
M

D
a

b

a

A
R
R
A

K
B
V
A
R
A

1

t
t
s
s
b
a
(
c
o
a
i
a
u

(
(

h
1

Biomedical Signal Processing and Control 33 (2017) 245–254

Contents lists available at ScienceDirect

Biomedical  Signal  Processing  and  Control

jo ur nal homepage: www.elsev ier .com/ locate /bspc

arkov  chain  modeling  and  simulation  of  breathing  patterns�

avide  Alinovia,∗,  Gianluigi  Ferrari a,  Francesco  Pisanib, Riccardo  Raheli a

Department of Information Engineering, University of Parma, Parco Area delle Scienze 181/A, IT-43124 Parma, Italy
Department of Neuroscience, University of Parma, Via Volturno 39, IT-43126 Parma, Italy

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 20 May  2016
eceived in revised form 9 September 2016
ccepted 1 December 2016

eywords:
reathing modeling
ideo simulation
pnea simulation
espiratory Rate analysis
pnea detection

a  b  s  t  r  a  c  t

The  lack  of large  video  databases  obtained  from  real patients  with  respiratory  disorders  makes  the  design
and  optimization  of video-based  monitoring  systems  quite  critical.  The  purpose  of  this  study  is  the
development  of suitable  models  and  simulators  of  breathing  behaviors  and  disorders,  such  as  respi-
ratory pauses  and  apneas,  in order to allow  efficient  design  and test  of video-based  monitoring  systems.
More  precisely,  a novel  Continuous-Time  Markov  Chain  (CTMC)  statistical  model  of  breathing  patterns  is
presented.  The  Respiratory  Rate  (RR)  pattern,  estimated  by measured  vital  signs  of hospital-monitored
patients,  is approximated  as  a CTMC,  whose  states  and  parameters  are  selected  through  an  appropriate
statistical  analysis.  Then,  two  simulators,  software-  and  hardware-based,  are  proposed.  After  validation  of
the  CTMC  model,  the  proposed  simulators  are  tested  with  previously  developed  video-based  algorithms
for the  estimation  of  the  RR  and  the  detection  of  apnea  events.  Examples  of application  to assess  the
performance  of systems  for  video-based  RR  estimation  and  apnea  detection  are  presented.  The  results,  in

terms  of  Kullback–Leibler  divergence,  show  that  realistic  breathing  patterns,  including  specific  respira-
tory  disorders,  can  be  accurately  described  by  the proposed  model;  moreover,  the  simulators  are able  to
reproduce  practical  breathing  patterns  for  video  analysis.  The  presented  CTMC  statistical  model  can  be
strategic  to  describe  realistic  breathing  patterns  and  devise  simulators  useful  to  develop  and  test  novel
and effective  video  processing-based  monitoring  systems.

©  2016  Elsevier  Ltd. All  rights  reserved.
. Introduction

The Respiratory Rate (RR) is a fundamental vital sign to assess
he health condition of a patient: for this reason, it may  be impor-
ant to monitor this parameter continuously in several clinical
cenarios. Anomalous trends or values of this parameter can be the
ign of a respiratory disease, such as Biot’s breathing [1], Kussmaul’s
reathing [1], Cheyne–Stokes’s breathing [2] or Ondine’s curse [3],
lso referred to as Congenital Central Hypoventilation Syndrome
CCHS). More generally, RR abnormal behaviors can be a sign of
ritical medical conditions. In some cases, they can be an indicator
f a potentially deadly event, such as an apnea, which can be defined
s a persistent absence of breath or a too low RR. Hence, it is very

mportant to promptly detect these events, which may  be occasion-
lly fatal if untreated. Current measurement systems of the RR, also
sed for apnea detection, are based on polysomnographic devices,

� This paper has supporting material available.
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746-8094/© 2016 Elsevier Ltd. All rights reserved.
which are composed of several sensors. Nevertheless, these sys-
tems have some drawbacks: (i) they are expensive and can be used
in hospital environments only, (ii) they require specialized staff and
(iii) they are moderately invasive due to wired sensors, especially
for newborns.

Alternative monitoring systems could yield significant improve-
ments in the welfare of the patients. Hence, non-invasive, low-cost,
wireless monitoring and diagnostic systems are under develop-
ment. Thanks to the recent miniaturization of sensors, wearable
health monitoring systems can help to monitor a patient continu-
ously. In [4], modern techniques for the extraction of physiological
signals, also related to respiration, are presented. They rely on low-
cost technologies and can be a replacement for many sensors used
in the clinical environment, despite the fact that they require a
“direct connection” to the patient. Contactless RR long-term mon-
itoring, based on the use of ultrasonic sensors for precise distance
measurements [5] or the received signal strength in a wireless
network [6], were also developed. Among contactless monitor-
ing systems, properly designed video-processing algorithms are of

significant interest. In [7–9], contactless monitoring systems are
proposed: the first system is embedded in a board with multiple
cameras [7], the second one analyzes respiratory movements, but
does not include automatic RR estimation [8] and the last one makes
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Since the influence of other vital signs is ignored, it can be
assumed that the random variables

{
��

}
are independent, so

that the process X(t) exhibits the memoryless property [15].
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se of infrared cameras [9]. Some recent innovative video-based
ystems for RR measurement and apnea detection are based on
dvanced video-processing algorithms to enhance small breathing
otion, improve apnea event detection, and refine RR estimation

10,11].
A difficulty in the design of video processing-based algorithms

s the lack of large databases of relevant video recordings properly
atched with reliable medical data, due to the rarity of CCHS and

evere apnea events, especially in full-term newborns. For this rea-
on, the development of a statistical model of RR patterns, including
he occurrence of apnea events, is of significant interest. Such a

odel can be very useful in order to devise realistic simulators and
reate a large set of video recordings which allow a more efficient
esign of automatic RR estimation and apnea detection systems.

In the literature, some physically-based anatomical simulators
ave been presented. In [12], a hardware system to handle bio-
echanical movements and simulate an anatomical and functional
odel of the evolution of the human trunk structures during respi-

ation is proposed. In [13], a system of rigid and deformable parts,
hich simulates the biological function of respiration for computer

nimation, is presented.
In this paper, a statistical model, based on a Continuous-Time

arkov Chain (CTMC), aimed at simulating the main features of
 realistic RR pattern, is derived from medical data. The model
arameters are extracted by an inference system for continuous-
ime Markov random processes. Afterward, the described model is
sed as background for the definition of two simulators. A software-
ased simulator, able to directly manipulate video recordings of
egularly breathing patients in order to introduce artificial breath-
ng disorders, is first presented. A hardware-based simulator is also
eveloped: it exploits a manikin equipped with a moving chest to
hysically reproduce possible breathing disorders according to the
roposed statistical model. The developed simulators are then used
o test video processing-based algorithms for RR monitoring. This
aper expands upon preliminary work appeared in [14], where a
wo-state model of apnea episodes was proposed.

The rest of the paper is organized as follows. In Section 2, the
TMC-based RR statistical model is presented. Section 3 describes
he two developed simulators, software- and hardware-based. Sec-
ion 4 addresses the validation of the statistical model and the
esulting simulators on the basis of previously developed video-
ased monitoring algorithms. Finally, in Section 5 conclusions are
rawn.

. Respiratory Rate statistical model

The RR is commonly defined as the number of breathing cycles
er time unit, typically expressed in breaths per minute [bpm] or,
lternatively, in cycles per second [Hz], where a breathing cycle
onsists of a complete sequence of inhalation and exhalation move-
ents. The RR changes over time, depending on physical activity

nd health conditions. Normally, the RR of a patient at rest is age-
ependent and typically ranges from 30 bpm to 60 bpm (equivalent
o 0.5–1.0 Hz) for newborns and from 12 bpm to 20 bpm for adults
equivalent to 0.2–0.333 Hz) [1].

In order to devise a simple model of the RR pattern, it is useful
o introduce a finite set of states S =

{
S0, S1, . . .,  SN−1

}
. State Sn,

ith n ∈
{

0, 1, . . .,  N − 1
}

, describes breathing with a RR denoted
s �n ∈ R

+. Occurrence of respiratory pauses or apnea events and
arge random movements of the patient body are also considered.
he statistical model of the RR pattern can encompass all the fol-

owing conditions.

If the patient is regularly breathing, i.e. he/she is not suffer-
ing from apnea events and no large random body movements
ing and Control 33 (2017) 245–254

appear, the states
{

S0, S1, . . .,  SN−1
}

are used to describe reg-

ular RRs, characterized by values
{

�n

}N−1

n=0
with �n ∈ [RL, RH],

where RL > 0, RH > RL denote lowest and highest admissible RRs,
respectively.

• If the patient is affected by respiratory pauses/apneas, then the
state S0 is reserved to represent this condition, so that �0 is
formally set to 0 to describe absence of breathing and states{

S1, S2, . . .,  SN−1
}

are considered for regular breathing.
• If the patient is subject to large random body movements, during

which the RR is undetectable, the state SN−1 is reserved to rep-
resent this condition. The RR �N−1 is set to an arbitrary value RM

much larger than the physically acceptable ones: more precisely,
�N−1 is set to RM � RH. States

{
S0, S1, . . .,  SN−2

}
are still used to

represents regular RRs.
• If the patient is both suffering from respiratory pauses/apneas

and subject to large random body movements, the states S0 (with
�0 = 0) and SN−1 (with �N−1 = RM � RH) are reserved for absence of
breathing and random movements, respectively. The remaining
states

{
S1, S2, . . .,  SN−2

}
are used to describe regular breathing.

The following ordering is assumed: �0 < �1 < · · · < �N−1. Since the RR
is inherently continuous-valued, each state represents an approx-
imation of the real RR. Therefore, the set S represents a finite state
model of a discrete-valued process approximating the overall RR
pattern. The larger the number N of states, the better the approxi-
mation at the cost of a higher modeling complexity.

According to the above statistical model, the RR process,
denoted as X(t), is defined as a continuous-time process with state
space S. The time intervals during which the patient is breathing
with rate �n or is subject to apnea/respiratory pause or large body
movements, namely the sojourn times in the corresponding state
Sn, can be modeled as random variables and the introduced ran-
dom process X(t) can be generally described as a Markov process.
Ignoring the influence of other vital signs which can modify the RR
of a patient over time, such as the heart rate or the oxygen satura-
tion in the blood, the RR pattern cannot be predicted. To derive a
model that approximates this stochastic behavior, let us introduce
the random variable ��, which specifies the � − th sojourn time,
where � ∈ N

+ is an index that counts the number of state changes.
Jump times can be expressed, in terms of sojourn times, as

t� =
�∑

q=1

�q. (1)

In Fig. 1, a graphical example of the modeled finite-state RR process
X(t) is shown, with highlighted sojourn times and change of state
instants.
Fig. 1. An example of RR pattern modeled by the finite set S, showing sojourn times
and jump times.
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Fig. 2. State diagram of the CTMC model with respective transition rates.

ccordingly, the � − th sojourn time, conditioned on state Sn, has
he following exponential distribution:

�∼ exp (�n) (2)

here �n is the parameter of the distribution and can be inter-
reted as the rate at which the process X(t) leaves the state Sn [15,
ect. 11.4]. In Fig. 2, a generic state diagram of the proposed CTMC is
hown, where �m,n, m,  n ∈

{
0, 1, . . .,  N − 1

}
denotes the transition

ate from state Sm to state Sn.
The statistical behavior of a CTMC is characterized by its

nfinitesimal generator (or transition rate) matrix [16]

 =

⎡
⎢⎢⎢⎢⎣

�0,0 �0,1 · · · �0,N−1

�1,0 �1,1 · · · �1,N−1

...
...

. . .
...

�N−1,0 �N−1,1 · · · �N−1,N−1

⎤
⎥⎥⎥⎥⎦ (3)

here the entries and the parameters in (2) are related as

m = −�m,m =
N−1∑

n = 0

n /= m

�m,n. (4)

t the end of each waiting time, a state transition occurs: the arrival
tate is determined according to the transition probabilities of the
mbedded Markov chain [15, Sect. 11.4], which can be obtained by
he infinitesimal generator matrix � in (3) as follows:

 = I −
[
diag

(
�

)]−1
� (5)

here I is the N × N identity matrix and
[
diag

(
�

)]−1
is the inverse

f the diagonal matrix

iag
(

�
)

=

⎡
⎢⎢⎢⎢⎣

�0,0 0 · · · 0

0 �1,1 · · · 0

...
...

. . .
...

0 0 · · · �N−1,N−1

⎤
⎥⎥⎥⎥⎦ . (6)

s the embedded Markov chain of the CTMC is assumed ergodic, the
tationary distribution, described by an N-element vector �, can be
btained solving the following system of linear equations [15,16]:

� � = 0
N−1∑
n=0

�n = 1
(7)

here the last equation specifies the normalization of the proba-
ility distribution.

Setting appropriately the matrix � with values extracted from a
eal breathing patient, it is possible to completely specify the CTMC
odel and employ it to replicate a RR pattern with a proper statis-
ical behavior. Given that each patient can generate different RR
atterns, depending on many factors, the infinitesimal generator
atrix must be estimated. For this purpose, the estimation of � is

arried out in three steps: first, the RR pattern of the patient versus
Fig. 3. An example of a recorded pneumogram signal of a newborn patient kept
under clinical observation.

time is estimated; second, the obtained pattern is fitted to a model
with N states and, finally, the transition rates are estimated from
the finite-state pattern obtained at the previous step.

2.1. Respiratory Rate estimation

The RR is estimated by processing the pneumogram signal,
which records the volume changes of the thoracic cavity of a patient
and is obtained by placing an elastic belt around the chest. In Fig. 3,
an illustrative example of the pneumogram signal relative to a new-
born patient is shown. Since the pneumogram describes the whole
movements related to breathing, an algorithm to estimate the RR
from this signal is needed. Excluding possible respiratory pauses
or macro-movements of the patient under observation, the pneu-
mogram signal is a quasi-periodic signal. A method to estimate the
RR from the pneumogram signal thus relies on the estimation of its
fundamental frequency.

To this purpose, the pneumogram signal can be modeled by the
following discrete-time signal:

p [i] = c + A cos
[

2�
f0
fs

i + �
]

+ w [i] (8)

where c is a constant component, A is the amplitude of the peri-
odic component, f0 is the fundamental frequency, fs is the sampling
frequency, � is the phase and

{
w[i]

}
is a sequence of independent

and identically distributed (i.i.d.) zero-mean Gaussian noise sam-
ples. The main goal is to estimate the fundamental frequency f0,
which can be interpreted as the RR.

A possible approach to estimate f0 relies on the application of the
Maximum Likelihood (ML) criterion on a window of signal samples.
Defining the parameter vector � = [A, f0, �], the likelihood function
J

(
�
)

to be minimized is (see, e.g., [17]):

J
(

�
)

=
M−1∑
i=0

(
p [i] − A cos

[
2�

f0
fs

i + �
])2

(9)

where
{

p[i]
}M−1

i=0
are now the observed samples in the considered

M-sample time window. As a result of algebraic manipulations and
proper simplifications [17, Sect. 7.10], an approximate ML  funda-
mental frequency estimator reads:

f̂0 = fs
M

argmax
k ∈{0,1,...,M−1}

∣∣P [k]
∣∣2

(10)

where

P [k] =
M−1∑
i=0

p [i] e−j(2�/M)i (11)

is the discrete Fourier transform of the observed samples. The set of

discrete frequencies

{
0, 1, . . .,  M − 1

}
can be associated with the

physical frequencies by the conversion factor fs/M. Once f̂0 has been
obtained, it is possible to estimate the amplitude A and determine
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sufficiently high frequency, i.e., with a small (M − W) · Ts factor
(e.g., (M − W) ·  Ts ≤ 1 s).

Owing to this simplification, the estimation of the transition
rates is based on the ML  estimation method [20,21]. Assuming
48 D. Alinovi et al. / Biomedical Signal P

he magnitude of the periodic component. Given (10), an approxi-
ate ML  amplitude estimator is [17, Sect. 7.10]

ˆ
 = 2

M

∣∣∣∣∣
M−1∑
i=0

p [i] e−j2�(f̂0/fs)i

∣∣∣∣∣ . (12)

f the estimated RR is below the value RL or the amplitude Â is lower
han a suitable threshold, absence of breathing is assumed and f̂0 is
et to 0. The frequency f̂0 is finally declared as the RR of the patient
n the observed window.

Since the pneumogram signal can be significantly noisy because
f possible patient’s movements or artifacts involving other body
arts, which are associated with state SN−1 as described at the
eginning of Section 2, a preliminary time-domain check on the

bserved samples
{

p[i]
}M−1

i=0
is performed to detect such condi-

ions. To this purpose, the analyzed window of samples of the
neumogram signal is checked against the condition

i :
∣∣p[i]

∣∣ > 
 i = 0, 1, . . .,  M − 1 (13)

here 
 is a threshold to distinguish respiratory movements from
ther ones. Then the estimated frequency f̂0 = RM is formally
ssigned so that �N−1 = RM.

In order to obtain a RR pattern, which represents the funda-
ental frequency f̂0 over time, the estimation in (10) is repeated

ver successive windows. Interlaced observation windows, with
n interlacing interval of W samples, allow to carry out the estima-
ion every M − W samples. Fig. 4 shows an example of interlacing,
ith (W/M)  · 100 = 40% overlap and three consecutive windows. The

nteger j specifies the window index. Estimating the RR along the
neumogram by the approach described above, it is possible to
btain a discrete-time signal X̂c [j], representing the time evolu-
ion of the RR, where X̂c [j] is defined as the fundamental frequency
stimated in the j-th analyzed window by the above procedure.
herefore, the RR is estimated every (M − W) ·  Ts s, where Ts = 1/fs
s the sampling interval of the pneumogram.

In order to quantize the estimated continuous-value RR into a
nite state space, so that the statistical model introduced in Sec-
ion 2 can be used, a proper quantization of the values of the
ontinuous-value discrete-time signal X̂c [j] is needed. This is the
ocus of the next subsection.

.2. Respiratory Rate signal quantization

The first step to fit the estimated signal X̂c [j] into the model
escribed in Section 2 is to define the N states in S by selecting

ppropriate RR values
{

�n

}N−1

n=0
. An automatic method to select

hese values is used, with specific features depending on the pres-
nce of apnea events or random large body movements which affect
he pneumogram signal. Following the different modeling cases
escribed at the beginning of Section 2, different signal quantiza-

ion methods are considered.

If apnea events are not of interest and there are no patient ran-
dom movements, the N RR values of the model can be selected by

ig. 4. An illustrative example of interlaced windows, with a window length of
 · Ts = 10 s and interlacing interval W · Ts = 4 s. Window analysis is carried out every

M  − W)  · Ts = 6 s.
ing and Control 33 (2017) 245–254

the use of the Lloyd-Max algorithm [18,19], which minimizes the
mean square distortion between the signal X̂c [j] and the N-state
quantized one in the range of interest [RL, RH].

• If apnea events are of interest, the method is modified as follows:
a first state S0 with rate �0 = 0 is assigned to describe absence
of breathing; the remaining N − 1 states

{
S1, S2, . . .,  SN−1

}
are

estimated by the same Lloyd-Max algorithm used above. In this
case, the overall range of interest becomes

{
0
}

∪ [RL, RH].
• If random body movements are considered, the algorithm assigns

the N-th state SN−1 with �N−1 = RM to time intervals in which the
patient is moving; the remaining N − 1 states

{
S0, S1, . . .,  SN−2

}
are estimated by the Lloyd-Max algorithm. The overall range
becomes [RL, RH] ∪

{
RM

}
.

• If there are both apneas/respiratory pauses and large random
movements, the algorithm assigns the state S0 with rate �0 = 0 or
the state SN−1 with �N−1 = RM to time intervals in which absence
of breathing is detected or the patient is moving, respectively;
the remaining N − 2 states

{
S1, S2, . . .,  SN−2

}
are estimated by

the Lloyd-Max algorithm. The overall range becomes
{

0
}

∪
[RL, RH] ∪

{
RM

}
.

Once the RRs
{

�n

}
and the corresponding states in S are

defined, the pneumogram signal is quantized to the nearest RR
value �n present in the model, thus obtaining the following
discrete-value version of the signal X̂c [j]:

X̂ [j] = argmin
�n ∈

{
�0,�1,...,�N−1

} ∣∣X̂c [j] − �n

∣∣ . (14)

In Fig. 5, an illustrative example of the RR pattern X̂c[j], estimated by
the method described in Section 2.1, together with the correspond-
ing quantization X̂[j], computed according to (14), are shown. In this
example, the estimation of the RR is carried out every second, on
a temporal window of M · Ts = 10 s and with window overlapping
equal to 90% (i.e., W · Ts = 9 s).

2.3. Infinitesimal generator matrix estimation

Given the N-state model and the quantized RR pattern extracted
from a sample patient, the description of the statistical model
of the RR requires the definition of the transition rate matrix �.
The estimation of the infinitesimal generator matrix of CTMCs is
a known problem, which becomes more difficult if the estima-
tion is carried out on incomplete data or on sampled time series
[20]. To simplify the discussion, X̂[j], whence the matrix � is esti-
mated, is approximated as a continuous-time equivalent signal
X̂(t)—this assumption is valid, provided the RR is estimated with
Fig. 5. An illustrative example of the RR signal X̂c estimated from the pneumogram
and  a quantized model with N = 5 states signal X̂; in this examples, a patient with
possible respiratory pauses is considered.
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he process X̂(t) is observed in the interval [0, T], the time spent
y the process in state Sn can be denoted by the random variable
n (T); similarly, the number of transitions from state Sm to state
n in the same observation interval can be denoted as Nm,n (T). The
og-likelihood function to derive an estimate �̂ of the infinitesimal
enerator matrix of the observed process X̂(t) is given by [21]

og
[
L

(
�

)]
=

N−1∑
m=0

N−1∑
n = 0

n /= m

[Nm,n (T) log (�m,n) − �m,nRn (T) ]. (15)

y straightforward manipulations [20], the estimate of �m,n can be
xpressed as

ˆ m,n = Nm,n (T)
Rn (T)

for m /= n. (16)

he remaining rates for m = n are obtained using (4).
Provided the observation interval [0, T] of the RR pattern is suf-

ciently long, the ML  approach allows a reliable estimation of the
nfinitesimal generator matrix �.

. Simulators

The CTMC-based statistical model presented in Section 2 can
e used to derive appropriate simulators to reproduce respiratory
ovements and patient-like RR patterns. These simulators may  be

seful to test and design video processing algorithms to monitor the
R. Two simulators are proposed: the first one processes a recorded
ideo of a patient breathing normally with an approximately con-
tant RR in order to alter the RR according to the model; the second
ne physically reproduces breathing movements as moving body
arts of a manikin.

Simulation of random body movements is typically not of inter-
st and is not considered in this discussion. If the estimated model
ncludes the state describing patient movements (i.e., the state with

N−1 = RM exists), such a state is excluded and not simulated. This
an be easily achieved by removing the last row and column of the
odel infinitesimal generator matrix; then, the diagonal entries are

e-calculated according to (4).
As a first step, both simulators generate sojourn times for the

nite state model. Assuming that the initial state is unknown, it
an be randomly drawn according to the stationary distribution of
he CTMC defined in (7). Then, the first sojourn time �1 in the initial
tate Sm is generated according to the proper exponential distribu-
ion (2) with parameter �m. At the end of the first sojourn time, a
tate transition occurs: the arrival state is randomly drawn accord-
ng to the distribution extracted from the m − th row of the matrix

 in (5). The simulation of sojourn times
{

��

}
and state transitions

ontinues until the desired duration of the simulation is reached.
he obtained sojourn times

{
��

}
are used in the simulators to

enerate the RR pattern.

.1. Video-based simulator

The video-based simulator processes a video of a regularly
reathing patient and modifies it by creating a new video with
ariable RRs. The RR of the framed patient in the source video is
pproximated as time-invariant and defined as �V. The rates associ-
ted with the various states can be described by the ratios between
he rates of the corresponding state and the RR of the patient in the

riginal video. The normalized RRs in the model can be expressed
s:

¯ n = �n

�V
n = 0, 1, . . .,  N − 1. (17)
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After the waiting and jump times are generated according to the
N-state CTMC, the corresponding number of frames are obtained
as follows:

�̃� = round (�� · fr) (18)

t̃� = round (t� · fr) (19)

where fr is the frame rate of the video input and round ( · ) denotes
the integer closest to the argument (rounding function). If the RRs{

�n

}
are all different from the rate �V of the original video, it

may  be convenient to scale them by a factor CV chosen so that
�max · CV = �V, where �max is the RR corresponding to the state with
lowest rate (minn ∈ {0,1,. . .,N−1}�n) and, consequently, longest mean
sojourn time.

The simulator then starts producing a new video where the arti-
ficially generated RR pattern is inserted. The system scans the whole
video inserting breathing times with durations

{
�̃�

}
. The � − th

breathing time is simulated by processing a video block of d̃� frames
starting from the t̃� – th video frame, where

d̃� =
⌈

��

�̄n

· fr

⌉
(20)

and 	 · 
 denotes the smallest integer larger than the argument
(ceiling function). A RR is generated according to the state to be
simulated:

• if Sn is such that �̄n = 1, no video processing is needed, since the
desired RR is equal to that of the patient breathing in the original
video;

• if Sn is such that 0 < �̄n < 1, a block of d̃� < �̃� frames is extracted,
in order to slow down breathing movements of the recorded
patient; the extracted video block is “stretched” to the proper
length �̃� by the use of pixel-wise interpolation in the temporal
dimension by a cubic spline [22];

• if Sn is such that �̄n > 1, a block of d̃� > �̃� frames is extracted, in
order to speed up breathing movements of the recorded patient,
“contracting” the video block to the proper length �̃� by decima-
tion in the temporal dimension using a cubic spline [22];

• if S0 is such that �̄0 = 0, the procedure used for 0 < �̄n < 1 cannot
be used. In this case, the value of �̄0 is replaced by a new value
�̄′

0 properly chosen such that 0 < �′
0 � RL , where �′

0 = �̄′
0 · �V ,

so that the simulated RR is a convenient value clinically consid-
ered an apnea. Then, the procedure illustrated for 0 < �̄n < 1 is
applied with a modified �̄′

0 value. The results described in the
next section use a value �′

0 
 0.1 Hz.

For �̄n < 1, the noise, present in the original video and caused
by camera sensors, wired connections and the environment, is also
subject to interpolation. This means that the noise “slows down”
or, more precisely, is filtered by the interpolating filter. In order to
maintain noise characteristics similar to those of the original video,
a noise compensation algorithm has been devised. Assuming that
the noise is uniformly distributed in each frame, its statistical char-
acterization is time-invariant and can be modeled by additive white
Gaussian noise, whose characteristics are estimated by processing
pixels with static background. Selecting a background pixel region
and assuming a static video-camera, the system first determines
an estimate �̂2 of the noise variance by averaging the estimated
variances for every pixel in the considered region. In this process,
each pixel variance is estimated by the sample variance [16]. To
compensate for the noise not included because of the interpola-

tion filter, a sequence of uncorrelated Gaussian samples with zero
mean and variance �̂2 is generated and then filtered by a high-pass
filter with 3 dB cut-off frequency equal to that of the interpolating
filter. To update the camera noise inside the new video block, the
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Fig. 6. Illustrative diagram of the hardware-based simulator. The moving chest is
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Table 1
Estimated RRs sets, infinitesimal generator matrices and corresponding stationary
distributions of (a) a newborn patient suffering from apnea events and (b) a newborn
regularly breathing.

(a) Example 1 (patient suffering from apnea events){
�n

}
=

[
0 0.5 0.9 1.32 RM

]

�̂ =

⎡
⎢⎣

−0.188785 0.08972 0.04486 0.042991 0.011215
0.047083 −0.203685 0.073695 0.071648 0.011259
0.014614 0.080376 −0.22547 0.127349 0.003132
0.007717 0.019756 0.036734 −0.066677 0.00247
0.042272 0.02642 0.002642 0.002642 −0.073976

⎤
⎥⎦

�ML =
[

0.08788 0.16048 0.15736 0.53211 0.06217
]

(b) Example 2 (patient regularly breathing){
�n

}
=

[
0.44 0.74 1.04 1.33 RM

]

�̂ =

⎡
⎢⎣

−0.205567 0.124197 0.059957 0.004283 0.017131
0.020036 −0.080859 0.047943 0.003578 0.009302
0.014957 0.071581 −0.108974 0.014957 0.007479
0.015873 0.047619 0.206349 −0.317460 0.047619
0.003656 0.007313 0.006399 0 −0.017367

⎤
⎥⎦

[ ]

rates and infinitesimal generator matrix.
In Fig. 7, comparisons between the histograms of estimated fre-

quencies X̂ [j], whose probability mass function (PMF) is defined as
riven by the servo-motor inside the manikin connected to a motor shield for an
rduino board.

ltered noise sequence is added to all time-interpolated pixels. This
rocedure is not necessary for the cases with �̄n ≥ 1, because the
ecimation process does not modify the noise statistic. The over-
ll procedure is repeated until the complete RR pattern has been
nserted into the video.

Video simulation examples of breathing newborns with vary-
ng RRs and possible apnea episodes are provided as supplemental

aterials following the descriptions in Sections 4.1 and 4.3.

.2. Hardware-based simulator

The hardware-based simulator consists of a manikin of an infant
ith moving parts able to reproduce respiratory chest movements

f the newborn. In Fig. 6, an illustrative representation of the
anikin simulator is shown. It consists of a moving chest cou-

led with the body of the manikin. The moving chest is driven by
 mechanical arm connected to an electric servo-motor, inserted
nside the body of the manikin, and controlled by a motor shield for
rduino UNO [23], a board based on an Atmel ATmega328P micro-
ontroller. The controller is able to move the chest at a user-defined
requency with asymmetric speed to distinguish inhalation and
xhalation movements. The servo-motor can vary the RR approxi-
ately from 2 bpm to 200 bpm, equivalent to a RR range between

.033 Hz and 3.33 Hz, which readily allows to simulate the RRs of
 newborn.

To simulate the respiratory behavior of a newborn, times
{

��

}
nd corresponding states with RRs

{
�n

}
generated by CTMC-based

imulation are passed to the microcontroller, which drives the
ervo-motor to mimic  the RR pattern, moving the chest of the
anikin with the selected RR for the required time. In the case

f a respiratory pause or apnea event, the servo-motor is slowed
own to the minimum reachable rate for a time duration equal to
he sojourn time in the apnea state.

. Applications and results

.1. Model validation and simulators

First, the validation of the CTMC model is discussed. Vital sign
ecordings were provided by the Neonatal Intensive Care Unit
NICU) of the University Hospital of Parma. As examples, two
ecorded pneumogram samples of two different newborns, the first
uffering from apnea events and the second regularly breathing,
re used for the RR data extraction: the first record has a total
ength of 1 h and 42 min  and the second one of 1 h and 6 min. The
undamental frequency is estimated on temporal windows of dura-

ion M · Ts = 10 s (with Ts = 31.25 ms)  and with a 95% overlapping,
amely W · Ts = 9.5 s. Moreover, a heuristic threshold 
 = 400 �V is
et in (13) to detect random movements to be assigned to the state
N−1—the selected value of 
 has been experimentally optimized.
�ML = 0.05644 0.32998 0.22677 0.01516 0.37164

This value is selected by observation of pneumogram signals of
several newborn patients. Fixing, as an example, the desired num-
ber of states of the model to N = 5, the automatic state selector,
described in Section 2.2, extracts the RR sets

{
0, 0.5, 0.9, 1.3, RM

}
and

{
0.44, 0.74, 1.04, 1.33, RM

}
for the first and the second con-

sidered patients, respectively. Afterward, relying on the methods
described in Section 2, the algorithm derives an estimate �̂ of
the infinitesimal generator matrix. In Table 1(a) and (b) the RR
sets

{
�n

}
, the ML-estimated matrices �̂ and the corresponding

stationary distributions �ML derived according to (7) for the two
considered examples, are reported. It can be noticed that both
patients are affected by random body movements which cause the
presence of the state with �N−1 = RM.

It must be remarked that the description of large body move-
ments or possible artifacts with a specific state with rate �N−1 = RM

in the CTMC is fundamental in order to avoid degradation of the
statistical behavior of the model. In fact, if this state was  not avail-
able, faulty estimation of the RRs might arise, with possible wrong
selection of RR values

{
�n

}
and incorrect estimates of transition
Fig. 7. Comparisons between histograms with automatically selected bins for the
process X̂  (pneumogram-based) with PMF  pX̂ and the stationary distributions �ML

relative to (a) the example of the newborn patient suffering from apnea events and
(b)  the regularly breathing newborn.
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Table  2
Estimated RR sets and infinitesimal generator matrices for a newborn patient with different values of the number of states N.

CTMC model with N = 4{
�n

}
=

[
0.49 0.88 1.27 RM

]

�̂ =

⎡
⎣ −0.196532 0.109827 0.023121 0.063584

0.021876 −0.058898 0.012621 0.024401
0 0.105263 −0.144044 0.038781
0.006814 0.021124 0.003407 −0.031346

⎤
⎦

�ML =
[

0.0605 0.38942 0.05555 0.49453
]

CTMC model with N = 5{
�n

}
=

[
0.44 0.73 1.03 1.32 RM

]

�̂ =

⎡
⎢⎣

−0.227545 0.083832 0.023952 0.023952 0.095808
0.011161 −0.071429 0.035714 0.001116 0.023438
0.010604 0.067869 −0.123012 0.012725 0.031813
0 0.021978 0.076923 −0.131868 0.032967
0.003406 0.014986 0.011580 0.001362 −0.031335

⎤
⎥⎦

�ML =
[

0.02902 0.29355 0.15485 0.02781 0.49477
]

CTMC model with N = 6{
�n

}
=

[
0.41 0.65 0.88 1.11 1.35 RM

]

�̂ =

⎡
⎢⎢⎣

−0.263566 0.093023 0.015504 0.015504 0.031008 0.108527
0.015102 −0.133765 0.084142 0.006472 0.002157 0.025890
0.005735 0.061649 −0.131900 0.035842 0 0.028674
0.007828 0.003914 0.101761 −0.164384 0.027397 0.023483
0  0 0.067227 0.100840 −0.201681 0.033613
0.002723 0.008850 0.013615 0.005446 0.000681 −0.031314

⎤
⎥⎥⎦

[
.4934

]
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�ML = 0.02143 0.1547 0.22708 0.08513 0.01818 0

he vector pX̂ , and the stationary distributions �ML relative to the

L-estimated matrix �̂ for both examples are shown: Part (a) cor-
esponds to the first example of the patient suffering from apneas
nd Part (b) is related to the second example of the regularly breath-
ng newborn. In order to quantitatively compare the similarity of
he two PMFs, the Kullback–Leibler (KL) divergence [24] may  be
sed:

KL (p‖q) =
∑

n

pnlog2
pn

qn
(21)

n which pn and qn denote the probability masses of the distri-
utions p and q, respectively. This quantity is a measure of the
ifference between the “true” distribution p and the “assumed”
istribution q; it is expressed in bits, due to the use of log2. In
oth examples shown in Fig. 7, the KL divergence DKL

(
pX̂‖�ML

)
s computed: values of 0.011 · 10−3 bits and of 6.642 · 10−3 bits are
btained for the cases (a) and (b), respectively. The stationary dis-
ributions are very similar to the histogram-based ones, with very
ow KL divergence values in both examples, confirming that the
TMC model has a steady state behavior similar to that of the RR
attern of the real patients.

To further verify the effectiveness of the statistical model, the
ffects of varying the number of states of the CTMC is now dis-
ussed. For this validation example, a new patient is considered:
he total length of the recorded pneumogram signal is 51 min. In
able 2(a)–(c) the extracted RR sets

{
�n

}
, corresponding estimated

nfinitesimal generator matrices and stationary distributions �ML
ith N = 4, 5 and 6 are reported, respectively. Changes in the tran-

ition rates when the number of states of the model is varied can
e appreciated—the use of a larger number of levels allows a finer
epresentation of the RR values.
The simulators described in Section 3 have been used to gen-
rate videos of breathing patients with a statistically-defined RR
attern. The video-based simulator is used to process video streams
ecorded in the NICU of the University Hospital of Parma, with
8

cameras having a frame rate fr = 25 frame/s. Videos of the hardware-
based simulator (i.e., the “breathing” manikin) are instead recorded
with cameras operating at fr = 15 frame/s. Both simulators are
employed with the state set S with RRs set

{
�n

}
and the matrix �̂

extracted as described in the previous section.
These simulators have been used to test and evaluate the per-

formance of video processing-based systems to monitor the RR
and detect apnea events. The obtained video sequences have been
analyzed using algorithms developed in previous works. In partic-
ular, the algorithm described in [10] uses a Motion Magnification
technique to enhance small breathing movements for Apnea Detec-
tion and is here referred to as MMAD. The algorithm described in
[11], here referred to as Spatio-Temporal video-processing for RR
Estimation (STRE), includes a spatio-temporal video processing sys-
tem to reinforce RR estimation and apnea detection. Both MMAD
and STRE algorithms can extract signals representative of breath-
ing motion from a video stream—they are then used to detect
apnea events [10] or to estimate the RR [11]. These algorithms ana-
lyze extracted breathing signals on temporal windows of 10 s with
window interlacing equal to 90%. A detailed description of these
algorithms is out of the scope of this paper: the interested reader
is referred to [10] and [11].

4.2. Analysis of RR estimators by simulated breathing

Video processing-based RR estimators can be tested comparing
estimated rates with the ones simulated by the statistical model.
The performance of the STRE algorithm in RR estimation is here
assessed considering two  performance metrics: (i) the Root Mean
Square Error (RMSE) between the simulated rate and that estimated
by the video processing-based algorithm and (ii) the probability of
correct estimation of RR, defined, according to medical practice,

by the condition that the RR falls inside a tolerance range of ±15%
with respect to the correct true value. First, a video with a total
length of 17 min  and 54 s, generated by the software-based simu-
lator, is analyzed. The simulated video is obtained by processing
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In Fig. 9, the performance results, in terms of Receiver Oper-
ating Characteristic (ROC) curves [27], are presented. The curves
52 D. Alinovi et al. / Biomedical Signal P

 video sample of a sleeping newborn breathing regularly with
n approximate rate �V = 0.69 Hz. The RR is correctly estimated
n 940 out of 1074 temporal windows (i.e., with a probability of
orrect estimation equal to 0.875), with a RMSE equal to 0.063 Hz.
y normalizing the RMSE with respect to the average value of the
imulated RR, one finds an average relative error of 10.2%. Then,

 video sample of the hardware-based simulator is analyzed: the
ecording has a total length of 8 min  and 48 s, during which the
anikin simulates a breathing newborn. In this case, the RR is cor-

ectly estimated in 460 out of 528 temporal windows (i.e., with
 probability of correct estimation equal to 0.871), with a RMSE
qual to 0.083 Hz, which, normalized with respect to the average
alue of simulated RR, corresponds to an average relative error
f 9.7%.

.3. Simulation of apnea episodes

Clinically, an apnea event is defined as an episode of absence
f breathing lasting at least 20 s or between 10 s and 20 s, if it is
ssociated with other clinical signs or symptoms [1]. In the fol-
owing, adopting a conservative approach, these two  conditions
re not distinguished and any episode of absence of breathing
f at least 10 s is considered as apnea. The absence of breath-
ng for less than 10 s is considered as a respiratory pause and is
ot clinically relevant. The statistical model described in Section 2
an be used to simulate apnea episodes and respiratory pauses,
n both software- and hardware-based simulators, provided that
he state S0 is associated with the rate �0 = 0. A simple statistical

odel is a two-state CTMC (N = 2), where states {S0, S1} describe
he presence of an apnea/respiratory pause and regular breathing,
espectively. Corresponding sojourn times

{
��

}
denote the dura-

ions of respiratory pauses and normal breathing, conditionally on
he corresponding state. The software-based simulator operates on

 video of a regularly breathing patient to produce a new video with
rtificially introduced respiratory pauses. The estimation method
f the 2 × 2 infinitesimal generator matrix and the video-based
imulator described in Section 3.1 are used with only two states:
¯ n = 1 if regular breathing occurs and �̄n = 0 in the presence of
pneas/respiratory pauses.

In Fig. 8, a direct comparison between motion signals extracted
rom the three possible videos using the STRE algorithm are
epicted. In Part (a), the breathing signal extracted from a newborn
ithout respiratory pauses is shown, where a RR approximately

qual to 1.17 Hz can be recognized. In Part (b), the breathing sig-
al, obtained by inserting a simulated respiratory pause into the
ideo stream related to Part (a), is shown. In this example, the sim-
lated pause begins at time instant 7.3 s and lasts approximately
.2 s. For comparison purposes and to demonstrate the effective-

ess of the software-based simulator, in Part (c) the breathing signal
xtracted from the video of a child suffering from CCHS, contain-
ng a real respiratory pause lasting approximately 6.26 s, is shown.

ig. 8. Examples of breathing signals of a newborn: (a) normal breathing pattern,
b)  a software-simulated respiratory pause and (c) a real respiratory pause in the
ame patient, lasting approximately as the simulated one.
ing and Control 33 (2017) 245–254

The similarity of the breathing signal in Fig. 8(c) with the sig-
nal embedding the simulated respiratory pause in Fig. 8(b) can be
appreciated.

4.4. Analysis of apnea detectors by simulated breathing

Finally, the two simulators have been used to generate videos of
newborns suffering from apnea events to test the previously pro-
posed algorithms [10,11]. The software-based simulator has been
used to generate a video lasting approximately 1 h. The obtained
video includes 74 simulated respiratory pauses, with 13 events,
lasting at least 10 s each, which can be interpreted as apneas. The
total duration of simulated apnea events is 166 s, with an average
duration of 14.55 s and a maximum duration of 35 s. The hardware-
based simulator is used to record a video lasting approximately
46 min. The simulation includes 33 simulated respiratory pauses,
with 12 events lasting at least 10 s each. The total duration of simu-
lated apnea events is 220 s, with an average duration of 17.08 s and
a maximum duration of 33 s.

The obtained videos are processed by the algorithms MMAD
[10] and STRE [11], which implement automatic apnea detection
systems, introduced at the end of Section 4.1. As described at the
beginning of Section 4.3, the two  algorithms focus only on events
lasting at least 10 s. The performance of these detection systems
is investigated considering a binary test, which classifies results as
“presence of apnea” (positive event) or “normal breathing” (neg-
ative event). The performance results are presented in terms of
sensitivity and specificity [25], defined, respectively, as

 ̨ � TTP

TTP + TFN
(22)

 ̌ � TTN

TTN + TFP
(23)

where TTP, TTN, TFP, and TFN denote, respectively, the total length of
the time intervals with apnea correctly detected (True Positives),
regular breathing correctly detected (True Negatives), regular
breathing incorrectly reported as apnea (False Positives) and apnea
incorrectly reported as normal breathing (False Negatives). Sensi-
tivity and specificity can be interpreted, respectively, as the fraction
of apnea time which is correctly classified and the fraction of regu-
lar breathing time which is correctly identified. As a global measure
of test performance, the Diagnostic Odds Ratio (DOR) [26] can also
be employed, defined as

� � TTP/TFN

TFP/TTN
= ˛

1 − ˛
· ˇ

1 − ˇ
. (24)
are obtained testing the algorithms for various values of the deci-
sion thresholds for presence/absence of periodicity related to the

Fig. 9. ROC curves for algorithms MMAD  and STRE: (a) video-based simulator and
(b)  hardware-based simulator.
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Table  3
Detection performance on software-based simulator.

Algorithm  ̨ [%]  ̌ [%] �

MMAD  88.8% 82.9% 38.4
STRE 91.0% 86.9% 67.1

Table 4
Detection performance on hardware-based simulator.

Algorithm  ̨ [%]  ̌ [%] �
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395–410, http://dx.doi.org/10.1111/j.1467-9868.2005.00508.x.
MMAD  95.1% 78.7% 71.7
STRE 92.3% 89.6% 103.3

reathing signal [10,11]. Specifically, in Fig. 9(a) and (b) the ROC
urves for MMAD  and STRE algorithms tested on videos gener-
ted by software-based and hardware-based simulators are shown,
espectively. As concise performance indicator, in Fig. 9 the values
f the Area Under Curve (AUC) parameter [27] associated with the
onsidered algorithms and simulators are also shown—the higher
he AUC, the better the performance.

Optimum values of decision thresholds can be defined consid-
ring the point of the ROC curve with minimum Euclidean distance
o the point (0, 1) which describes the ideal detector. Considering
ptimum threshold values for both algorithms, sensitivity, speci-
city and DOR for the video streams obtained above are shown in
ables 3 and 4 for the software- and hardware-based simulators,
espectively. These results show that the sensitivity is high for both
lgorithms—MMAD and STRE can effectively identify patients suf-
ering from apneas. However, the specificity is higher with STRE
han with MMAD—STRE can identify patients breathing normally

ore efficiently than MMAD. The global measure DOR has clearly
igher values for STRE, indicating the better overall performance
f this algorithm with respect to MMAD.

An in-depth comparison between MMAD  and STRE is beyond
he scope of this paper. Nonetheless, the presented results highlight
he importance of the proposed breathing CTMC statistical model
nd simulators for performance analysis and optimized design of
ideo-based monitoring systems.

. Conclusion

In this paper, a CTMC statistical model describing the breath-
ng behavior of a patient, healthy or suffering from breathing
isorders, is presented. The values of the model parameters are
stimated from the analysis of vital signs of hospital-monitored
atients, in order to realistically describe RR patterns. The proposed
TMC model is used to implement two simulators, software- and
ardware-based, useful to develop and test video processing-based
lgorithms to monitor the RR and detect possible apnea events.

The statistical model is validated and the simulators are tested
ith previously developed systems for RR estimation and apnea

vent detection. The results show that the presented model pro-
ides a reliable and realistic method to simulate breathing patterns
nd respiratory pauses/apneas. This statistical model can be strate-
ic to create extended video databases, useful to design and test
ideo processing-based algorithms for automatic breath monitor-
ng.

tandard protocol approvals, registrations, and patient
onsents
In accordance with current practice at our Institution, an
nformed consent form was signed by a parent of each new-
orn patient, and the aforementioned document was  stored in the

[

[

ing and Control 33 (2017) 245–254 253

patients’ hospital chart. Analysis and use of biomedical signals and
video recordings was approved by the Ethical Local Committee.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.bspc.2016.12.
002.
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