) can be written as shown in
Eq. (26) at the top of the next page, wherein ωk is an additive
term independent of the strategies of the k-th user.

As for the constraint on the maximum transmit power, as
already discussed in Section V, two approaches are usually
considered:

(a) a constraint on the maximum transmit power on each
subcarrier, i.e., pk(`) ∈ [0, Pmax/L], ∀` ∈ Fk.
(b) a constraint on the total transmitted power by each user,
i.e.,

∑
`∈Fk

pk(`) ∈ [0, Pmax];

Here, both kinds of power constraints will be addressed. To
begin with, we give the following proposition.
Proposition 3: Consider a non-cooperative game G wherein
the k-th user aims at maximizing, with respect to the choice
of the set of subcarriers Fk, and of the transmit powers
{pk(`)}`∈Fk

, the utility function in Eq. (27) at the top of
the next page. When either power constraint (a), or power
constraint (b) is employed, G is an exact potential game with
potential function V in (25). Hence the BRD associated to G
is guaranteed to converge to an NE.
Proof: Independently of the particular power constraint that
is employed, decomposition (26) shows that V is an exact
potential function for G. Hence, with both power constraint (a)
and (b), G is an exact potential game, and the thesis follows
from the properties of potential games.

Having established that the BRD associated to G is guaran-
teed to converge to an NE, we turn our attention to deriving
the best response of player k to the strategies of other players,
for all k = 1, . . . ,K. To elaborate, for any m ∈ Fk, let us
define the (subcarrier-dependent) coefficients

ak(m) =

K∑
i=1,i6=k

∑
`∈Fi∩{m}

h2
k,ai

(m)

pi(`)h2
i,ai

(`)
, (28)

and5

ck(m) =

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj∩{m}

pj(n)h2
j,ak

(n)

h2
k,ak

(m)
, (29)

which allows us to rewrite (27) in the more compact form

uk (Fk, {pk(`)}`∈Fk
) =

−
∑
m∈Fk

(
βM

ck(m)

pk(m)
+ βMak(m)pk(m) + ln(pk(m))

)
=∑

m∈Fk

gm,k(pk(m)) ,

(30)
wherein for all m ∈ Fk we have defined the function

gm,k(pk(m)) = −βM ck(m)

pk(m)
−βMak(m)pk(m)−ln(pk(m)) .

(31)
Determining the best response of player k involves maximiz-
ing (30) with respect to the L transmit powers and subcarriers.
In the rest of this section, the two considered power constraints
will be treated separately.

A. Subcarrier-based power constraint

Assume the power constraint pk(m) ∈ [0, Pmax/L], ∀m ∈
Fk is adopted. Then, for each of the

(
N
L

)
possible subcar-

rier allocations, the L transmit powers {pk(m)}m∈Fk
that

5Note that ak(m) = 0 if no user other than user k is using subcarrier m.
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V = ωk + βM


∑
`∈Fk

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj∩{`}

pj(n)h2
j,ak

(n)

pk(`)h2
k,ak

(`)
−

K∑
i=1,i6=k

∑
`∈Fi

∑
n∈Fk∩{`} pk(n)h2

k,ai
(n)

pi(`)h2
i,ai

(`)

−
∑
`∈Fk

ln(pk(`))

︸ ︷︷ ︸
ζk

(26)

uk (Fk, {pk(`)}`∈Fk
) = −βM

∑
`∈Fk

σ2 +

K∑
j=1,j 6=k

∑
n∈Fj∩{`}

pj(n)h2
j,ak

(n)

pk(`)h2
k,ak

(`)

−βM
K∑

i=1,i6=k

∑
`∈Fi

∑
n∈Fk∩{`} pk(n)h2

k,ai
(n)

pi(`)h2
i,ai

(`)
−
∑
`∈Fk

ln(pk(`)) ,

(27)

maximize (30) have to be determined. In this case, note
that, for any fixed Fk, the vector problem of maximizing
(30) with respect to {pk(m)}m∈Fk

, decouples into L scalar
maximization problems wherein for all m ∈ Fk, pk(m) is
determined as the maximizer of (31), subject to the constraint
pk(m) ∈ [0, Pmax/L]. Computing the first derivative of (31),
it readily follows that for positive pk(m), (31) has a unique
stationary point, which is also its unconstrained maximizer6.
Then, setting to zero the first derivative of (31), and taking
into account the subcarrier-based power constraint pk(m) ∈
[0, Pmax/L], for all m ∈ Fk, the constrained maximizer of
(31) is obtained as

pk(m) = min

{
Pmax/L,

−1 +
√

1 + 4β2M2ak(m)ck(m)

2ak(m)βM

}
,

(32)
if ak(m) 6= 0, and

pk(m) = min {Pmax/L, βMck(m)} , (33)

if ak(m) = 0, respectively. Summing up, for all k = 1, . . . ,K,
player k determines his best response by performing the
following steps:

1) Choose one of the possible sets Fk, and compute the
associated coefficients ak(m) and ck(m), m ∈ Fk.

2) Maximize the resulting utility (30) with respect to
the transmit powers, subject to the power constraint
pk(m) ∈ [0, Pmax/L], ∀m ∈ Fk, by setting
{pk(m)}m∈Fk

according to (32) or (33).
3) Repeat steps 1) and 2) for each of the possible

(
N
L

)
sets Fk, and choose the set and the associated transmit
powers that yield the largest utility.

B. Total transmitted power constraint

Similarly as in Section VI-A, for each of the
(
N
L

)
possible

subcarrier allocations, the L transmit powers that maximize
(30) have to be determined. However, if the power constraint

6The term unconstrained is used to stress that the said maximizer might be
unfeasible, i.e. might be larger than Pmax/L.

∑
m∈Fk

pk(m) ∈ [0, Pmax] is adopted, maximization of (30)

with respect to the transmitted powers is more involved be-
cause the vector maximization problem can not be decoupled
into scalar problems. Instead, for any fixed Fk, the following
optimization problem needs to be solved.

max
{pk(m)}m∈Fk

∑
m∈Fk

gm,k(pk(m))

s.t.
∑
m∈Fk

pk(m) ≤ Pmax, pk(m) ≥ 0, ∀m ∈ Fk

(34)
Unfortunately, problem (34) is not convex, because∑
m∈Fk

gm,k(pk(m)) is not a concave function, as can
be easily verified by direct computation of its Hessian.
However, in the following we will show that by adding an
additional constraint on {pk(m)}m∈Fk

, problem (34) can
be reformulated as a convex problem, and that no loss of
optimality is incurred by adding such a constraint. This is
accomplished in the following proposition
Proposition 4: The objective function of problem (34) is
concave when restricted to the set

C = {{pk(m)}m∈Fk
: pk(m) ∈ [0; 2βMck(m)]} . (35)

Moreover, any solution of (34), belongs to C.
Proof: Consider the Hessian of

∑
m∈Fk

gm,k(pk(m)). It is
easy to realize that all the off-diagonal components equal zero,
whereas for all m ∈ Fk we have

∂2

( ∑
m∈Fk

gm,k(pk(m))

)
∂p2

k(m)
=
pk(m)− 2βMck(m)

p3
k(m)

. (36)

From (36) it readily follows that the Hessian of the objective
function of (34) is a non-positive matrix if {pk(m)}m∈Fk

∈
C. Hence,

∑
m∈Fk

gm,k(pk(m)) is concave when restricted
to C. In order to complete the proof, we have to show that
any solution of (34) lies within C. To this end, consider the
generic summand of

∑
m∈Fk

gm,k(pk(m)), as given by (31),
for all m ∈ Fk. As noted in Section VI-A, (31) has a unique
stationary point p∗k(m), which is also its global, unconstrained
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maximizer. Thus, such an unconstrained maximizer can be
found by setting to zero the first derivative of (31) and solving
for pk(m), which yields, for all m ∈ Fk

p∗k(m) =
−1 +

√
1 + 4β2M2ak(m)ck(m)

2ak(m)βM
, (37)

if ak(m) 6= 0, and

p∗k(m) = βMck(m) , (38)

if ak(m) = 0, respectively. Now, note that it holds∑
m∈Fk

gm,k(pk(m)) ≤
∑
m∈Fk

max
pk(m)

(gm,k(pk(m)))

=
∑
m∈Fk

gm,k(p∗k(m)) .
(39)

Thus, p∗k = {p∗k(m)}m∈Fk
clearly is the unique, global,

unconstrained maximizer of
∑
m∈Fk

gm,k(pk(m)). Of course,
there is no guarantee that p∗k is a feasible point for problem
(34). Otherwise stated, it can happen that

∑
m∈Fk

p∗k(m) >
Pmax. In the following, we will first prove the result in case in
which p∗k satisfies the power constraint. Next, we will address
the case in which p∗k is not a feasible power vector.

When
∑
m∈Fk

p∗k(m) ≤ Pmax, then clearly p∗k is also the
unique solution of (34). In this case the proof is completed if
we show that p∗k ∈ C, i.e. that for all m ∈ Fk, p∗k(m) ∈
[0; 2βMck(m)]. Now, for any m ∈ Fk, if ak(m) = 0,
p∗k(m) is given by (38), thus trivially implying that p∗k(m) ∈
[0; 2βMck(m)], whereas if ak(m) 6= 0, p∗k(m) is given by
(37) and we need to show that

−1 +
√

1 + 4β2M2ak(m)ck(m)

2ak(m)βM
≤ 2βMck(m) . (40)

Multiplying both sides of (40) by 2ak(m)βM , and since√
x ≤ x ,∀x ≥ 1, the thesis follows.
Instead, when p∗k does not satisfy the power constraint, it

clearly can not be the solution to (34). Therefore, even if it is
still true that p∗k ∈ C, this does not directly imply the result,
but a further step is needed. Denote by p̃k = {p̃k(m)}m∈Fk

a solution of (34). We have to show that p̃k ∈ C. To this end,
note that p̃k(m) ≤ p∗k(m), for all m ∈ Fk. To see this, note
that if it existed an m̄ : p̃k(m̄) > p∗k(m̄), then we could define
a new power vector p̂k, which has the same components as p̃k,
except the m̄-th component, which is set to p̂k(m̄) = p∗k(m).
Now, clearly

∑
m∈Fk

p̂k(m) ≤
∑
m∈Fk

p̃k(m), thus implying
that p̂k is feasible. Moreover, note that we have∑

m∈Fk

gm,k(p̂k(m)) >
∑
m∈Fk

gm,k(p̃k(m)) . (41)

Equation (41) holds because gm̄,k(p̂k(m̄)) = gm̄,k(p∗k(m̄)) >
gm̄,k(p̃k(m̄)), (recall that p∗k(m̄) is the unique global maxi-
mizer of gm̄,k(·)), while any other summand in the left-hand-
side of (41) is equal to the corresponding summand in the
right-hand-side, because p̂k(m) = p̃k(m) for all m 6= m̄.
Thus, if it exists an m̄ : p̃k(m̄) > p∗k(m̄), it would be possible
to increase the value of the objective of (34) by replacing
p̃k(m̄) with p∗k(m̄), without violating the power constraint.
Clearly, this contradicts the fact that p̃k is a solution of (34).

Then, we have p̃k(m) ≤ p∗k(m) for all m ∈ Fk, and since
we have already proved that p∗k(m) ≤ 2βMck(m) for all
m ∈ Fk, we finally have p̃k(m) ≤ p∗k(m) ≤ 2βMck(m)
for all m ∈ Fk, which is equivalent to saying that p̃k ∈ C, as
we wanted to prove.

Proposition 4 ensures that no loss of optimality is incurred
in problem (34) by constraining the transmit powers to lie in
the set C, and that within such a set, the objective function
is concave. Therefore, the non-convex problem (34) can be
recast as the convex problem

max
{pk(m)}`∈Fk

∑
m∈Fk

gm,k(pk(m))

s.t.
∑
m∈Fk

pk(m) ≤ Pmax

pk ∈ C

, (42)

which can be solved by means of any standard convex op-
timization method, such as the interior point algorithm, or
numerically solving the associated KKT conditions, [21]. To
summarize, for all k = 1, . . . ,K, player k determines his best
response according to the following steps:

1) Choose one of the possible sets Fk, and compute the
associated coefficients ak(m) and ck(m), m ∈ Fk.

2) Maximize the resulting utility (30) with respect to the
transmit powers {pk(m)}m∈Fk

, subject to the power
constraint

∑
m∈Fk

pk(m) ∈ [0, Pmax], by solving the

convex problem (42).
3) Repeat steps 1) and 2) for each of the possible

(
N
L

)
sets Fk, and choose the set and the associated transmit
powers that yield the largest utility.

C. Suboptimal implementations and a simple upper bound

Similarly to the discussion of Section IV.A, also in this case
approximate implementations are needed in order to avoid the(
N
L

)
computational complexity of subcarrier allocation in the

maximization step of the games in the previous section.
The techniques of Section IV.A can be applied to the case

at hand too, so a possible strategy is to resort to a search
on a reduced set of configurations. Again, the search may
be either made over a certain number, say Q, of randomly
selected configurations, or assuming that each user selects its
subcarriers by choosing L out of its Ñ best7 subcarriers.

An approximated game may be then obtained by constrain-
ing each user to transmit on its L best channels, so that only
transmit power is to be tuned, which can be done according to
the game of Section V. Otherwise stated, in situations where
computational complexity is a critical issue, one could skip
the subcarrier allocation phase, by letting the users transmit on
their best channels, and just focus on transmit power control.
We will see in the forthcoming section on numerical results
that this strategy provides quite satisfying results in lightly to
moderately loaded systems.

7Here best means with the largest channel coefficients.
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Finally, also in this case a simple upper bound to the
achieved energy efficiency of any resource allocation proce-
dure may be obtained assuming that there is no interference,
each user transmits on its best channels, and on each channel
the transmit power control is set so as to achieve the target
SINR γ∗ (in case that such a SINR cannot be reached the
transmit powers are obviously to be determined so as to satisfy
the power constraint as explained in Sections VI-A or VI-B,
according to which power constraint is enforced).

D. Two social optimum solutions

For the sake of comparison, in the following we derive
alternative power control strategies based on cooperative op-
timization and inspired by social optimum solutions [19],
wherein global (and not user-centric) performance measures
are optimized subject to some fairness constraints. We assume
that each user transmits on its L best channels (i.e., we skip
the subcarrier assignment task); although this may seem a
limiting assumption, numerical results shown in the following
will confirm that, when subcarrier allocation takes place, with
high probability each user ends up transmitting on his best
channels.

To begin with, we consider here the centralized (i.e., coop-
erative) social optimum solution, which is the solution to the
following optimization problem:

max
{pk(`)}k=1,...,K, `∈Fk

K∑
k=1

∑
`∈Fk

uk,`(pk(`)) . (43)

Substituting uk,`(pk(`)) with its expression in (16), and denot-
ing by U` the set of users transmitting on the `-th subcarrier,
the above optimization problem may be re-stated as

max
{pk(`)}`=1,...,N, k∈U`

N∑
`=1

∑
k∈U`

R
D

M

f(γk,ak(`))

pk(`)
=

N∑
`=1

max
{pk(`)}k∈U`

∑
k∈U`

R
D

M

f(γk,ak(`))

pk(`)
.

(44)

The equality in (44) reveals that the considered optimization
problem decouples in N separate optimization problems, one
for each of the available subcarriers: for the `-th subcarrier, the
powers pk(`), with k ∈ U` are to be found so as to maximize
the quantity ∑

k∈U`

f(γk,ak(`))

pk(`)
; (45)

such a maximization can be carried out through a numerical
search on the domain [0, Pmax]|U`|.

Another possible resource allocation strategy may be ob-
tained by looking for a social optimum solution with a fairness
constraint. More precisely, following [5], we assume that all
the users transmitting on a given subcarrier, say the `-th one,
are received with the same power PR(`), ∀` = 1, . . . , N
(thus leading to pk(`) = PR(`)/h2

k,ak(`)), and that there is
no maximum transmit power constraint. Based on the above
assumptions, a social optimum solution is obtained through

maximization of the following quantity:

N∑
`=1

∑
k∈U`

R
D

M

(
1− e−γk,ak

(`)
)M

pk(`)
. (46)

Given the orthogonal nature of different subcarriers, the prob-
lem decouples in N separate maximization problems, one
for each subcarrier. On the `-th subcarrier, recalling that
pk(`) = PR(`)/h2

k,ak
(`), and given the fact that the SINR

γk,ak(`) can be easily shown to be expressed as

γk,ak(`) =
PR(`)

σ2 +
∑

j∈U`−{k}

PR(`)
h2
j,ak

(`)

h2
j,aj

(`)

(47)

the social optimum solution is obtained by maximizing the
quantity

∑
k∈U`

h2
k,ak

(`)

1− exp

− PR(`)

σ2+
∑

j∈U`−{k}
PR(`)

h2
j,ak

(`)

h2
j,aj

(`)



M

PR(`)

(48)
with respect to PR(`). Once the maximizer P ∗R(`) of (48) has
been found, the users in the set U` tune their transmit power
as follows: pk(`) = P ∗R(`)/h2

k,ak(`).

VII. NUMERICAL RESULTS

We provide here some numerical results showing the per-
formance, at the NE, of the proposed non-cooperative resource
allocation games. We consider a square area of 2800 × 2800
square meters, with four BSs (each equipped with an omnidi-
rectional antenna) regularly placed at points with coordinates
(700, 700), (700, 2100), (2100, 700), and (2100, 2100), and
users placed randomly inside this area, subject to the constraint
that the distance of each user from the BSs is not smaller than
20m. It is assumed that the number of available subcarriers is
N = 10, and that each user transmits on L = 3 subcarriers.
A system with a transmit rate R = 100 kbit/s, packet length
M = D = 120, Pmax

L = −10 dBW, and σ2 = 10−11 Watt/Hz,
has been considered. The squared channel coefficient h2

i,j(`)
linking the i-th user with the j-th BS on the `-th carrier
frequency is an exponential random variate with mean d−3

i,j ,
with di,j the distance between the i-th user and the j-th
BS. With regard to the game of Section IV we report, as
performance measure, the average achieved SINR, at the
equilibrium, versus the number K of active users. The average
achieved SINR is the mean of the SINRs of the users on all
their used subcarriers, i.e.

1

KL

K∑
k=1

∑
`∈Fk

γk,ak(`) ; (49)

although we would be interested in the SINR achieved by
each user on its used subcarriers, we believe that the average
achieved SINR is a compact performance measure able to give
a reliable picture of how well the proposed resource allocation
algorithms perform. We assume that, at the beginning of each
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Figure 2. Average achieved SINR at the equilibrium, versus the number of
active users, for the game of Section IV.

game, users are assigned and L random subcarriers and L
random transmit powers (one for each transmit subcarrier),
satisfying the transmit power constraint. Each user is assigned
to the BS with the best channel coefficients, and the shown
plots are the result of an average over 2 ∗ 104 independent
realizations of the channel coefficients and users’ locations.
Fig. 2 reports the performance of the game considered in
Section IV; for comparison purposes, we also report the
initial average SINR, resulting from a random choice of the
subcarriers to be used, and the upper bound corresponding
to the case that each user transmits on his L best channels
assumed free of interference. Results clearly show that the
achieved SINR at the equilibrium, for both the considered
games, are largely superior to those achieved with the initial
random assignment. It is also worth pointing out that the
simulation scenario is extremely overloaded, since the plots
are shown up to K = 20 users, and the product KL = 60
against a total of only N = 10 available subcarriers.

Fig. 3 reports the performance for the energy efficiency
games of Sections V and VI. When considering the games
of Section V (no subcarrier allocation), we assume that users
choose, at the beginning of the game, their active subcarriers
in a random fashion. For comparison purposes, we also report:
(a) the initial average energy efficiency, namely the achieved
performance before the resource allocation scheme comes into
play, (b) the energy efficiency of an ideal system wherein
each user may transmit on his L best channels with no
interference, (c) the approximate implementation (with the
constraint on the total transmitted power of each user) wherein
the maximization step with respect to the subcarrier choice is
made considering only the Ñ = 5 best carriers for each user,
and (d) the performance of the social optimum solution with
the fairness constraint. Results show that, in the considered
scenario, the joint power control and subcarrier allocation
games achieve an energy efficiency that is roughly three times

Figure 3. Average achieved energy efficiency at the equilibrium, versus the
number of active users, for the games of Sections V and VI.

Figure 4. Average transmit power per subcarrier at the equilibrium, versus
the number of active users, for the games of Sections V and VI.

larger than the energy efficiency of the power control game
(the one of Section V). Also, among the two proposed joint
allocation games, the one with a power constraint on the total
transmitted power of each user performs better than that with
per-subcarrier power constraint, especially for an increasingly
number of active users. This is expected, since, as already
noted, per-subcarrier power constraint is a particular case of
the more general constraint on the total transmitted power.
However, especially for low and intermediate network load, it
is seen that the gap between the two games is negligible. Thus,
the computationally simpler per-subcarrier power constraint
proves to be a valid substitute of the more complex game with
a constraint on the total power of each user. Interestingly, it
is also seen that the approximate implementation achieves a
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Figure 5. Fraction of users transmitting at maximum power at the equilib-
rium, versus the number of active users, for the games of Sections V and
VI.

performance that is very close to that of the optimum solution,
thus showing that close-to-optimality results may be obtained
also with a reduced complexity, as well as that the social
optimum solution with the fairness constraint achieves similar
results. In Fig. 4 the average transmit power per subcarrier at
the NE is reported for the games of Sections V and VI. As
expected, it is seen that the needed transmit power increases
as the number of users increases, as well as that the joint
power control and subcarrier allocation game permits saving
a significant amount of power with respect to the power
control game of Section V, while at the same time granting a
larger energy efficiency (Fig. 3). It is also seen that when a
power constraint on the total transmitted power of each user is
enforced, better performance is obtained with respect to per-
subcarrier power constraint. Fig. 5 reports, again for the games
of Sections V and VI, the fraction of users that at the NE are
transmitting at the maximum power: these are the users that
are not able to reach the optimal target SINR and are thus
suffering not-optimal performance. It is seen that this fraction
is sufficiently small, especially for the games of Section VI.
Moreover, it is seen that joint allocation with per-subcarrier
power constraint has only a slight gap with respect to the
joint allocation with the total transmitted power constraint.

Now, since the results shown in Figs. 2 - 5 refer to averaged
values, in Fig. 6 we look at how the actual values may
be spread around the average value. In particular, we report
the histogram (i.e., the empirical distribution) of the transmit
power realizations, at the NE, for the case in which K = 10,
for the joint subcarrier and power allocation game of section
VI, with subcarrier-based power constraint. Results show that
the actual values of the transmit powers are quite concentrated
around their average values, and that heavy tails are absent.
Similar results, that are omitted for the sake of brevity, show
that similar results hold for the other proposed games.

Figure 6. Empirical distribution (at the NE) of the transmit power for each
user, for K = 10, for the game of Section VI with per-subcarrier power
constraint.

Figure 7. Average achieved energy efficiency at the equilibrium, versus
the number of active users, for the proposed subcarrier and power allocation
game of Section VI with total power control, for the joint allocation algorithm
provided in [18], and for the iterative-waterfilling algorithm.

A. A performance comparison with competing alternatives

Although we have not been able to find in the litera-
ture papers dealing with a scenario similar to the one that
we are considering, i.e., non-cooperative energy efficiency
maximization in the uplink of a multicell OFDMA cellular
system, in Fig. 7 we compare the performance of the resource
allocation game of Section VI with some similar alternatives.
We set L = 2, while the other parameters are the same as
for previous figures, and we contrasted the average energy-
efficiency achieved by the following algorithms:

(a) Our proposed game of section VII, which performs
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non-cooperative joint subcarrier assignment and power
control for energy efficiency maximization, with a power
constraint on the total power transmitted by each user on
its subcarriers.

(b) The energy-efficiency maximization algorithm proposed
in [18]; note that this algorithm considers a scenario very
similar to ours, with the only difference that the subcarrier
assignment is made in a centralized fashion. Otherwise
stated, the paper [18] considers energy efficiency maxi-
mization in a multicell uplink OFDMA system wherein
power control is performed non-cooperatively, but sub-
carrier assignment is a centralized task carried out by the
network. In particular, the algorithm in [18] assigns the
subcarrier with the constraint that the same subcarrier
can not be used by more than one user per cell, thus
completely suppressing intra-cell interference. Clearly,
this is possible only because a centralized subcarrier
assignment has been performed. Instead, in our work we
do not pose such a constraint, and allow for universal
frequency reuse even inside each cell. As the authors of
[18] state themselves, the constraint to use each subcarrier
only once per cell, may result in unfair situations in which
some users are not assigned any transmit subcarrier. To
cope with this issue, in [18] a parameter λ ∈ [0; 1] is
introduced in the subcarrier assignment subroutine, which
trades off between network’s overall energy-efficiency,
and fairness. When λ = 1, the best performance in
terms of average energy-efficiency is obtained, but the
resulting subcarrier assignment is most unfair, whereas
the opposite situation takes place when λ = 0. In Fig. 7,
the performance of [18] are plotted for λ = 1, i.e. in the
best case as far as average energy-efficiency is concerned.

(c) In order to point out how the classical rate maximizing
algorithms totally disregard the energy-efficiency issue,
we consider a system wherein each user transmits on the
subcarriers selected at the equilibrium by our algorithm
(a), but each user sets his L transmit powers in order
to maximize the sum of his own achievable rates on
the used subcarrier, which has been done by means of
the standard iterative water-filling algorithm. Otherwise
stated, algorithms (a) and (c) use the same subcarriers
(as decided by algorithm (a)), but the transmit power is
assigned according to different policies. We point out
that, iterative water-filling is known to be not always
convergent in multicell systems (see for example [16] and
references therein), and for this reason in our simulations
we averaged only with respect to those channel realiza-
tions that led to a convergent process.

Remarkably, even if the parameter λ of the algorithm in
[18] has been set to 1, the results indicate that the proposed
algorithm from Section VI performs better than the algorithm
from [18], even in moderately overloaded networks, which
shows how the proposed method is able to ensure remarkable
overall energy efficiency performance, despite being a totally
non-cooperative algorithm. Of course, as the number of active
users K increases, the gap between the two algorithms tends to
disappear, and for heavily overloaded networks (recall that in

the presented numerical results, the number of total available
subcarriers in the system has been set to N = 10, while
up to K = 20 users are considered, each one transmitting
L streams) the algorithm from [18] performs slightly better.
This is expected, since for increasing K, our approach has
to cope with a stronger and stronger intra-cell interference,
whereas in [18] intra-cell interference is suppressed thanks
to the centralized subcarrier assignment and at the expense
of fairness. Finally, as expected, the iterative waterfilling
algorithm performs poorly in terms of energy-efficiency.

VIII. CONCLUSIONS

This paper has dealt with the problem of non-cooperative re-
source allocation in the uplink of OFDMA multicell networks.
Using a game-theoretic approach, we have considered both the
problems of SINR maximization with respect to the active sub-
carriers, and of energy efficiency maximization, with respect to
the transmit powers and to the choice of the active subcarriers.
Differently from the usual approach in the literature, we have
posed no constraint on the subcarrier choice algorithm (so that
a user is allowed to pick a subcarrier used by another user in
the same cell), namely a system with frequency-reuse factor
equal to one has been considered. The framework of potential
games has been used as a tool to obtain non-cooperative games
convergent to a NE, although, on the contrary, it has not been
possible to show uniqueness of the NE for the considered
games. Numerical results, showing the performance at the NE
of the proposed resource allocation schemes, have proven the
effectiveness of the proposed solutions.
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