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Abstract—We design of an efficient channel shortener for
nonlinear satellite channels. When the memory of the channel is
too large to be taken into account by a full complexity detector,
excellent performance can be achieved by properly filtering the
received signal followed by a reduced-state detector. This letter
derives closed-form expressions for the front-end filter and the
target response of the reduced-state detector.

Index Terms—Nonlinear satellite channels, channel shortening,
information rate, intersymbol interference, receiver optimization.

I. INTRODUCTION

SATELLITE channels are affected by nonlinear distortions
and by intersymbol interference (ISI) of possibly long

duration. The former originate from the presence of a high
power amplifier (HPA), whereas the latter is introduced by
the input and output multiplexing (IMUX and OMUX) filters
placed before and after the HPA. During the last decades in
the literature, the nonlinear effects and the channel memory
have been coped with nonlinear compensation and data predis-
tortion at the transmitter side (see [1] and references therein)
or with advanced detection techniques (see [2] and references
therein).

When the channel memory is too large to be taken into
account at the detector, these advanced detection techniques
quickly become unmanageble and low-complexity solutions
are required. The conceptually simplest solution is to let
the detector work with a truncated version of the channel
response. However, as expected, such a strategy often yields
poor performance unless the truncated part of the channel
response has negligible power.

Channel shortening (CS) is a technique originally pro-
posed by Falconer and Magee in 1973 [3] and recently
improved in [4] for general linear channels, such as multiple-
input multiple-output (MIMO) and ISI channels. By using an
information-theoretic framework, the optimal front-end filter
(the channel shortener) can be stated in closed form for a
given channel memory considered at the detector.

In this paper, we generalize the analysis in [4] to maximum-
a-posteriori (MAP) detection for nonlinear satellite channels.
In Section II, we briefly review the system model for the satel-
lite channel and the underlying detection algorithm assumed
in this letter. In Section III, we extend the channel shortening
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Fig. 1. Block diagram of the satellite channel.

technique and in Section IV we assess its performance by
numerical simulations.

Notation: Matrices are denoted by uppercase boldface
letters (e.g., H) and vectors by lowercase boldface letters
(e.g., x). Block matrices and block vectors will be denoted
with roman boldface letters (e.g., H and x). The identity
matrix is denoted as I or I depending on the context. The
entry (i, j) of block matrix H will be denoted as Hij

(matrix entry). The transpose of a matrix H will be de-
noted by HT , its conjugate by H∗, and its conjugate and
transpose by H†. For a sequence of matrices {Hk} we use
H(ω) to denote its discrete-time Fourier transform (DTFT)
H(ω) =

∑
k Hke

−jωk. The inverse H(ω)−1 is such that
(H(ω))−1H(ω) = H(ω)(H(ω))−1 = I for each ω.

II. SYSTEM MODEL AND CONSIDERED DETECTOR

We consider a linear modulation with shaping pulse p(t),
symbol time T , and uniformly and identically distributed
input symbols {xn} belonging to an M -ary constellation,
properly normalized such that E{|xn|2} = 1. The nonlinear
satellite channel, considering a single-channel-per-transponder
scenario, is depicted in Fig. 1. It includes an IMUX filter hi(t)
which removes the adjacent channels, a HPA, and an OMUX
filter ho(t) aimed at reducing the spectral broadening caused
by the nonlinear amplifier. Although the HPA is a nonlinear
memoryless device, the overall system has memory due to the
presence of IMUX and OMUX filters. The received signal
is further corrupted by additive white Gaussian noise whose
low-pass equivalent w(t) has power spectral density 2N0. The
complex baseband representation of the received signal has
thus the following expression

r(t) = s(t) + w(t) , (1)

where s(t) is the signal at the output of the OMUX filter.
In [2], it is shown that a suitable approximate model for the

signal s(t) is based on the following nth-order (with n being
any odd integer) simplified Volterra-series expansion

s(t) ≃
∑
k

NV −1∑
i=0

xk

[
|xk|2ih(2i+1)(t− kT )

]
, (2)

where NV = (n+1)/2, and h(2i+1)(t) are complex waveforms
given by linear combinations of the the original NV Volterra
kernels. This simplified Volterra-series expansion is obtained
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from the classical one by neglecting some suitable terms. For
further details, the reader can refer to [2]. We point out that
the approximation (2) is used only for the receiver design and
not for generating the received signal r(t).

It is easy to show that MAP symbol detection based on
this simplified model can be performed through a bank of
filters followed by a conventional Bahl-Cocke-Jelinek-Raviv
(BCJR) detector [5] with proper branch metrics and working
on a trellis whose number of states exponentially depends
on the channel memory. When the actual channel memory is
large, we have to resort to complexity reduction techniques. A
possible approach is the use of reduced-state techniques (e.g.,
see [6]) or the use of the graph-based technique described
in [2] whose complexity linearly depends on the channel
memory. However, to obtain a further complexity reduction,
all these techniques can be combined with the CS technique
described in [4] properly extended to the channel at hand.

We will separately consider the cases of phase-shift keying
(PSK) modulations and amplitude/phase shift keying (APSK)
modulations typically employed in satellite transmissions.

PSK modulations: It can be seen that the condition
|xi|2 = 1 implies that the signal (2) simplifies to a linear
modulation with shaping pulse h̄(t) =

∑NV −1
i=0 h(2i+1)(t) [2].

In this case, detection can be perfomed using the samples {yi}
at the output of a filter matched to h̄(t) as described in [7], and
the application of CS can be carried out as described in [4]
for linear channels.

APSK modulations: The samples at the output of a bank
of filters matched to the pulses h(2i+1)(t), i = 0, ..., NV − 1
form a set of sufficient statistics for detection. Namely, con-
sidering an nth-order expansion, we have NV matched filters
whose output, sampled at discrete time k can be collected in
a NV × 1 vector that can be expressed as

yk =
∑
i

Gixk−i + ηk , (3)

where xk =
[
xk, xk|xk|2, ..., xk|xk|n−1

]T
,

Gi =


g
(1,1)
i g

(1,3)
i · · · g

(1,n)
i

g
(1,3)∗
−i g

(3,3)
i · · · g

(3,n)
i

...
. . .

...
g
(1,n)∗
−i g

(3,n)∗
−i · · · g

(n,n)
i

 , (4)

having defined g
(m,ℓ)
i =

∫∞
−∞ h(ℓ)(t)h(m)∗(t− iT )dt, and ηk

is a Gaussian vector with

E{ηk+iη
†
k} = Gi . (5)

Vectors {yk} can be collected into a single vector

y = Gx+ η , (6)

where G is a block Toeplitz matrix constructed from the
matrices {Gi}, whereas x and η are block vectors from
{xk} and {ηk}. The channel is fully described through its
conditional probability density function of the output given
the input symbols, which reads

p(y|x) ∝ exp

(
2R(x†y)− x†Gx

2N0

)
(7)

where R(·) is the real part.

...
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Fig. 2. Block diagram of the suboptimal receiver for the nonlinear satellite
channel.

According to the CS approach, a low-complexity detector
works on a mismatched channel law [4]

p̃(y|x) ∝ exp
(
2R(x†Hry)− x†Grx

)
, (8)

where, by using the notation in [4] as far as the superscript r
is concerned, Hr,Gr are block Toeplitz matrices constructed
from the sequences {Hr

i } and {Gr
i }, respectively, being

{Hr
i } the channel shortener operating on y, and {Gr

i } the
target response, to be properly designed. Without loss of
generality we absorb the noise variance 2N0 into the two
matrices in (8). In order to reduce the detection complexity,
we constrain {Gr

i } to

Gr
i = 0 |i| > L (9)

which implies that the memory after CS is L instead of the true
memory of the channel. The resulting receiver is suboptimal
since it assumes (8) rather than the actual law (7), and is
depicted in Fig. 2.

III. CHANNEL SHORTENING

The achievable information rate (AIR) IR of a mismatched
detector that works with (8) is given by [8, Section VI]

IR = lim
N→∞

1

N
Ey,x

{
log2

p̃(y|x)
p̃(y)

}
[bit/ch.use] (10)

where N is the number of transmitted symbols and the average
is carried out w.r.t. y, x according to the actual channel.

The CS technique finds the optimal Hr,Gr solving the
following optimization problem [4]

arg max
Hr,Gr

IR (11)

under the constraints specified in (9). Problem (11) for a
discrete alphabet is a complicated task. However it can be
solved in closed form under the assumption that x is composed
of Gaussian random variables. Although this assumption is
not even approximately true, since the actual symbols are
functions of each other, we will show in the simulation results
that a very good performance is still achieved.

Defining the correlation matrix V = E{xkx
†
k} the optimal

matrix-valued front-end filter {Hr
i } and target response {Gr

i }
are obtained in closed form through the following steps:

• Compute the DTFT matrix G(ω) of Gi and use the
spectral decomposition to find L(ω), i.e., decompose
G(ω) = L†(ω)L(ω). Compute

B(ω) = 2N0V L†(ω)

·
[
L(ω)V L†(ω) + 2N0I

]−1

(L†(ω))−1 . (12)

The anti trasform yields the matrix sequence {Bk}.
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Fig. 3. AIR for 8PSK modulation on the nonlinear satellite channel with
IBO=0 dB.

• Find
C = B0 −BB−1B† (13)

where we defined the block matrix B = [B1, ...,BL]
with size 1×L and the block Toeplitz B with size L×L
constructed on {Bk}.

• Define the sequence {Uk} where U0 is the Cholesky
decomposition of C, namely C = U †

0U0, and Uk for
1 ≤ k ≤ L is the (1, k) entry of U = −U0BB−1.

• Set

Gr
k =

min(L,L+k)∑
i=max(0,k)

U †
i−kU i − V δk (14)

where δk is the Kronecker delta.
• The optimal front-end filter is given by

Hr(ω) =
(
Gr(ω) + V −1

)
· V L†(ω)

[
L(ω)V L†(ω) + 2N0I

]−1

(L†(ω))−1 . (15)

For the proof see the appendix. We point out that by analogy
to [4] for linear channels, when L = 0 the optimal channel
shortener equals the MMSE filter of [9] applied to (2).

IV. NUMERICAL RESULTS

We consider 8-PSK and 16-APSK modulations. The shap-
ing pulse p(t) has a root-raised-cosine (RRC) spectrum with
roll-off 0.05. The IMUX and OMUX filters have frequency
characteristics specified in [10] with a 3dB bandwidth of
0.94/T and 0.85/T respectively. The nonlinear transfer char-
acteristic is the Saleh model [11] with parameters αa =
2.1322, αϕ = 1.7054, βa = 1.0746, and βϕ = 1.5072. A
5th-order Volterra expansion is considered at the receiver. We
report all results as functions of ratio between the normalized
power at the saturation Psat and the noise power spectral
density N0.

The AIR in eq. (10) can be computed using the Monte Carlo
method described in [8]. Fig. 3 shows the AIR values when
CS is employed in combination with a 8PSK modulation, and
an input back-off (IBO) equal to zero. Results are shown for
different values of the detector memory L and an optimization
of the noise variance at receiver has been carried out to further
improve the approximate model. For comparison, we show
also the AIR values when a simple truncation of the ISI at
the detector is adopted. The detector with L = 4 can be
considered as effective as a full complexity one, since most
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Fig. 4. AIR for 16APSK modulation on the nonlinear satellite channel with
IBO=3 dB.
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of the ISI is taken into account1. It can be seen that CS has
higher AIR than a simple truncation of the ISI response, even
though it is designed for a vector x with Gaussian components.
CS with memory L = 2 gives only a minimal performance
degradation for all Psat/N0 values. Similar conclusions hold
for the 16APSK, depicted in Fig. 4. We found similar CS gains
also with other modulations (QPSK and 32APSK) and other
transponder characteristics (e.g., the HPA in [10]).

The AIRs can be approached in practice with proper mod-
ulation and coding (MODCODs) formats. In Fig. 5 we report
the bit error rate (BER) of some MODCODs based on the
DVB-S2 low-density parity-check code (LDPC) rate 1/2 [10].
We performed iterative detection and decoding with a max-
imum of 50 global iterations. We note that the MODCODs
performance reflects the AIRs well.

V. CONCLUSION

We generalized the CS technique to the case of nonlinear
satellite channels. We showed that when the memory L
is lower than the channel memory, an optimization of the
mismatched channel law at the detector yields significantly
better performance than a truncation of the channel impulse
response.

APPENDIX

In this appendix we derive the CS solution for APSK
modulations. The channel in (6) can be whitened using the

1The pulse with RRC spectrum gives an infinite memory of the channel.
However, based on investigations beyond those presented in this letter, we
may assume that L = 4 is almost optimal.



4 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION

NV × NV whitening filter (WF) (L†(ω))−1. Using matrix
notation, the whitened observable r for N transmitted symbols
provides a set of sufficient statistics and reads [12]

r = Lx+w , (16)

where L is an N ×N block Toeplitz matrix built from {Lk}.
If x is a complex vector with mean zero and covariance matrix
V = E{xx†} we have

p̃(r) =
1

πNV N det(V)

∫
p̃ (r|x) exp

{
−x†V−1x

}
dx

=
1

det(GrV + I)
exp{d† (Gr +V−1

)−1
d} (17)

where d = Lrr and Lr = L(Hr)†. Therefore,

Er{− log p̃(r)} = log det(GrV + I)

− Tr
(
(Lr)†

[
LVL† + 2N0I

]
Lr(Gr +V−1)−1

)
(18)

and

Er,x{− log p̃(r|x)} = Tr(GrV)− 2R
(
Tr

(
(Lr)†LV

))
.

(19)

The IR for complex Gaussian symbols is

IR = Er{− log p̃(r)} − Er,x{− log p̃(r|x)} (20)

whose derivative w.r.t. (Lr)† is

∂IR
∂(Lr)†

= (LV)
T −

([
LVL† + 2N0I

]
Lr(Gr +V−1)−1

)T
(21)

which gives that the optimal filter Hr is(
Gr +V−1

)
VL† [LVL† + 2N0I

]−1
(L†)−1 . (22)

Using (22), the IR is

IR =
1

N

(
log(det(U†UV))− Tr

(
UBU†)+NV N

)
(23)

where U is obtained from the Cholesky decomposition
Gr +V−1 = U†U and

B = V −VL† [LVL† + 2N0I
]−1

LV .

Since det(U†UV) depends only on the diagonal
elements of U, we can optimize IR over the U
diagonal and the off-diagonal elements separately.
We define Un = [Unn+1, ..,Un min(n+L,N)],
Bn = [Bnn+1, ..,Bn min(n+L,N)],

Bn =

 B(n+1) (n+1) · · · Bmin(n+1,L) (n+L)

...
. . .

...
Bmin(n+L,N) (n+1) · · · Bmin(n+1,L) min(n+1,L)


and finally

Cn = Bnn −BnB
−1
n (Bn)

† .

Now the trace Tr
(
UBU†) can be rewritten as∑

n

Tr

(
[Unn Un]

[
Bnn Bn

B†
n Bn

] [
U †

nn

U†
n

])
.

Setting its derivative w.r.t. U†
n to zero gives

∂

∂U†
n

Tr
(
UBU†) = (UnnBn)

T + (UnBn)
T = 0

which gives
Un = −UnnBnB

−1
n . (24)

Replacing (24) in (23) we find

IR =
1

N
log det(V) +NV

+
1

N

∑
n

log(det(U †
nnUnn))− Tr

(
UnnCnU

†
nn

)
(25)

that can be maximized by setting its derivative w.r.t. U †
nn

equal to zero. This gives that

∂IR

∂U †
nn

= (U∗
nn)

−1 − (UnnCn)
T = 0

and the optimal Unn is given by the Cholesky decomposition

C−1
n = U †

nnUnn . (26)

Inserting (26) into (25), the AIR for Gaussian symbols is

IR =
1

N
log det(V) +

1

N

∑
n

log(det(C−1
n )) . (27)

When N → ∞, Bn and Bn are the same for all n, with
elements given by the anti trasform of (12). Thus, using
Szegö’s Theorem [13], the IR tends to be the integral of the
stationary solution in (12)-(15).
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