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Abstract. In this paper, we focus on auto-localization of nodes in a
static wireless network, under the assumption of known position of a
few initial nodes, denoted as “beacons”. Assuming that Ultra Wide
Band (UWB) signals are used for inter-node communications, we an-
alyze the impact of the number of beacons on the location accuracy.
Three different approaches to localization are considered, namely: the
Two-Stage Maximum-Likelihood (TSML) method ; the Plane Intersec-
tion (PI) method, and Particle Swarming Optimization (PSO). Simula-
tion results show that PSO allows to obtain accurate postion estimates
with a small number of beacons, making it an attractive choice to im-
plement effective localization algorithm.

Keywords: Particle Swarm Optimization (PSO), Auto-localization,
Two-Stage Maximum-Likelihood (TSML) Algorithms, Least Square (LS)
Method, Ultra Wide Band (UWB) Signaling.

1 Introduction

The problem of locating sources in an indoor environment has been widely stud-
ied since it has many applications in various areas, such as: monitoring of people
in hospitals or in high security areas; search for victims or firefighters in emer-
gency situations; home security; and locating people or vehicles in a warehouse.
The use of wireless networks is an attractive option in this field, as they com-
bine low-to-medium rate communications with positioning capabilities [6]. As
a matter of fact, the distance between each pair of nodes can be estimated by
sending signals between them and by extracting from these signals some physical
quantities, such as the received signal strength, the angle of arrival, or the time
of flight. The position of a node can then be estimated by using the distance
measurements from a certain number of nodes with known positions, denoted
as “beacons.” The accuracy of the obtained position estimate depends on the
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errors that affect wireless communications between nodes, which, in indoor en-
vironments, are mainly due to non-line-of-sight, multipath, and multiple access
interference. To reduce the impact of these sources of errors (thus obtaining
a more accurate position estimate), Ultra Wide Band (UWB) signaling is a
promising technology, since, on one hand, the large bandwidth allows to pene-
trate through obstacles and to resolve multipath components and, on the other
hand, the high time resolution improves the ranging capability [14].

In this paper, the considered scenario is a warehouse in which fixed Anchor
Nodes (ANs) with known positions are used to locate Target Nodes (TNs),
such as people and vehicles. A very large number of ANs might be necessary
to guarantee accurate TN estimation in every accessible point inside a large
building, and their accurate positioning could be very demanding also from an
economic point of view. Moreover, if the geometry of the warehouse changes
(e.g., for varying quantities of stored goods), the ANs might be replaced and/or
new fixed ANs might be added. To overcome this problem, we focus on the
auto-localization of the ANs assuming to know the exact positions of only a few
beacons. The number of beacons should be small, in order to reduce the cost
of installation, but sufficiently large to guarantee a reliable position estimate of
other ANs. The focus of this work is to investigate the impact of the number of
beacons on the system performance.

We assume to use UWB signaling. The distances between pairs of nodes are
estimated by means of a time-based approach. More precisely, we consider a
Time Difference Of Arrival (TDOA) approach, which is based on the estimation
of the difference between the arrival times of signals traveling between each node
to locate and beacons.

Many location estimate techniques, based on range measurement, have been
proposed in the literature. Among them, it is worth recalling iterative methods,
such as those based on Taylor series expansion [5], or the steepest-descent algo-
rithm [9]. These techniques guarantee fast convergence for an initial value close
to the true solution, which is often difficult to obtain in practice, but they are
computationally expensive and convergence is not guaranteed (for instance, ig-
noring higher order terms in the Taylor series expansion may lead to significant
errors). To overcome these limitations, closed-form algorithms have been studied,
such as the Plane Intersection (PI) method [12] and the Two-Stage Maximum-
Likelihood (TSML) method [2]. These methods can be re-interpreted as possible
approaches to solve a minimization problem. According to this perspective, the
location estimate can then be found by means of optimization techniques. More
precisely, by re-formulating the initial system of equations of the TSML in terms
of an optimization problem, we solve it through the use of Particle Swarming Op-
timization (PSO). In this work we show that the proposed approach can perform
better than the PI and the TSML methods.

This paper is organized as follows. In Section 2, the PI and TSML methods
and the PSO algorithm are described. In Section 3 numerical results, relative
to the impact of the number of beacons on the performances of the different
algorithms, are presented. Section 4 concludes the paper.
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2 Scenario Description

Throughout the paper, we assume that all the ANs lay on a plane, which could
be, for instance, the ceiling of a warehouse. We suppose that M beacons, whose
coordinates are denoted by si = [xi, yi]

T , ∀i = 1, . . . ,M are used to get the
position estimate of each AN with unknown position. In order to apply the
algorithms outlined in the remainder of this section, a necessary condition is
that M ≥ 4.

If we define ue = [xe, ye]
T as the true position of a generic AN (whose position

needs to be estimated) and ûe = [x̂e, ŷe]
T as its estimated position, then the true

and estimated distances between the i−th beacon and the AN of interest are,
respectively:

ri =
√
(ue − si)

T (ue − si) r̂i =
√
(ûe − si)

T (ûe − si). (1)

Since we are considering UWB signaling, it can be shown that r̂i � ri+νi, where
νi = εi + b, εi ∼ N (0, σ2

i ), εi is independent from εj if i �= j (j = 1, . . . ,M),
and b is a synchronization bias [1]. Moreover, according to [1], the standard
deviation σi of the position error estimation between two UWB nodes can be
approximated as a linear function of the distance between them, namely

σi � σ0ri + β. (2)

In the following, the values σ0 = 0.01 m and β = 0.08 m are considered. These
values are obtained in [1] by considering Channel Model 3 described in [10] and
the energy detection receiver presented in [3], which is composed by a band-pass
filter followed by a square-law device and an integrator, with integration interval
set to Ts = 1 s. The results presented in the following hold under these channel
and receiver assumptions.

In the remainder of this section, the following notation will be used:

Δ1i = ri−r1, ∀ i = 2, . . . , M Ki = x2i +y
2
i ∀ i = 1, . . . , M. (3)

2.1 TSML Method

According to the TSML method, each TDOA measurement identifies a hyper-
bola which the source has to belong to. Therefore, given a set of TDOA mea-
surements, the position estimate can be determined by solving the system of
equations corresponding to these hyperbolas using a Least Square (LS) tech-
nique [2]. Observing that r2i = (Δ1i+r1)

2, from (1) and (3) the following TDOA
non-linear equations can be derived:

Δ2
1i + 2Δ1ir1 = −2xixe − 2yiye + x2e + y2e −Ki − r21 i = 2, . . . ,M. (4)

When using estimated distances instead of the real ones, defining φ̂
1
= [ûTe , r̂1]

T ,
the set of equations (4) can be written as

Ĝ φ̂
1
= ĥ (5)

where
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Ĝ = −

⎛
⎜⎜⎜⎝

x2 − x1 y2 − y1 Δ̂12

x3 − x1 y3 − y1 Δ̂13

...
...

...

xM − x1 yM − y1 Δ̂1M

⎞
⎟⎟⎟⎠ ĥ =

1

2

⎛
⎜⎝

K1 −K2 + Δ̂2
12

...

K1 −KM + Δ̂2
1M

⎞
⎟⎠ (6)

and Δ̂1i = r̂i− r̂1, ∀i = 2, . . . ,M . This is a non-linear system because, according
to (1), r̂1 depends on x̂e and ŷe. The solution of (5) is determined in 2 steps.
First, x̂e, ŷe, and r̂1 are assumed to be three independent variables and the
(linear) system is solved by using the LS method. Consider the error vector

ψ � Ĝ(φ̂
1
− φ

1
) (7)

where φ
1
= [xe, ye, r1]

T . The Maximum Likelihood (ML) estimate of φ̂
1
is

φ̂
1
= (Ĝ

T
Ψ−1Ĝ)−1Ĝ

T
Ψ−1ĥ (8)

and Ψ � cov(ψ) = BQB where B = diag(r2, . . . , rM ), Q = E[ε1ε
T
1 ] and

(ε1)j = Δ̂1j − Δ1j [7]. It can be shown that cov (φ̂
1
) = (GTΨ−1G)−1 [2].

Taking into account the relation between x̂e, ŷe, and r̂1, i.e., equation (1), the
following set of equations can be obtained:

ψ′ = ĥ
′ −G′φ̂

2
(9)

where

ĥ
′
= [([φ̂

1
]
1
− x1)

2, ([φ̂
1
]
2
− y1)

2, [φ̂
1
]
2

3
]T G′ =

⎛
⎝

1 0
0 1
1 1

⎞
⎠

φ̂
2
= [(x̂e − x1)

2, (ŷe − y1)
2]T .

The ML solution of (9) is

φ̂
2
= (G′TΨ ′−1G′)−1G′TΨ ′−1ĥ

′
(10)

where Ψ ′ � cov(ψ′) = 4B′cov(φ̂
1
)B′ and B′ = diag(xe − x1, ye − y1, r1) [7]. This

leads to the following position estimate

ûe = U

[√
[φ̂

2
]1,

√
[φ̂

2
]2

]T
+ s1

where U = diag[sgn(φ̂
1
− s1)].
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2.2 PI Method

According to the PI method, introduced in [12], any triple of ANs (which leads
to a pair of TDOA measurements) identifies the major axes of a conic, a focus of
which is the position of the source. Given at least two triples of ANs, the position
estimate can then be determined by solving the system given by the equations
of the corresponding axes. By considering the axes identified by {s1, s2, sk},
k = 3, . . . ,M the system can be written as

Â ûe = b̂ (11)

where

Â =

⎛
⎜⎜⎜⎝

x21Δ̂13 − x31Δ̂12 y21Δ̂13 − y31Δ̂12

x21Δ̂14 − x41Δ̂12 y21Δ̂14 − y41Δ̂12

...
...

x21Δ̂1M − xM1Δ̂12 y21Δ̂1M − yM1Δ̂12

⎞
⎟⎟⎟⎠ (12)

and

b̂ =
1

2

⎛
⎜⎜⎜⎝

−Δ̂12Δ̂13(Δ̂13−Δ̂12)+(K1−K2)Δ̂13−(K1−K3)Δ̂12

−Δ̂12Δ̂14(Δ̂14−Δ̂12)+(K1−K2)Δ̂14−(K1−K4)Δ̂12

...

−Δ̂12Δ̂1M (Δ̂1M −Δ̂12)+(K1−K2)Δ̂1M −(K1−KM)Δ̂12

⎞
⎟⎟⎟⎠ . (13)

where xj1 � x1 − xj , yj1 � y1 − yj , j = 2, . . . ,M , and Kj and Δ̂1j are defined
in (3). The LS solution of (11) is then given by

ûe = (Â
T
Â)−1Â

T
b̂. (14)

2.3 PSO Algorithm

The starting point for the TSML method was the system (5) in Subsection 2.1.
Through simple algebraic manipulations, this system can be written as

B ûe = t̂ (15)

where

B = −2

⎛
⎜⎜⎜⎝

x2 − x1 y2 − y1
x3 − x1 y3 − y1

...
...

xM − x1 yM − y1

⎞
⎟⎟⎟⎠ t̂ =

⎛
⎜⎜⎜⎝

r̂22 − r̂21 +K1 −K2

r̂23 − r̂21 +K1 −K3

...
r̂2M − r̂21 +K1 −KM

⎞
⎟⎟⎟⎠ . (16)

Notice that, while in (5) both the matrix Ĝ and the vector ĥ contain noisy data,

in (15) the measurements affected by noise only appear in vector t̂, while the
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matrix B cointains known parameters. By interpreting the system (15) as an
optimization problem, its solution can be expressed as follows:

ûe = argminu||t̂−B u||. (17)

The PSO algorithm, introduced in [8], can be used to solve this problem. Accord-
ing to this algorithm, the set of potential solutions of an optimization problem is
modeled as a swarm of S particles, which are guided towards the optimal solu-
tion of the given problem, by exploiting “social” interactions between individuals
[11]. It is assumed that every particle i in the swarm (i = 1, . . . , S) at any given
instant t is associated with a position x(i)(t) in the region of interest and with a
velocity v(i)(t), which are both randomly initialized at the beginning with values
x(i)(0) and v(i)(0) and which are updated at each iteration [4]. It is also assumed
that the system has memory, so that, at every instant, each particle knows not
only its own best position reached so far, but also the best position among the
ones reached by any other particle in the swarm in the previous iterations. Each
particle also keeps track of the values of the function to optimize in correspon-
dence to both its best position and the global best position. These values are
used to update the velocity and the position of every particle at each iteration.
More precisely, the velocity of particle i is updated at consecutive iterations,
according to the rule [13]

v(i)(t+1)=ω(t)v(i)(t)+c1R1(t)(y
(i)(t)−x(i)(t))+c2R2(t)(y(t)−x(i)(t)) i = 1, . . . , S

(18)
where: ω(t) is denoted as inertial factor ; c1 and c2 are positive real parameters
denoted as cognition and social parameters, respectively; R1(t) and R2(t) are
random variables uniformly distributed in (0, 1); and y(i)(t) and y(t) are the
position of the i−th particle with the best objective function and the position
of the particle with the best (among all particles) objective function reached
until instant t [11]. In the considered minimization problem (17), they can be
described as

y(i)(t) = argminz∈{x(i)(0),... x(i)(t)}||t̂−B z||
y(t) = argminz∈{y(1)(t),... y(S)(t)}||t̂−B z||.

(19)

The idea behind the iterative step (18) is to add to the previous velocity of
particle i (which is weighted by means of a multiplicative factor) a stochastic
combination of the direction to its best position and to the best global position.
The definition of the velocity given in (18) is then used to update the position
of the i−th particle, according to the following rule:

x(i)(t+ 1) = x(i)(t) + v(i)(t) i = 1, . . . , S.

Possible stopping conditions for the PSO algorithm can be the achievement of a
satisfying value of the function to be minimized or a given (maximum) number
of iterations. At the end of the algorithm, the solution is the position of the
particle which best suits the optimization requirements in the last iteration.

The application of PSO to the considered localization problem is better ex-
plained in the next section.
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3 Simulation Results

In this section, the three localization approaches described in Section 2, namely
TSML, PI, and PSO, are compared through MATLAB based simulations com-
pliant with the propagation model introduced in Section 2. In all cases, the
performance is evaluated in terms of Mean Square Error (MSE) between true
and estimated positions, i.e.:

MSE � E[(x̂e − xe)
2 + (ŷe − ye)

2]. (20)

In the following simulations, the MSE is obtained from the average of 100 inde-
pendent runs.

The PSO algorithm has been implemented by setting both the parameters c1
and c2 in (18) to 2. This choice makes the weights for social and cognition parts
to be, on average, equal to 1. The inertial factor ω(t) has been chosen to be a
decreasing function of the number of iterations, in order to guarantee low de-
pendence of the solution on the initial population and to reduce the exploitation
ability of the algorithm, making the method more simliar to a local search, as
the number of iterations increases [13]. In the following, it is assumed that the
initial value of the inertial factor is ω(0) = 0.9 and that it decreases linearly to
0.4, reached at the 50-th iteration, i.e. the last one according to the stopping
criterion we chose. A population of 40 particles is considered since previous sim-
ulations showed that this value is large enough to guarantee an accurate solution
and that incrementing it does not lead to significant improvements.

We investigate through simulation the minimum number of beacons that are
needed to obtain a reliable estimate of the ANs positions. First, we consider a
partition of the entire plane on which the ANs lay into squares, whose edges
are 10 m long. Without loss of generality, we restrict our analysis to a single
square. The considered scenario is shown in Fig. 1 (b) and Fig. 1 (d), where
circles represent beacons while squares represent ANs with unknown positions.
In the scenario shown in Fig. 1 (b), 8 out of the total 36 ANs are assumed to be
beacons and their known coordinates are then used to get the position estimate
of the remaining 28 ANs. In Fig. 1 (a), the MSE corresponding to each AN is
represented. In this case, by comparing the MSE of the three algorithm, it can
be noticed that there are no significant differences in the order of magnitude of
the error and the three algorithms guarantee an accurate position estimate of
all the ANs. On the other hand, in the scenario represented in Fig. 1 (d) only
4 beacons are assumed to be used to estimate the positions of the remaining 32
ANs. As can be noticed from Fig. 1 (c), in this case both the TSML and the
PI methods lead to a far inaccurate positioning estimate for many ANs while
the accuracy obtained when using the PSO algorithm is still good. Moreover,
by comparing the behaviour of PSO algorithm when 8 beacons are used with
the one obtained with only 4 beacons shows that the MSE has the same order
of magnitude in both cases. It can then be concluded that 4 beacons are not
enough to obtain a reliable estimate when using the TSML and the PI methods,
but they are sufficient to guarantee an accurate postion estimate when the PSO
algorithm is used.
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We now consider a scenario composed by a corridor 40 m long and 5 m wide,
as shown in Fig. 2 (b) and Fig. 2 (d). In the scenario represented in Fig. 2 (b),
there are 16 beacons out of the total 44 ANs and this allows to obtain an accurate
position estimate with all the three approaches previously described, namely the
TSML and the PI method and the PSO algorithm, as shown in Fig. 2 (a).

As in the previous scenario, reducing the number of beacons, as in Fig. 2 (d),
leads to significantly worse values of the MSE corresponding both to TSML and
PI method, without changing the accuracy of the position estimate obtained via
the PSO algorithm, as shown in Fig. 2 (c).

Therefore, we can observe that the PSO algorithm can be successfully applied
with at least half the number of beacons, which allows to save money and time
in the accurate positioning of fixed ANs.
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Fig. 1. Fig. 1 (b) and Fig. 1 (d) represent the beacons (circles) and the ANs whose
positions need to be estimated (squares). In Fig. 1 (a.) the MSE of the ANs relative
to the scenario described in Fig. 1 (b.) is plotted, corresponding to TSML method
(triangles), PI method (squares) and PSO algorithm (dots). In each case, the interpo-
lation lines (dotted lines for TSML, dashed lines for PI, solid lines for PSO) are shown.
Fig. 1 (c.) represents the MSE realtive to each AN when the considered scenario is the
one described in Fig. 1 (d.). In this case the PSO algorithm outperforms the TSML
and the PI method, showing that 4 beacons are enough to obtain an accurate position
estimate when using PSO.
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Fig. 2. Fig. 2 (b) and Fig. 2 (d) represent the beacons (circles) and the ANs whose
positions need to be estimated (squares). In Fig. 2 (a) the estimation MSEs of the ANs
in the scenario described in Fig. 2 (b) are shown, using TSML method (triangles), PI
method (squares) and PSO algorithm (dots). In this case the order of magnitude of the
error is the same for all the three algorithms. Fig. 2 (c) represents the MSE realtive to
each AN when the considered scenario is the one described in Fig. 2 (d). In this case
the PSO algorithm outperforms the TSML and the PI method, showing that 4 beacons
are enough to obtain an accurate position estimate when using PSO.

4 Conclusion

In order to evaluate the impact of the number of beacons on localization accuracy,
three approaches to UWB-signaling-based auto-localization of nodes in a static
wireless network have been considered. Besides solving the localization problem
by means of the TSML and the PI methods, which are widely used for this
purpose, the original system of non-linear equations of the TSML method has
been re-formulated in terms of an optimization problem, which is then solved
by means of PSO. Our results show that the PSO approach guarantees a good
accuracy in the position estimate with a smaller number of known beacons,
allowing to reduce the installation cost of the entire localization system.

Acknowledgment. This work is supported by Elettric80 (http://www.
elettric80.it).



PSO for Auto-localization in UWB Networks 51

References

1. Busanelli, S., Ferrari, G.: Improved ultra wideband-based tracking of twin-receiver
automated guided vehicles. Integrated Computer-Aided Engineering 19(1), 3–22
(2012)

2. Chan, Y., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE
Trans. Signal Process. 42(8), 1905–1915 (1994)

3. Dardari, D., Chong, C.C., Win, M.Z.: Threshold-based time-of-arrival estimators
in uwb dense multipath channels. IEEE Trans. Commun. 56(8), 1366–1378 (2008)

4. Eberhart, R., Kermedy, J.: A new optimizer using particles swarm theory. In: Proc.
Sixth International Symposium on Micro Machine and Hmm Science, Nagoya,
Japan. IEEE Service Center, Piscataway (1995)

5. Foy, W.H.: Position-location solutions by Taylor-series estimation. IEEE Trans.
Aerosp. Electron. Syst. AES-12(2), 187–194 (1976)

6. Gezici, S., Poor, H.V.: Position estimation via ultra-wide- band signals. Proc.
IEEE 97(2), 386–403 (2009)

7. Ho, K.C., Xu, W.: An accurate algebraic solution for moving source location using
TDOA and FDOA measurements. IEEE Trans. Signal Process. 52(9), 2453–2463
(2004)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Interna-
tional Conf. on Neural Networks, Perth, Australia. IEEE Service Center, Piscat-
away (1995)

9. Mensing, C., Plass, S.: Positioning algorithms for cellular networks using TDOA.
In: 2006 IEEE International Conference on Proceedings of the Acoustics, Speech
and Signal Processing, ICASSP 2006, vol. 4 (May 2006)

10. Molisch, A.F., Cassioli, D., Chong, C.-C., Emami, S., Fort, A., Kannan, B.,
Karedal, J., Kunisch, J., Schantz, H.G., Siwiak, K., Win, M.Z.: A comprehensive
standardized model for ultrawideband propagation channels. IEEE Trans. Anten-
nas Propagat. 54(11), 3151–3166 (2006)

11. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence Journal 1(1) (2007)

12. Schmidt, R.O.: A new approach to geometry of range difference location. IEEE
Trans. Aerosp. Electron. Syst. AES-8(6), 821–835 (1972)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proc. IEEE In-
ternational Conference on Evolutionary Computation, Piscataway, NJ, pp. 69–73
(1999)

14. Zhang, J., Orlik, P.V., Sahinoglu, Z., Molisch, A.F., Kinney, P.: UWB systems for
wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)


	Impact of the Number of Beaconsin PSO-Based Auto-localizationin UWB Networks
	Introduction
	Scenario Description
	TSML Method
	PI Method
	PSO Algorithm

	Simulation Results
	Conclusion
	References




