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The global reach and extreme heterogeneity of the 

Internet of Things present major application development 

challenges. Using the same Web-based approach underlying 

the Internet’s evolution into the IoT, the Web of Things 

Testbed provides a stable, open, dynamic, and secure 

infrastructure to simplify application design and testing.

Due to recent development and innovation 
in both hardware and software, the global 
network of networks, or Internet of Things 
(IoT), is finally becoming a reality. The IoT’s 

diverse billions of communicating devices, or smart 
objects (SOs), enable a new paradigm of interactivity 
among all manner of things and people. One of the IoT’s 
biggest hurdles is the monolithic nature and fragmen-
tation of existing vertical closed systems, architectures, 
and application areas. To overcome this, researchers are 
defining and standardizing interoperability in commu-
nication protocols and device mechanisms to allow for 
more efficient interaction among all IoT components, 

and Internet Protocol version 6 (IPv6) is emerging as the 
base network protocol for all IoT applications.1

To foster IoT development and diffusion, applica-
tions are increasingly built around the well-known 
Web model, bringing about the so-called Web of 
Things (WoT). The Web-based approach helped to 
greatly expand the Internet, and will likely have the 
same effect on the IoT.2 WoT applications rely on spe-
cific Web-oriented application- layer protocols similar 
to HTTP, such as the Constrained Application Proto-
col (CoAP),3 and, more generally, protocols complying 
with the Representational State Transfer (REST) archi-
tectural style.

Design and Deployment
of an IoT Application-
Oriented Testbed
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Whereas simulation tools typi-
cally focus on evaluating lower-layer 
communication protocols, in recent 
years several IoT testbeds have been 
deployed to evaluate IoT solutions in 
realistic smart environments under 
real-world conditions. The IoT-Lab4 

is an example of this kind of testbed 
environment: it provides a very large-
scale infrastructure with more than 
2,700 wireless sensor nodes spread 
across six different sites in France, 
and is used to test protocols at the link 
and network layers and to collect per-
formance results such as energy con-
sumption or packet delivery ratio. 
Although these lower-layer proto-
cols have been widely investigated, 
additional efforts are needed to cre-
ate new innovative services, promote 
long-term evolution of systems, and 
ensure the robustness of applications 
against changes that might occur 
over time—thereby furthering WoT 
development. To easily build applica-
tions for this environment, developers 
need the ability to work at a high level 
of abstraction and without worrying 
about low-level details.

Another relevant large-scale IoT 
testbed is SmartSantander, consist-
ing of approximately 20,000 nodes 
deployed in different cities across 
Europe.5 With its orientation toward 
smart-city services and applica-
tions, however, this testbed focuses 
on environmental data collection 
and is thus not set up to allow exper-
imentation on a fully addressable and 
resource-oriented WoT. In particular, 
SmartSantander does not consider 
direct and bi-directional interactions 
between humans and objects.

WEB OF THINGS TESTBED
The Web of Things Testbed (WoTT) 
is a heterogeneous and innovative 

WoT-based testbed that enables devel-
opers to easily design and evaluate 
new services and applications in a real 
IoT environment and to effectively 
test human–object interaction mech-
anisms, which will play a fundamen-
tal role in broadening IoT use. WoTT 
is particularly suited for this purpose 
because its architecture is completely 
based on standard protocols and net-
work interfaces, without custom or 
proprietary solutions that would jeop-
ardize interoperability among nodes. 

WoTT’s main goals are to 

 › hide low-level implementation 
details, 

 › enhance network self- 
configuration by minimizing 
human intervention, 

 › transparently and simultane-
ously manage multiple protocols 
and platforms, and 

 › provide a platform for the design 
and testing of human–object 
interaction patterns.

To effectively test new WoT-related 
applications, WoTT consists of several 
types of nodes that differ in terms of 
both computational capabilities and 
radio-access interfaces. Nonetheless, 
these nodes can be grouped into two 
main classes: constrained IoT (CIoT) 
nodes and single-board computer (SBC) 
nodes. CIoT nodes are mainly based 
on the open source Contiki OS and 
correspond to Class 1 devices—those 
that cannot easily talk to other Inter-
net nodes that have a full protocol 
stack, but that can use a protocol stack 
designed for constrained nodes—as 
defined in the Internet Engineering 
Task Force (IETF) memo “Terminol-
ogy for Constrained Node Networks.”6 

SBC nodes are more powerful, typi-
cally running a Linux OS and having 

multiple network interfaces; these cor-
respond to Class 2 devices—those that 
use the same protocols as notebooks or 
servers.6 Regardless of what the actual 
nodes are, the standard communica-
tion protocols and mechanisms used 
in WoTT enable the testbed to manage 
node diversity seamlessly, making it 
possible to treat each node simply as 
an IP-addressable host. Table 1 shows 
the CIoT and SBC nodes in detail.

AN IP-BASED 
INFRASTRUCTURE FOR 
SMART OBJECTS
CIoT nodes are connected at the physi-
cal layer by IEEE 802.15.4 wireless links, 
whereas IPv6 is used at the network 
layer in combination with 6LoWPAN 
(IPv6 over Low-Power Wireless Per-
sonal Area Network)7 and RPL (the rout-
ing protocol for low-power and lossy 
networks, or LLNs). Sensor-equipped 
CIoT nodes can act as CoAP servers or 
clients running Erbium, a lightweight 
CoAP implementation.

As with CIoT nodes, SBC nodes can 
act as CoAP clients or servers, with 
fewer implementation constraints. 
For example, on Arduino Yún nodes, 
a JavaScript application initializes a 
CoAP server through an instance of 
Node.js. Other SBC nodes, such as the 
Intel Galileo boards and Raspberry 
Pi, can support different types of lan-
guages ranging from Python to Java. 

As Figure 1 shows, WoTT is hetero-
geneous by design to enable seam-
less communication among SOs and 
between the WoTT and external Inter-
net elements such as the cloud, ISPs, 
and consumers. IP protocol adoption—
in particular, IPv6 or IPv6+6LoW-
PAN—is universally considered a key 
communication enabler for the future 
IoT. Thus, WoTT adopts IP as a common 
network substrate, thereby allowing 
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TABLE 1. Constrained Internet of Things (CIoT) and single-board 

computer (SBC) nodes in the Web of Things Testbed.

CIoT nodes

No. Node Hardware OS Network interface

6 TelosB

MCU: TI MSP430F1611

Contiki IEEE 802.15.4RAM: 10 Kbytes

ROM: 48 Kbytes

20 Zolertia Z1

MCU: TI MSP430F2617

Contiki IEEE 802.15.4RAM: 8 Kbytes

ROM: 92 Kbytes

10 OpenMote

MCU: ARM Cortex-M3 

Contiki IEEE 802.15.4RAM: 32 Kbytes

ROM: 512 Kbytes

SBC nodes

No. Node Hardware OS Network interface(s)

20 Intel Galileo

CPU: SoC X Intel Quark X1000

[Linux] Debian IEEE 802.3RAM: 256 Mbytes

Memory (SD): 8 Gbytes

5 Raspberry Pi B

CPU: Broadcom BCM2835 ARM11

[Linux] Raspbian IEEE 802.3/802.11RAM: 512 Mbytes

Memory (SD): 8 Gbytes

5 Arduino Yún

Linux environment

[Linux] OpenWRT

IEEE 802.3/802.11

CPU: Atheros AR9331

RAM: 64 Mbytes

ROM: 16 Mbytes

Arduino environment

Arduino
MCU: ATmega32u4

RAM: 2.5 Kbytes

ROM: 32 Kbytes

4 UDOO 

Linux environment

[Linux] UDOObuntu

IEEE 802.3/802.11

CPU: Freescale i.MX 6 ARM Cortex-A9

RAM: 1 Gbyte

Memory (SD): 8 Gbytes

Arduino-like environment

Arduino
MCU: Atmel SAM3X8E ARM Cortex-M3

RAM: 100 Kbytes

ROM: 512 Kbytes

MCU: memory control unit
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simple integration into the existing 
Internet. Note that all WoTT nodes use 
standard protocols at all layers of the 
protocol stack; this includes several 
physical (PHY) and media access con-
trol (MAC) standards—for example, 
IEEE 802.11, IEEE 802.15.4, and IEEE 
802.3—as well as application-layer 
protocols. The architecture also con-
tains an innovative network element, 
the IoT Hub,8,9 which operates at differ-
ent layers of the protocol stack to fur-
ther enhance interoperability among 
communicating devices by integrating 
several networks into a single IP-based 
substrate and implementing import-
ant functions at the application layer. 
Due to greater capabilities in compu-
tational power and networking, SBC 
nodes can effectively implement all IoT 
Hub functions.

WoTT’s Wi-Fi networking infra-
structure is based on Cisco Connected 
Mobile Experiences (CMX) access 
points and can be used to track devices 
for indoor localization purposes. In 
particular, the CMX platform pro-
vides Mobility Services Engine REST-
ful APIs, which allow developers to 
integrate service customization with 
location information into mobile 
applications, such as location-aware 
equipment tracking, guest access, and 
device-based services. This feature is 

currently used to build user location–
aware IoT applications that can con-
tinuously monitor users, enabling spe-
cific and augmented interaction with 
the surrounding environment.

Focusing on the application layer, 
WoTT currently supports CoAP, the 
Message Queuing Telemetry Transfer 
protocol (MQTT), and HTTP. CoAP is 
a binary and lightweight Web trans-
fer protocol built on top of the User 
Datagram Protocol (UDP) and follows 
a request/response paradigm.3 It has 
been explicitly designed to work with 
devices operating in LLNs. MQTT is 
also a lightweight publish/subscribe 
protocol that is suitable for con-
strained SOs running on top of TCP, 
such as sensors or actuators. Finally, 
HTTP is mainly used for communi-
cation between WoTT and external 
Internet actors or consumers, such as 
cloud storage services or IoT-unaware 
clients. Among WoTT components, the 
IoT Hub is the key IoT enabler because 
it manages the different access tech-
nologies and supports full IP connec-
tivity among all objects. The imple-
mentation of several functionalities 
at the application layer enables all the 
protocols listed in Figure 1 to coexist in 
the same environment.

SO software has been developed 
with different programming languages, 

reinforcing the idea that—because of 
various features provided at the appli-
cation layer, together with strict com-
pliance to IoT standards—developers 
can create new IoT applications easily 
and without additional constraints.

IoT HUB�ENABLED SMART 
OBJECT INTERACTIONS 
WoTT does not simply enable commu-
nications between IoT actors; it consti-
tutes a “uniform” super-entity able to 
provide enhanced functionalities that 
go beyond the mere union of its com-
ponents’ features. 

To achieve this super-entity status, 
WoTT uses the various communication 
technologies in the IoT Hub to bridge 
and merge together several networks 
into a single IP network. The IoT Hub 
also implements several functions at 
the application layer: it manages the 
services and resources available in the 
overall infrastructure, thereby play-
ing a key role at the application layer. 

IoT Hub use is expedient for several 
reasons. The extreme heterogeneity 
of IoT devices requires mechanisms to 
support the management of and seam-
less interactions among SOs as well 
as humans. Moreover, because SOs’ 
limited data-collection capabilities 
could preclude them from handling 
large numbers of concurrent requests, 

Internet

Application layer

Link layer

IoT
Hub

Service discoveryProtocol translation

Smart objects delegate Resource directory

MQTT

IEEE 802.11

IPv4 and IPv6 + 6LoWPAN

TCP

HTTP CoAP

UDP

IEEE 802.15.4IEEE 802.3

FIGURE �. Web of Things Testbed (WoTT) architecture and protocol stack. The central component is the Internet of Things (IoT) Hub, 
which interacts with the various layers and manages the testbed’s heterogeneous network. �LoWPAN: IPv� over Low-Power Wireless 
Personal Area Network; CoAP: Constrained Application Protocol; MQTT: Message Queuing Telemetry Transport protocol; UDP: User 
Datagram Protocol.
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and mechanisms are  useful—they can 
be taken as a reference and applied to 
enhance the protection and reliability 
of IoT environments.

The WoTT can manage and authen-
ticate external request issuers, while si-
multaneously defining processing pol-
icies and rules. To comply with these 
specifications, the testbed allows ex-
ternal connections through virtual pri-
vate network (VPN) and Secure Socket 
Shell (SSH) tunnels using credentials 
issued by WoTT administrators. 

Several security mechanisms for SO 
interaction are implemented within 
the testbed. Transport Layer Security 
(TLS; in conjunction with HTTP) and 
Datagram TLS (DTLS; in conjunction 
with CoAP) are implemented on a set 
of devices hosting resources that need 
to be accessed through secured appli-
cation protocols. The IoT Hub imple-
ments both protocols to provide secure 
resource access through proxying. Of 
course, end-to-end security through 
proxying cannot be ensured as no TLS-
to-DTLS mapping is defined. 

Although DTLS and TLS are imple-
mented to enforce confidentiality 

and authenticity of communication 
between endpoints, real-world IoT sys-
tems must be able to manage several 
users accessing resources deployed 
in a smart environment. This is when 
authorization comes into play: mecha-
nisms must be defined to ensure that 
only authorized entities can interact 
with objects. For example, building 
offices in an IoT environment should 
be secure and only able to be unlocked 
by individuals who have been granted 
access. Although authorization is 
obviously a critical issue, research has 
yet to focus on defining mechanisms 
to manage IoT access policies and grant 
authorizations. WoTT implements IoT-
OAS,14 an authorization architecture 
based on the OAuth protocol, but this 
architecture implements a lightweight 
delegation approach to authorization.

BUILDING WoT 
APPLICATIONS 
To validate WoTT’s benefits and demon-
strate the ease of integrating a newly 
deployed application within the testbed, 
we developed an application for wear-
able and mobile-oriented applications. 

Thanks to their portability, wear-
able and mobile devices are obvious 
solutions for tracking people’s activ-
ities. To accomplish this, we imple-
mented indoor localization features 
into WoTT using CMX access points 
to triangulate the locations of peo-
ple and objects. The availability of 
localization APIs in the CMX system 
enables us to create applications that 
can follow users throughout an IoT 
environment and possibly even antic-
ipate their movements. Together with 
access- point-based localization, the 
use of on-board inertial measurement 
units can further improve the track-
ing experience.

Mobile devices play an important 
role in WoTT’s architecture. Aside from 
interacting with SOs, they can also act 
as SOs, providing data generated by 
their onboard sensors. Mobile devices 
can thus be considered as WoTT nodes, 
making WoTT highly dynamic.

As a uniform, application-ori-
ented platform, WoTT can be used by 
developers to easily create and test 
real-world IoT applications in a short 
period of time, thus making it more 

FIGURE 2. A WoTT-based application for mobile and wearable devices. Resources and interactions are revealed gradually, according to 
the Representational State Transfer (REST) paradigm, so that the application can adapt itself dynamically.
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attractive than other currently avail-
able platforms. This is due to ready-to-
use capabilities and the direct/active 
interactions that a deployed applica-
tion can have with the resources avail-
able in WoTT. From an operational 
point of view, developers simply run 
their applications on testbed resources 
without needing to add virtualized 

environments or services; thus the 
application becomes part of a WoT sce-
nario in which consumers are not only 
“readers” but active participants.

Based on the WoTT’s capabilities, 
we developed the application shown 
in Figure 2. We tested this applica-
tion on the Android Wear platform 
using LG G Watches and Android 5.0.1 
smartphones.15 In the near future, as 
more SOs are deployed, vendor-pro-
vided apps are less likely to be the 
usual means by which we interact with 
things, and a more standard approach 
will be required to do so effectively.

The application performs the fol-
lowing steps. First, the mobile device 
discovers nearby SOs proactively and 
reactively, by means of standard ser-
vice discovery and resource directory 
mechanisms. Then, it forwards the 
collected information to its connected 
wearable device interface. Through 
wearable interfaces, a user can see and 
browse a list of all the resources that 
have been discovered and select one to 
interact with. Interactions are thereby 

performed according to the function 
set specified by the selected SO—for 
example, a light bulb might provide 
an on/off switch, or a temperature 
sensor might provide a way to read its 
value. Resources and interactions are 
revealed gradually, according to the 
REST paradigm, so that the application 
can adapt itself dynamically. 

WoTT resources can be deployed 
on different platforms, such as differ-
ent SOs, and by using heterogeneous 
protocols. However, this is completely 
transparent to a developer who is able 
to access all these resources; the only 
constraint is to use standard protocols. 
This is possible through the IoT Hub’s 
abstraction ability—it is not provided 
by other existing testbeds, such as 
SmartSantander.

The SOs’ own sensors and actu-
ators, users’ devices, and other SOs 
can each act as clients and interact 
with one another through the follow-
ing approaches:

 › Polling allows clients to retrieve 
the value associated with the 
queried resource by performing 
a CoAP GET request. 

 › Observing can be used by clients 
to receive asynchronous updates 
when the value of the specified 
resource changes, which is a more 
efficient mechanism because it 
avoids periodic data polling.

 › Acting is used by clients to set up 
the value of a specified resource, 
such as activating an actuator, 
depending on the function set 
provided by the resource.

The observing approach, which has 
not been defined in HTTP, is a light-
weight CoAP-oriented interaction 
mechanism.16 SO resource observa-
tion is achieved by performing a par-
ticular CoAP GET request, which con-
tains an “Observe” option. This option 
instructs the target SO to add a new 
subscriber that will receive subse-
quent resource updates in push mode. 
Subscribers can also stop observing a 
resource at any time and unsubscribe 
from updates.

The use of standard communi-
cation protocols and network 
interfaces, well-known Web-

based design approaches, and widely 
varied hardware platforms are chang-
ing the IoT and presenting new oppor-
tunities to developers, businesses, and 
users. In this dynamic and evolving 
scenario, the availability of real and 
accessible resource-oriented testbeds 
that allow active and direct interac-
tion among users and devices with 
low-level nodes and services are a 
key enabler for widespread future IoT 
adoption—and, indeed, are driving 
the transition from the IoT to the WoT. 

WoTT exemplifies a novel archi-
tectural and networking approach to 
important IoT challenges. Designing 
and implementing the testbed has 
confirmed the need for open evalu-
ation platforms to explore and inte-
grate innovative IoT applications and 
to bridge the gap between users and 
things. WoTT’s hardware/software 
heterogeneity confirms that proper 

OPEN EVALUATION PLATFORMS  
ARE NECESSARY TO EXPLORE  

AND INTEGRATE INNOVATIVE IoT 
APPLICATIONS AND TO BRIDGE THE GAP 

BETWEEN USERS AND THINGS.
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use of standard protocols such as 
HTTP, CoAP, and MQTT and of inter-
action paradigms such as REST and 
service/resource discovery are funda-
mental to enabling transparent and 
dynamic interactions among multiple 
SOs and personal mobile and wearable 
devices. Moreover, this heterogeneity 
can be extended by improving the IoT 
Hub features—for example, by add-
ing support to Bluetooth devices. This 
would open WoTT to an emerging cat-
egory of IoT-enabled devices, namely 
those using Bluetooth low energy 
(BLE), and BLE service discovery mech-
anisms such as UriBeacon.

Nevertheless, important issues 
must be addressed to make the IoT 
part of daily life. Improved security, 
greater device and network interop-
erability, faster data processing, and 
easier development and deployment 
will be core focus areas for academic 
and industrial R&D during the next 
few years. Testbeds like WoTT are the 
perfect experimental playgrounds 
to boost and support IoT application 
development by creating a common 
space that designers, hardware man-
ufacturers, and companies can exploit 
to make the IoT accessible and easy to 
use for everyone, just as the Internet is 
right now. 
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