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1 Introduction

During the last years, wireless sensor networks (WSNs) have received significant
attention from the research community, as one of the emerging technologies for the
new millennium. A WSN is composed by many (e.g., hundreds) devices with limited
processing and communication capabilities. Therefore, energy saving is one of the
major issues and information processing has to be performed with low complexity.
Possible applications for WSNs are surveillance, environmental monitoring, flow
control, etc, and it may be possible to work in indoor scenarios [1]. The application
of interest in this paper is the localization of a person or an object in indoor scenar-
ios [2], but our approach is also suitable for outdoor scenarios. We will refer to the
person (or object) to be localized as the entity. In these scenarios, it is realistic to as-
sume that the nodes are not equipped with global positioning system (GPS) devices
and, therefore, other techniques are needed to perform efficient localization.

Most of the works about localization in sensor networks are based on the assump-
tion that the entities are equipped with devices which radio-communicate with some
reference nodes (denoted as anchors). The positions of the anchors are supposed to
be known and the position of the entity of interest is inferred by “combining” the
information available at each anchor (e.g., by triangulation). In the literature, several
techniques, based on different methods, have been proposed to obtain a sufficiently
low estimation error [3, 4]. The computational complexity of these algorithms is a
crucial issue for WSN-based applications. In [5], the authors propose a sub-optimal
hierarchical algorithm, which solves the localization problem without resorting to
the optimum maximum likelihood (ML) technique, whose computational complex-
ity becomes too high to be of any practical interest. In [6], an adaptive approach to
localization problems, obtained by solving a sequence of very small optimization
subproblems, is considered.
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The problem of locating a source of speech has been widely studied in the field of
sound source localization (SSL) using multiple input multiple output (MIMO) sig-
nal processing [7]. In particular, several analytical frameworks have been proposed
for the estimation of the time difference of arrival (TDOA). Most of the methods are
based on measuring the crosscorrelation (in time or frequency domains) between the
output at different receivers [8, 9]. An interesting approach is that proposed in [10],
where the authors derive a unified ML framework for sound source localization and
beamforming for distributed meeting applications, taking into account both rever-
beration and environmental noise.

In this chapter, we will assume that the anchors are equipped with microphones
(which have, typically, a low cost) and use the information collected by them to
localize, through collaborative SSL-based signal processing, the entity of interest.
This is reasonable in scenarios where the entity to be localized may not be equipped
with these devices, e.g., when the entity is an enemy to be located in a battlefield. In
such cases, it is thus necessary to use other methods to localize the entity, e.g.,
by employing other types of sensors, such as accelerometers, microphones, etc.
Although SSL techniques are well established (especially for distributed meeting
applications), they are mainly based on the computation of crosscorrelation and the
use of ML estimators, which are computationally onerous. In this chapter, we de-
rive SSL techniques which employ very limited computational complexity, trying to
obtain the minimum penalty in terms of position estimation error. In particular, we
present results based on a novel localization algorithm which, by considering the
powers of the audio signals received at the microphones, determines the position of
the entity. We first deal with one-dimensional scenarios, i.e., scenarios where the
audio source moves along a straight line, deriving both centralized and decentral-
ized localization algorithms, based on the solution of simple systems of equations.
Then, we extend our approach to consider more realistic two-dimensional scenarios,
where the anchor nodes are placed at the corners of a square grid.

2 One-Dimensional Scenarios

2.1 Statement of the Problem

Suppose that the entity to be localized is moving on a straight line (x-axis) and
there are N anchors (microphones), denoted as Œm0; : : : ; mN�1�, equally spaced at
positions Œx0; : : : ; xN � 1�, where

xj D x0 CD � j j D 1; : : : ; N � 1

and D is the constant distance between two consecutive anchors. Without loss of
generality, suppose that x0 D 0. This approach can be easily extended to scenarios
with nonequally spaced sensors.
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The audio power received at the i th node (i D 0; 1; : : : ; N � 1) can be
expressed as

Pi D k
Ps

.di /ˇ
(1)

where k is a suitable parameter which depends on the audio propagation charac-
teristics (dimension: [cmˇ ]), ˇ is the pathloss decay exponent (adimensional), di

is the distance of the audio source from mi (dimension: [cm]), and Ps is the maxi-
mum emitted power by the sound source (dimension: [W]). Obviously, expression
(1) can be applied provided that di > dcrit, where dcrit is a critical distance be-
yond which equation (1) holds. Although a more detailed statistical description of
the model may be needed, results on acoustic emission of human head confirm this
type of model [11]. Note that ˇ depends on the type of audio source. If, for in-
stance, the sound is emitted by an object (e.g., a motor), it is reasonable to assume
that the sound may approximately have the same propagation characteristics in all
directions (positive and negative directions on the x-axis). If, instead, the sound is
emitted by a person, the sound will decay slowly in front of the face, whereas it will
decay faster on the opposite direction. For the ease of simplicity, we will assume
that ˇ D ˇforward D 2 in the “forward” direction, whereas ˇ D ˇbackward D 4 in the
“backward” direction. We remark that in an homogenous scenario the propagation
exponent ˇ should be the same in all directions. For the purpose of analysis and
without leading the generality of our framework, we suppose that ˇ depends on the
propagation direction. A different propagation modeling would simply require to
change a few equations. However, the value of ˇ changes from person to person and
a more accurate description may be needed [11]. As will be shown later, an accurate
characterization of k is not crucial in our analytical framework, since the same value
of k is considered for all sensors.

The problem consists in locating the audio source on the basis of the N audio
power received at the anchors. Our goal is to derive an efficient cooperative pro-
cessing algorithm, with low computational complexity, for the localization of the
entity. In Sect. 2.2, we will derive a centralized algorithm in the considered one-
dimensional scenarios, whereas in Sect. 2.3, distributed localization algorithms will
be proposed.

2.2 Centralized Localization Algorithm

In a scenario with omnidirectional audio source emission (e.g., a motor), the pa-
rameter ˇ is the same in all directions. Therefore, by identifying the two nodes
which receive the highest audio powers, one can determine the position of the
entity. For instance, consider the scenario depicted in Fig. 1, where the source is
between mi�1 and mi . The powers Pi�1 and Pi received at mi�1 and mi , respec-
tively, will be the highest ones. The distance x�crit of the audio source from mi�1,
i.e., x�crit D x�� .i �1/D, can be directly obtained, once the powers at the .i �1/th
and i th sensors are collected.
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Fig. 1 Reference one-dimensional scenario

In the presence of directive audio sources (e.g., a human speaker), the above
approach cannot be applied, since the value of ˇ changes according to the direction
in which the sound is emitted. For example, if the entity is betweenmi�1 andmi and
speaks “forward” (i.e., in the positive direction of the x-axis), even if Pi > Pi�1, it
might happen that the entity is closer to mi�1 than to mi . Vice-versa, if the entity is
speaking “backward” andPi > Pi�1, then for sure the entity is closer tomi . It might
even happen (depending on the value of D and the values of ˇforward and ˇbackward)
that if the entity is on the left of mi�1 (i.e., between mi�2 and mi�1) and speaks
forward, then the powers perceived at mi�1; mi , andmiC1 are the highest ones.

As can be understood from the illustrative examples in the previous paragraph,
a generalized approach needs to be considered when the “direction” of the sound
(forward or backward) has also to be determined. In this case, one needs to consider
at least three nodes. Suppose that the highest received powers are those perceived
at the anchorsmi�1; mi , andmiC1 (the order is not relevant). Then, only one of the
following exclusive situations can happen:

1. The entity speaks forward and is betweenmi�2 and mi�1

2. The entity speaks forward and is betweenmi�1 and mi

3. The entity speaks backward and is betweenmi�1 and mi

4. The entity speaks forward and is betweenmi and miC1

5. The entity speaks backward and is betweenmi and miC1

6. The entity speaks backward and is betweenmiC1 and miC2

Each of the above conditions is associated with a specific system. For example, in
the first case, assuming, as mentioned in Sect. 1, that ˇforward D 2, the following
system admits a unique solution x�crit < 0:

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

Pi�1 D k
Ps

.xcrit/2

Pi D k
Ps

.D � xcrit/2

PiC1 D k
Ps

.2D � xcrit/2
:

In the second case, assuming ˇbackward D 4, the following system admits a unique
solution x�crit > 0:



Low-Complexity Audio Signal Processing for Localization in Indoor Scenarios 1718̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

Pi�1 D k
Ps

.xcrit/4

Pi D k
Ps

.D � xcrit/2

PiC1 D k
Ps

.2D � xcrit/2
:

In general, there will be only one system (out of the six possible ones) which will
admit an acceptable solution (�D < x�crit < 2D). Therefore, the audio source
location and direction can be univocally determined by finding such a system.

2.3 Distributed Localization Algorithms

Although the analytical framework described above is very simple to be imple-
mented, it requires a global network knowledge, since the three highest received
powers (among all the N powers received at the anchors) are used to determine the
audio source position and direction of emission. In practical networks, a centralized
solution may not be feasible, since extra nodes with higher computational resources
may be required. Therefore, it is of interest to derive distributed algorithms, where
data are gathered and disseminated with the smallest possible number of interan-
chor communications. In the literature, several distributed algorithms have been
proposed, based especially on the use of machine learning techniques [12, 13]. In
the following, we derive two possible distributed strategies. The common feature
of these strategies is that only the three nodes with the highest received powers are
involved in the possible systems described at the end of Sect. 2.2. In other words,
the location of the entity is determined from the data perceived by three anchors
and, then, disseminated to all other nodes – this might be of interest for tracking
operations.

The first proposed protocol can be described as follows:

� A packet with the information about the three nodes with the highest powers is
created at nodem0 and propagated along the x-axis. At the first transmission act,
nodem0 only stores its received power.

� If an anchor receiving the packet has a measured power higher than any of the
three stored in the packet, it modifies the packet by discarding the lowest power
and introducing its own.

� If a node has a received power lower than the three powers collected in the packet,
data gathering stops, since it is not possible (according to the propagation model
(1)) to find forward an anchor with higher received power.

� Once the nodes with the highest received powers are identified, the one-
dimensional localization algorithm described in Sect. 2.2 is carried out at these
nodes.

� Finally, the estimated position and direction are disseminated through the net-
work to all other nodes.
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While it is possible to show that O.N=2/ interanchor communications are
needed, on average, during the data gathering phase, one should note that in the
worst case scenario the number of transmissions is O.N/. Therefore, one may de-
sign a more efficient gathering algorithm which starts from the middle of the anchor
sequence, instead of one edge, of the network. This protocol can be described as
follows.

� A packet with the information about the three nodes with the highest powers is
created at nodembN=2c and it is propagated along the two directions of the x-axis.
As in the previous case, anchormbN=2c stores only its power.

� For each direction, if a node receiving the packet (with already three stored val-
ues) has a higher measured power, it modifies the packet by discarding the lowest
power and introducing its own; the gathering phase stops when the three highest
are collected (in each direction).

� The three nodes with the overall highest received powers are determined accord-
ing to the information in the packets collected above.

� Once the nodes with the highest received powers are identified, the one-
dimensional localization algorithm described in Sect. 2.2 is carried out at these
nodes.

� Finally, the estimated position and direction are disseminated through the
network to all other nodes.

In Fig. 2, the average number of interanchor communications ntx is shown, as a
function of the number of nodes, for the two distributed protocols described above.
The interanchor distance is set to D D 50 cm. To this regard an ad hoc simulator,
written in Matlab [14], has been created. The average is computed by simulating
different (independent) positions and directions, computing the number of commu-
nication steps for each run and, finally, averaging. As expected, ntx is an increasing
function of the number of anchors, since, on average, one may need more steps
before reaching the nodes with the highest received powers. However, one can ob-
serve that the second protocol is more efficient, since it requires a smaller number
of communication steps before completing the localization process. This is due to

Fig. 2 Average number of
communications ntx, as a
function of the number of
nodes, for the two distributed
protocols described above.
The interanchor distance is
set to D D 50 cm
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the fact that the first protocol is “unbalanced,” i.e., it may happen that the audio
source is close to mN�1. The second protocol, instead, is more “balanced,” since
it never happens that the audio source is N steps away from the anchor (mbN=2c)
which initializes the data gathering phase.

3 Two-Dimensional Scenarios

3.1 Statement of the Problem

Suppose that the entity to be localized is moving on a square area of side D (e.g., a
room), and there are four microphones, denoted as Œm1; m2; m3; m4�, equally spaced
at the corners of the square area. Without loss of generality, suppose that the origin
of the axes is at the center of the square area. Therefore, the anchors are placed at
.˙D=2;˙D=2/.

The audio power received at the i th anchor (i D 1; 2; 3; 4) can be expressed
as in (1), where di is now the euclidean distance of the audio source, located at
.x�; y�/, frommi , i.e.,

di D
p

jx� � xi j2 C jy� � yi j2:

As in the one-dimensional case, in this case as well ˇ depends on the type of audio
source and sound emission. For ease of simplicity, we assume that the person can
speak only along one of the axes. In this case, we assume that the decay factor
in a frontal region of span angle � is equal to ˇ D ˇforward D 2, otherwise it is
ˇ D ˇbackward D 4. In a scenario with omnidirectional audio source emission (e.g.,
a motor), the parameter ˇ is the same in all directions, i.e., � D 2 . Therefore, by
identifying the audio power distribution among the nodes, one can determine the
position of the entity by solving (1) for each anchor node. A pictorial description of
the scenario is given in Fig. 3.

The problem consists in locating the audio source on the basis of the four audio
powers received at the anchors and the knowledge of the sound emission character-
istics, i.e., � .

3.2 Centralized Localization Algorithm

Without loss of generality, we focus on the case when the entity speaks toward the
side delimited by m1 and m4, i.e., the “eastern side” of the area. However, similar
considerations can be carried out for the other three sides.

In order to determine the position of the entity, the value of ˇ in (1), at all four
anchors, has to be known. One should note that, if the entity is close to the center of



174 M. Martalò and G. Ferrari

Fig. 3 Reference
two-dimensional scenario

D

AUDIO
SOURCE

θ

the side, none of the microphones will observe a decay factor equal to 2, since none
of the microphones is spanned by the forward emission lobe of the entity. On the
other hand, if the entity is close to the other side but still in the middle, m1 and m4

will observe a value of ˇ equal to 2, whereas m2 and m3 will observe a value of ˇ
equal to 4. Moreover, only m1 (m4, respectively) will observe ˇ D 2 if the entity
is in the upper (bottom, respectively) part of the area. Therefore, one has to simply
compute the equations of the straight lines that divide these four sectors. After a few
geometrical considerations, denoting as ˇi the decay factor at anchor i , it is possible
to verify that

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

ˇi D 4 8i if x > xcrit and jyj < mjxj C q

ˇ1 D ˇ4 D 2; ˇ2 D ˇ3 D 4 if x � xcrit, y < �.mx C q/, and y > mx C q

ˇ1 D 2; ˇ2 D ˇ3 D ˇ4 D 4 if y > 0, x < .y � q/=m, and x > �.y C q/=m

ˇ4 D 1; ˇ1 D ˇ2 D ˇ3 D 4 otherwise

where xcrit D .D=2/ tan.. � �/=2/,m D tan.�=2/, and q D �xcrit �m.
If one applies similar considerations to the other three sides, it is possible to

identify a set of 16 systems (four for each possible direction). As one can see, the
computational complexity has increased rapidly. In fact, we have increased only one
dimension of the problem, increasing the number of systems to be solved from 6 to
16 systems. However, the complexity remains acceptable, since solving 16 systems
has still lower complexity than that of an ML-based algorithm.
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Fig. 4 Ambiguity zone for the anchor m1 in a two-dimensional scenario

4 Results and Discussion

As previously anticipated, we have performed simulations using Matlab, in order to
determine the effectiveness of the proposed approaches. In particular, we have com-
pute the average errors in estimating the position and direction, denoted as "p and "d,
respectively, by averaging over 1,000 independent trials the differences between the
true position and direction and their estimates. During each trial, different positions
and directions of the entity are randomly generated. The distance between consecu-
tive anchors is set, in all cases, to D D 50 cm.

For one-dimensional scenarios, we found that ".1�dim/
p =".1�dim/

d D 0, thus
confirming the uniqueness of the solution of the 6 systems. In two-dimensional
scenarios, we still found that ".2�dim/

p D 0, but ".2�dim/
d ' 0:1. In other words,

the position is still correctly determined in all cases, but in 10% of the cases, the
estimated direction is erroneous. A more detailed analysis has shown that this is due
to the fact that there exists two possible systems with the same values of ˇi and di

(i D 1; 2; 3; 4). In this case, the position can be correctly estimated, but the direction
is ambiguous. An example of the ambiguity zone for the anchor m1 is shown in
Fig. 4. In this region, there could be uncertainty between the emission directions
toward the eastern or northern side. A proper strategy to solve this ambiguity still
remains an open problem.
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5 Concluding Remarks

In this chapter, we have proposed a novel approach to perform low-complexity
localization based on audio signal processing. A set of “anchors,” which perceives
the sound intensity (through audio sensors) emitted by an “entity” and collaborate
together, estimate (a) the position of the entity and (b) the direction of sound
emission. We have derived a framework for both one and two-dimensional sce-
narios, also showing possible distributed approaches in the one-dimensional case.
Since ideal sound propagation conditions (i.e., no noise) have been assumed, the
future work will be devoted to the derivation of proper techniques to counter-act the
presence of acquisition and communication noises.
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