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Abstract. In this paper, we consider the problem of auto-localization
of the nodes of a static Wireless Sensor Network (WSN) where nodes
communicate through Ultra Wide Band (UWB) signaling. In particu-
lar, we investigate auto-localization of the nodes assuming to know the
position of a few initial nodes, denoted as “beacons”. In the considered
scenario, we compare the location accuracy obtained with the widely used
Two-Stage Maximum-Likelihood algorithm with that achieved with an
algorithm based on Particle Swarming Optimization (PSO). Accurate
simulation results show that the latter can significantly outperform the
former.

Keywords: Auto-localization, Particle Swarm Optimization, Maximum-
Likelihood Algorithms.

1 Introduction

The location of sources in an indoor environment is of great interest because it
has applications in many areas, such as monitoring of people in hospitals or in
high security areas, search of victims or firefighters in emergency situations, home
security, and finding people or vehicles in a warehouse. Wireless Sensor Networks
(WSNs) are a leading option to address this problem, since they combine low to
medium rate communications with positioning capabilities [1]. As a matter of
fact, radio signal exchanges between nodes enables them to estimate the distance
to each other, by extracting some physical quantities, such as the Received Signal
Strength (RSS), the Angle Of Arrival (AOA), or the Time Of Flight (TOF) from
the signals travelling between them.

Assuming to know the exact positions of a sufficiently large number of nodes,
the position of a new node can be estimated by measuring its distances from
a few nodes with known positions. Of course, wireless communications are af-
fected by noise, especially in indoor environments, because of non-line-of-sight,
multipath and multiple access interference. Ultra Wide Band (UWB) signaling
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seems a promising technology in this area, since the large bandwidth allows to re-
solve multipath components and the high time resolution improves their ranging
capability (thus making the position estimate more accurate) [2].

In this paper, we consider an indoor scenario, which may be, for instance,
a warehouse, in which a certain number of fixed Anchor Nodes (ANs) is used
to locate Target Nodes (TNs), such as moving people and vehicles. In order to
guarantee accurate TN estimation in every accessible point inside the building,
which might be very large, a huge number of accurately positioned ANs would
be necessary and this could be very demanding also from an economic point
of view. Moreover, if the geometry of the warehouse changes, (e.g., for varying
quantities of stored goods) the ANs might be replaced and/or new fixed ANs
might be added. In order to overcome this problem, we consider auto-localization
of the ANs under the assumption of initially knowing exactly the positions of
only a few ANs, denoted as “beacons”. UWB signaling is used and we consider
a TOF approach to estimate the distances between pairs of nodes. In particular,
we focus on a Time Difference Of Arrival (TDOA) approach, which is based on
the estimation of the difference between the arrival times of signals traveling
between each node to locate and nodes with known position (beacons or nodes
whose position has already been estimated).

Many location estimate techniques, based on range measurement, have been
proposed in the literature. Among them, it is worth recalling iterative methods,
such as those based on Taylor-series expansion [3], or the steepest-descent algo-
rithm [4]. These methods guarantee fast convergence for an initial value close
to the true solution (which is often difficult to obtain in practice), but they are
computationally expensive and convergence is not guaranteed, since, for instance,
ignoring higher order terms in the Taylor-series expansion may lead to significant
errors. To overcome these limitations, closed-form algorithms have been stud-
ied, such as least-square methods, approximated maximum-likelihood method
[5], the plane intersection method [6] and the Two-Stages Maximum-Likelihood
(TSML) method [7] [8]. In particular, the TSML method is one of the most com-
monly used, since it has been proved that it can attain the Cramer-Rao lower
bound [9]. By observing that the initial system of equations of the TSML can
be re-interpreted as an optimization problem, we thus solve it through the use
of Particle Swarming Optimization (PSO). The proposed approach is shown to
perform better than the TSML method.

This paper is organized as follows. In Section 2 the TSML method and the
PSO algorithm are described. In Section 3 numerical results are presented. Sec-
tion 4 concludes the paper.

2 Description of the Scenario

Throughout the paper, it is assumed that all the ANs lay on a plane, e.g.,
the ceiling of a warehouse. As anticipated in Section 1, a sufficient (but small)
number of known “beacons” is used to get the position estimate of each AN with
unknown position. Define: si = [xi, yi]

T , ∀i = 1, . . . ,M as the (known) positions
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of M ANs (the “beacons”); ue = [xe, ye]
T as the true position of a generic AN

whose position needs to be estimated; ûe = [x̂e, ŷe]
T as its estimated position.

The true and estimated distances between the i−th beacon and the AN with
position to be estimated are, respectively:

ri =
√
(ue − si)

T (ue − si) r̂i =
√
(ûe − si)

T (ûe − si). (1)

As we are considering UWB signaling, it can be shown that r̂i = ri + νi, where
νi = εi+b where εi ∼ N (0, σ2

i ) and εi is independent from εj if i �= j, and b is the
synchronization bias [10]. Moreover, according to [10], the standard deviation of
the position error estimation between two UWB nodes can be approximated as
a linear function of the distance between them, namely

σi = σ0ri + β. (2)

In the following, the values σ0 = 0.01 m and β = 0.08 m are considered. These
values are obtained in [10] by considering Channel Model 3 described in [11]
and the energy detection receiver presented in [12], which is composed by a
band-pass filter followed by a square-law device and an integrator, in which the
integration interval was set equal to Ts = 1 s. Therefore, the results presented
in the following hold under these channel and receiver conditions.

2.1 TSML Method

The position estimation is carried on by using a simplification of the two step al-
gorithm proposed in [8]. Note that at least 4 ANs positions must be known
in order to start applying the following algorithm. Defining Δ1i = ri − r1,
∀ i = 2, . . . , M , and observing that r2i = (Δ1i + r1)

2, the following TDOA
non-linear equations can be derived:

Δ2
1i + 2Δ1ir1 = −2xixe − 2yiye + x2e + y2e −Ki − r21 i = 2, . . . ,M (3)

where Ki = x2i + y2i . When using estimated distances instead of real ones, the
set of equations (3) can be written as

Ĝ ûe = ĥ (4)

where

Ĝ = −

⎛
⎜⎜⎜⎝

x2 − x1 y2 − y1 Δ̂12

x3 − x1 y3 − y1 Δ̂13

...
...

...

xM − x1 yM − y1 Δ̂1M

⎞
⎟⎟⎟⎠ ĥ =

1

2

⎛
⎜⎝

K1 −K2 + Δ̂2
12

...

K1 −KM + Δ̂2
1M

⎞
⎟⎠ (5)

and Δ̂1i = r̂i − r̂1, ∀i = 2, . . . ,M . The system (4) would be a linear system in
the three unknowns xe, ye and r1 if r1 did not depend on xe and ye (which is
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instead the case, since by definition r1 =
√
(xe − x1)2 + (ye − y1)2). In order

to take into account this dependence, the solution is determined in 2 steps.
First, it is supposed that xe, ye, and r1 are three independent variables and
the (linear) system is solved by using the Least Square (LS) technique. Defining

φ̂
1

= [x̂e, ŷe, r̂1]
T and φ

1
= [xe, ye, r1]

T leads to the error vector

ψ = Ĝ(φ̂
1
− φ

1
). (6)

The Maximum Likelihood (ML) solution of (6) is

φ̂
1
= (Ĝ

T
Ψ−1Ĝ)−1Ĝ

T
Ψ−1ĥ (7)

where
Ψ = E[ψ ψT ] = BQB, (8)

and B = diag(r2, . . . , rM ), Q = E[ε1ε
T
1 ] where (ε1)j = Δ̂1j −Δ1j [8]. Omitting

non linear perturbation, from (7) one obtains

ûe − ue = (GTΨ−1G)−1GTΨ−1(ĥ− Ĝ ue) = (GTΨ−1G)−1GTΨ−1(ψ).

Since E[ψ] = 0, it can be noticed that E[ûe] = ue and the covariance matrix of

φ̂
1
is then [9]

cov(φ̂
1
) � E[(φ̂

1
− φ

1
)(φ̂

1
− φ

1
)T] = (GTΨ−1G)−1. (9)

Now taking into account the relation between xe, ye, and r1 the following set of
equations is obtained:

ψ′ = h′ −G′φ
2

(10)

where

h′ = [([φ̂
1
]
1
− x1)

2, ([φ̂
1
]
2
− y1)

2, [φ̂
1
]
2

3
]T G′ =

⎛
⎝

1 0
0 1
1 1

⎞
⎠

φ
2
= [(xe − x1)

2, (ye − y1)
2]T .

The ML solution of (10) is

φ̂
2
= (G′TΨ ′−1G′)−1G′TΨ ′−1h′ (11)

where Ψ ′ � E[ψ′ψ′T ] = 4B′cov(φ̂
1
)B′, B′ = diag(xe − x1, ye − y1, r1) and [9]

cov(φ̂
2
) = (G′TΨ′−1G′)−1. (12)

This leads to

ue = U

[√
[φ̂

2
]1,

√
[φ̂

2
]2

]T
+ s1
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where U = diag[sgn(φ̂
1
− s1)]. The covariance matrix of the error is then given

by

Φ =
1

4
(B′′−1cov(φ̂

2
)B′′−1) (13)

where B′′ = diag(u− s1) [9].

2.2 PSO Algorithm

The starting point for the previous method was the system (4) defined in Sec-
tion 2.1. Through simple algebraic manipulations, it can be written as

A ûe = t̂ (14)

where

A = −2

⎛
⎜⎜⎜⎝

x2 − x1 y2 − y1
x3 − x1 y3 − y1

...
...

xM − x1 yM − y1

⎞
⎟⎟⎟⎠ t̂ =

⎛
⎜⎜⎜⎝

r̂22 − r̂21 +K1 −K2

r̂23 − r̂21 +K1 −K3

...
r̂2M − r̂21 +K1 −KM

⎞
⎟⎟⎟⎠ . (15)

Notice that in this way, the measurements affected by noise only appear in vector
t̂, while matrix A cointains known parameters. On the contrary, in (4) both the

matrix Ĝ and the vector ĥ contain noisy data. The solution of the system (14)
can be found by formulating it as an optimization problem, with the following
solution:

ue = argminuF (u) (16)

where

F (u) � ||t̂−Au||.
To solve this problem, the PSO algorithm, introduced in [13], can be used. Ac-
cording to this algorithm, the set of potential solutions of an optimization prob-
lem can be modeled as a swarm of particles, and the aim is to produce computa-
tional intelligence (thus to guide all the particles towards the optimal solution of
the given problem), by exploiting social interactions between individuals [14]. It
is assumed that the swarm is composed by S individuals, and that every particle
i, i = 1, . . . , S at any given instant t is associated with a position xi(t) in the
region of interest and with a velocity vi(t), which are both randomly initialized
at the beginning with values xi(0) and vi(0) and which are updated at each
iteration [15]. Moreover, it is supposed that the entire system has a memory,
which allows each particle to know, at every step, not only its own best position
reached so far, but also the best position among the ones reached by any other
particle in the swarm (or by any other particle in a given neighbourhood of the
swarm) in previous iterations. Each particle also keeps track of the values of the
function to optimize corresponding both to its best position and to the global
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best position. These values are used to update the velocity (and thus the posi-
tion) of every particle in each step. The updating rule for the velocity of particle
i is [16]

vi(t+1) = ω(t)vi(t)+c1R1(t)(y
i(t)−xi(t))+c2R2(t)(y(t)−xi(t)) i = 1, . . . , S

(17)
where ω(t) is a weight called inertial factor, c1 and c2 are positive real parameters
called cognition parameter and social parameter, respectively, R1(t) and R2(t)
are random variable drawn at each step from the uniform (0, 1) distribution
and yi(t) and y(t) are the position of the i−th particle with the best objective
function and the position of the best (among all particles) objective function
reached until instant t [14]. They can be described as

yi(t) = argminz∈{xi(0),... xi(t)}F (z)

y(t) = argminz∈{y1(t),... yS(t)}F (z).
(18)

The meaning of formula (17) is to add to the previous velocity (which is weight-
ened by means of a multiplicative factor) a stochastic combination of the direc-
tion to the best position of the i−th particle and to the best global position.
The definition of the velocity given in (17) is then used to update the position
of the i−th particle, according to the rule

xi(t+ 1) = xi(t) + vi(t) i = 1, . . . , S.

This process is iterated until a stopping criterion (which might be the achieve-
ment of a satisfying value of F or a maximum number of iterations) is met. The
position of the particle which best suits the optimization requirements in the
last iteration is then considered as the optimal solution.

In Section 3, this algorithm is applied to the function F (u) defined in (16). The
number of particles in the simluations is S = 40, and the number of iterations
has been set to 50. The parameters c1 and c2 in (17) are both set equal to
2, which is a recommended choice since it makes the weights for social and
cognition parts to be 1 on average [13]. The inertial factor ω(t) has been chosen
to be a decreasing function in the number of iterations. As a matter of fact, a
large value of the inertial factor corresponds to low dependece of the solution
on initial population, and any good optimization algorithm should possess more
exploitation ability at the beginning. Decreasing the value of ω(t) reduces the
capability of PSO to exploit new areas, thus making the method more simliar to
a local search as the number of iteration increases, which is a good property for
an optimization algorithm. In the following simulations it is assumed that the
initial value of the inertial factor is ω(0) = 0.9 and that it decreases linearly to
0.5, reached in the last iteration.

3 Simulation Results

In this section, we compare, through simulations, the two localization approaches,
namely TSML and PSO, described in Section 2. The performances of the
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algorithms are evaluated in terms of the Mean Square Error (MSE), which is
defined as follows:

MSE � E[(x̂e − xe)
2 + (ŷe − ye)

2]. (19)

While in [17] the impact of the number of beacons is investigated, we now want
to investigate the impact of the distance between beacons and ANs to be esti-
mated. Two scenarios are considered, in which 4 beacons are used to estimate
16 unknown ANs around them. In the first scenario, the distance between the
baricenter of the beacons and the remaining ANs is 4 m, while in the second case
a longer distance (8 m) is considered. This two scenarios are shown in Fig. 1 (a.)
and Fig. 1 (b.), respectively.
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Fig. 1. Possible scenarios where beacons (full squares) and ANs with unknown position
(empty squares) are represented. The distance between the baricenter of the beacons
(red dot) and the ANs is 4 m in (a.), and 8 m in (b.).

Fig. 2 (a.) represents the MSE relative to each AN when using only the beacons
to get the location estimate. It can be noticed that the TSML method is far too
unreliable, while the accuracy obtained using the PSO algorithm is satisfactory.
The resulting estimated positions of the ANs are represented in Fig. 2 (b.),
both in case of TSML method and PSO algorithm. Instead of considering only
the beacons, a possible idea which can improve the accuracy is to consider the
already estimated ANs as known ones, and to use them to calculate the position
of the remaining nodes. Fig. 2 (c.) represents the MSE relative to each AN when
using this second strategy and comparing the results with the ones of Fig. 2 (a.)
shows that performances are improved. In particular, the accuracy of the location
estimate when using TSML method significantly improves as the number of ANs
assumed to be known increases. Less significant but still remarkable improvement
can be noticed also in the behaviour of the MSE when using the PSO algorithm.
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Notice that in both cases the PSO gives a better approximation of the real
position of the ANs. The position estimates of the ANs obtained when following
this strategy are represented in Fig. 2 (d.).

Fig. 3 represents the analogous results when the scenario is the one described
in Fig. 1 (b.), so when the ANs are further from the beacons. Once again, from
Fig. 3 (a.) and Fig. 3 (c.) it can be noticed that the PSO algorithm outperforms
the TSML mehtod. Comparing these results with the analogous ones represented
in Fig. 2 (a.) and Fig. 2 (c.), respectively, shows that a bigger distance between
beacons and ANs leads to worst accuracy, especially when the TSML method is
used. As a matter of fact, even when also the already estimated ANs are used to
localize the remaining ones (as in Fig. 3 (c.)), the accuracy obtained with this
method is not satisfactory. On the other hand, the accuracy obtained when using
the PSO algorithm is still good, and in this case the distance between ANs does
not seem to impact much on the solutions. Fig. 3 (b.) and Fig. 3 (d.) represent
the obtained position estimate, analogous to Fig. 2 (b.) and Fig. 2 (d.).
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Fig. 2. The MSE of the ANs relative to the scenario described in Fig. 1 (a.) is plotted
in (a.) and (c.). Fig. 2 (a.) refers to the case when only the beacons are used to estimate
the position of all the ANs, both when TSML method is used (magenta dots) and when
PSO algorithm is used (green triangles). The resulting position estimate are represented
in Fig. 2 (b.), both in case of TSML method (magenta dots) and PSO algorithm (green
triangles). Fig. 2 (c.) refers to the case in which also already estimated ANs are used
to get the position of the remaining ones, both when TSML method is used (red dots)
and when PSO algorithm is used (blue triangles). The resulting position estimate are
represented in Fig. 2 (d.), both in case of TSML method (red dots) and PSO algorithm
(blue triangles).
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Fig. 3. The MSE of the ANs relative to the scenario described in Fig. 1 (a.) is plotted
in (a.) and (c.). Fig. 2 (a.) refers to the case when only the beacons are used to estimate
the position of all the ANs, both when TSML method is used (magenta dots) and when
PSO algorithm is used (green triangles). The resulting position estimate are represented
in Fig. 2 (b.), both in case of TSML method (magenta dots) and PSO algorithm (green
triangles). Fig. 2 (c.) refers to the case in which also already estimated ANs are used
to get the position of the remaining ones, both when TSML method is used (red dots)
and when PSO algorithm is used (blue triangles). The resulting position estimate are
represented in Fig. 2 (d.), both in case of TSML method (red dots) and PSO algorithm
(blue triangles).

4 Conclusion

Two different approaches to UWB-signaling-based auto-localization of nodes in
a static WSN have been considered. Besides solving the non-linear system of
the localization equations by means of the TSML method, which is widely used
for this kind of application, the trasformation of the original problem into an
optimization one allows to solve it by means of the PSO algorithm. Our results
show that the novel approach based on the use of the PSO algorithm allows to
achieve better accuracy in the position estimate.
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