
32 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Laura Belli, Simone Cirani, Luca Davoli, Andrea Gorrieri, Mirko Mancin, Marco Picone,
and Gianluigi Ferrari, University of Parma

The global reach and extreme heterogeneity of the

Internet of Things present major application development

challenges. Using the same Web-based approach underlying

the Internet’s evolution into the IoT, the Web of Things

Testbed provides a stable, open, dynamic, and secure

infrastructure to simplify application design and testing.

Due to recent development and innovation
in both hardware and software, the global
network of networks, or Internet of Things
(IoT), is finally becoming a reality. The IoT’s

diverse billions of communicating devices, or smart
objects (SOs), enable a new paradigm of interactivity
among all manner of things and people. One of the IoT’s
biggest hurdles is the monolithic nature and fragmen-
tation of existing vertical closed systems, architectures,
and application areas. To overcome this, researchers are
defining and standardizing interoperability in commu-
nication protocols and device mechanisms to allow for
more efficient interaction among all IoT components,

and Internet Protocol version 6 (IPv6) is emerging as the
base network protocol for all IoT applications.1

To foster IoT development and diffusion, applica-
tions are increasingly built around the well-known
Web model, bringing about the so-called Web of
Things (WoT). The Web-based approach helped to
greatly expand the Internet, and will likely have the
same effect on the IoT.2 WoT applications rely on spe-
cific Web-oriented application- layer protocols similar
to HTTP, such as the Constrained Application Proto-
col (CoAP),3 and, more generally, protocols complying
with the Representational State Transfer (REST) archi-
tectural style.

Design and Deployment
of an IoT Application-
Oriented Testbed

 S E P T E M B E R 2 0 1 5 33

Whereas simulation tools typi-
cally focus on evaluating lower-layer
communication protocols, in recent
years several IoT testbeds have been
deployed to evaluate IoT solutions in
realistic smart environments under
real-world conditions. The IoT-Lab4

is an example of this kind of testbed
environment: it provides a very large-
scale infrastructure with more than
2,700 wireless sensor nodes spread
across six different sites in France,
and is used to test protocols at the link
and network layers and to collect per-
formance results such as energy con-
sumption or packet delivery ratio.
Although these lower-layer proto-
cols have been widely investigated,
additional efforts are needed to cre-
ate new innovative services, promote
long-term evolution of systems, and
ensure the robustness of applications
against changes that might occur
over time—thereby furthering WoT
development. To easily build applica-
tions for this environment, developers
need the ability to work at a high level
of abstraction and without worrying
about low-level details.

Another relevant large-scale IoT
testbed is SmartSantander, consist-
ing of approximately 20,000 nodes
deployed in different cities across
Europe.5 With its orientation toward
smart-city services and applica-
tions, however, this testbed focuses
on environmental data collection
and is thus not set up to allow exper-
imentation on a fully addressable and
resource-oriented WoT. In particular,
SmartSantander does not consider
direct and bi-directional interactions
between humans and objects.

WEB OF THINGS TESTBED
The Web of Things Testbed (WoTT)
is a heterogeneous and innovative

WoT-based testbed that enables devel-
opers to easily design and evaluate
new services and applications in a real
IoT environment and to effectively
test human–object interaction mech-
anisms, which will play a fundamen-
tal role in broadening IoT use. WoTT
is particularly suited for this purpose
because its architecture is completely
based on standard protocols and net-
work interfaces, without custom or
proprietary solutions that would jeop-
ardize interoperability among nodes.

WoTT’s main goals are to

 › hide low-level implementation
details,

 › enhance network self-
configuration by minimizing
human intervention,

 › transparently and simultane-
ously manage multiple protocols
and platforms, and

 › provide a platform for the design
and testing of human–object
interaction patterns.

To effectively test new WoT-related
applications, WoTT consists of several
types of nodes that differ in terms of
both computational capabilities and
radio-access interfaces. Nonetheless,
these nodes can be grouped into two
main classes: constrained IoT (CIoT)
nodes and single-board computer (SBC)
nodes. CIoT nodes are mainly based
on the open source Contiki OS and
correspond to Class 1 devices—those
that cannot easily talk to other Inter-
net nodes that have a full protocol
stack, but that can use a protocol stack
designed for constrained nodes—as
defined in the Internet Engineering
Task Force (IETF) memo “Terminol-
ogy for Constrained Node Networks.”6

SBC nodes are more powerful, typi-
cally running a Linux OS and having

multiple network interfaces; these cor-
respond to Class 2 devices—those that
use the same protocols as notebooks or
servers.6 Regardless of what the actual
nodes are, the standard communica-
tion protocols and mechanisms used
in WoTT enable the testbed to manage
node diversity seamlessly, making it
possible to treat each node simply as
an IP-addressable host. Table 1 shows
the CIoT and SBC nodes in detail.

AN IP-BASED
INFRASTRUCTURE FOR
SMART OBJECTS
CIoT nodes are connected at the physi-
cal layer by IEEE 802.15.4 wireless links,
whereas IPv6 is used at the network
layer in combination with 6LoWPAN
(IPv6 over Low-Power Wireless Per-
sonal Area Network)7 and RPL (the rout-
ing protocol for low-power and lossy
networks, or LLNs). Sensor-equipped
CIoT nodes can act as CoAP servers or
clients running Erbium, a lightweight
CoAP implementation.

As with CIoT nodes, SBC nodes can
act as CoAP clients or servers, with
fewer implementation constraints.
For example, on Arduino Yún nodes,
a JavaScript application initializes a
CoAP server through an instance of
Node.js. Other SBC nodes, such as the
Intel Galileo boards and Raspberry
Pi, can support different types of lan-
guages ranging from Python to Java.

As Figure 1 shows, WoTT is hetero-
geneous by design to enable seam-
less communication among SOs and
between the WoTT and external Inter-
net elements such as the cloud, ISPs,
and consumers. IP protocol adoption—
in particular, IPv6 or IPv6+6LoW-
PAN—is universally considered a key
communication enabler for the future
IoT. Thus, WoTT adopts IP as a common
network substrate, thereby allowing

34 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS
TABLE 1. Constrained Internet of Things (CIoT) and single-board

computer (SBC) nodes in the Web of Things Testbed.

CIoT nodes

No. Node Hardware OS Network interface

6 TelosB

MCU: TI MSP430F1611

Contiki IEEE 802.15.4RAM: 10 Kbytes

ROM: 48 Kbytes

20 Zolertia Z1

MCU: TI MSP430F2617

Contiki IEEE 802.15.4RAM: 8 Kbytes

ROM: 92 Kbytes

10 OpenMote

MCU: ARM Cortex-M3

Contiki IEEE 802.15.4RAM: 32 Kbytes

ROM: 512 Kbytes

SBC nodes

No. Node Hardware OS Network interface(s)

20 Intel Galileo

CPU: SoC X Intel Quark X1000

[Linux] Debian IEEE 802.3RAM: 256 Mbytes

Memory (SD): 8 Gbytes

5 Raspberry Pi B

CPU: Broadcom BCM2835 ARM11

[Linux] Raspbian IEEE 802.3/802.11RAM: 512 Mbytes

Memory (SD): 8 Gbytes

5 Arduino Yún

Linux environment

[Linux] OpenWRT

IEEE 802.3/802.11

CPU: Atheros AR9331

RAM: 64 Mbytes

ROM: 16 Mbytes

Arduino environment

Arduino
MCU: ATmega32u4

RAM: 2.5 Kbytes

ROM: 32 Kbytes

4 UDOO

Linux environment

[Linux] UDOObuntu

IEEE 802.3/802.11

CPU: Freescale i.MX 6 ARM Cortex-A9

RAM: 1 Gbyte

Memory (SD): 8 Gbytes

Arduino-like environment

Arduino
MCU: Atmel SAM3X8E ARM Cortex-M3

RAM: 100 Kbytes

ROM: 512 Kbytes

MCU: memory control unit

 S E P T E M B E R 2 0 1 5 35

simple integration into the existing
Internet. Note that all WoTT nodes use
standard protocols at all layers of the
protocol stack; this includes several
physical (PHY) and media access con-
trol (MAC) standards—for example,
IEEE 802.11, IEEE 802.15.4, and IEEE
802.3—as well as application-layer
protocols. The architecture also con-
tains an innovative network element,
the IoT Hub,8,9 which operates at differ-
ent layers of the protocol stack to fur-
ther enhance interoperability among
communicating devices by integrating
several networks into a single IP-based
substrate and implementing import-
ant functions at the application layer.
Due to greater capabilities in compu-
tational power and networking, SBC
nodes can effectively implement all IoT
Hub functions.

WoTT’s Wi-Fi networking infra-
structure is based on Cisco Connected
Mobile Experiences (CMX) access
points and can be used to track devices
for indoor localization purposes. In
particular, the CMX platform pro-
vides Mobility Services Engine REST-
ful APIs, which allow developers to
integrate service customization with
location information into mobile
applications, such as location-aware
equipment tracking, guest access, and
device-based services. This feature is

currently used to build user location–
aware IoT applications that can con-
tinuously monitor users, enabling spe-
cific and augmented interaction with
the surrounding environment.

Focusing on the application layer,
WoTT currently supports CoAP, the
Message Queuing Telemetry Transfer
protocol (MQTT), and HTTP. CoAP is
a binary and lightweight Web trans-
fer protocol built on top of the User
Datagram Protocol (UDP) and follows
a request/response paradigm.3 It has
been explicitly designed to work with
devices operating in LLNs. MQTT is
also a lightweight publish/subscribe
protocol that is suitable for con-
strained SOs running on top of TCP,
such as sensors or actuators. Finally,
HTTP is mainly used for communi-
cation between WoTT and external
Internet actors or consumers, such as
cloud storage services or IoT-unaware
clients. Among WoTT components, the
IoT Hub is the key IoT enabler because
it manages the different access tech-
nologies and supports full IP connec-
tivity among all objects. The imple-
mentation of several functionalities
at the application layer enables all the
protocols listed in Figure 1 to coexist in
the same environment.

SO software has been developed
with different programming languages,

reinforcing the idea that—because of
various features provided at the appli-
cation layer, together with strict com-
pliance to IoT standards—developers
can create new IoT applications easily
and without additional constraints.

IoT HUB�ENABLED SMART
OBJECT INTERACTIONS
WoTT does not simply enable commu-
nications between IoT actors; it consti-
tutes a “uniform” super-entity able to
provide enhanced functionalities that
go beyond the mere union of its com-
ponents’ features.

To achieve this super-entity status,
WoTT uses the various communication
technologies in the IoT Hub to bridge
and merge together several networks
into a single IP network. The IoT Hub
also implements several functions at
the application layer: it manages the
services and resources available in the
overall infrastructure, thereby play-
ing a key role at the application layer.

IoT Hub use is expedient for several
reasons. The extreme heterogeneity
of IoT devices requires mechanisms to
support the management of and seam-
less interactions among SOs as well
as humans. Moreover, because SOs’
limited data-collection capabilities
could preclude them from handling
large numbers of concurrent requests,

Internet

Application layer

Link layer

IoT
Hub

Service discoveryProtocol translation

Smart objects delegate Resource directory

MQTT

IEEE 802.11

IPv4 and IPv6 + 6LoWPAN

TCP

HTTP CoAP

UDP

IEEE 802.15.4IEEE 802.3

FIGURE �. Web of Things Testbed (WoTT) architecture and protocol stack. The central component is the Internet of Things (IoT) Hub,
which interacts with the various layers and manages the testbed’s heterogeneous network. �LoWPAN: IPv� over Low-Power Wireless
Personal Area Network; CoAP: Constrained Application Protocol; MQTT: Message Queuing Telemetry Transport protocol; UDP: User
Datagram Protocol.

 S E P T E M B E R 2 0 1 5 37

and mechanisms are useful—they can
be taken as a reference and applied to
enhance the protection and reliability
of IoT environments.

The WoTT can manage and authen-
ticate external request issuers, while si-
multaneously defining processing pol-
icies and rules. To comply with these
specifications, the testbed allows ex-
ternal connections through virtual pri-
vate network (VPN) and Secure Socket
Shell (SSH) tunnels using credentials
issued by WoTT administrators.

Several security mechanisms for SO
interaction are implemented within
the testbed. Transport Layer Security
(TLS; in conjunction with HTTP) and
Datagram TLS (DTLS; in conjunction
with CoAP) are implemented on a set
of devices hosting resources that need
to be accessed through secured appli-
cation protocols. The IoT Hub imple-
ments both protocols to provide secure
resource access through proxying. Of
course, end-to-end security through
proxying cannot be ensured as no TLS-
to-DTLS mapping is defined.

Although DTLS and TLS are imple-
mented to enforce confidentiality

and authenticity of communication
between endpoints, real-world IoT sys-
tems must be able to manage several
users accessing resources deployed
in a smart environment. This is when
authorization comes into play: mecha-
nisms must be defined to ensure that
only authorized entities can interact
with objects. For example, building
offices in an IoT environment should
be secure and only able to be unlocked
by individuals who have been granted
access. Although authorization is
obviously a critical issue, research has
yet to focus on defining mechanisms
to manage IoT access policies and grant
authorizations. WoTT implements IoT-
OAS,14 an authorization architecture
based on the OAuth protocol, but this
architecture implements a lightweight
delegation approach to authorization.

BUILDING WoT
APPLICATIONS
To validate WoTT’s benefits and demon-
strate the ease of integrating a newly
deployed application within the testbed,
we developed an application for wear-
able and mobile-oriented applications.

Thanks to their portability, wear-
able and mobile devices are obvious
solutions for tracking people’s activ-
ities. To accomplish this, we imple-
mented indoor localization features
into WoTT using CMX access points
to triangulate the locations of peo-
ple and objects. The availability of
localization APIs in the CMX system
enables us to create applications that
can follow users throughout an IoT
environment and possibly even antic-
ipate their movements. Together with
access- point-based localization, the
use of on-board inertial measurement
units can further improve the track-
ing experience.

Mobile devices play an important
role in WoTT’s architecture. Aside from
interacting with SOs, they can also act
as SOs, providing data generated by
their onboard sensors. Mobile devices
can thus be considered as WoTT nodes,
making WoTT highly dynamic.

As a uniform, application-ori-
ented platform, WoTT can be used by
developers to easily create and test
real-world IoT applications in a short
period of time, thus making it more

FIGURE 2. A WoTT-based application for mobile and wearable devices. Resources and interactions are revealed gradually, according to
the Representational State Transfer (REST) paradigm, so that the application can adapt itself dynamically.

38 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

attractive than other currently avail-
able platforms. This is due to ready-to-
use capabilities and the direct/active
interactions that a deployed applica-
tion can have with the resources avail-
able in WoTT. From an operational
point of view, developers simply run
their applications on testbed resources
without needing to add virtualized

environments or services; thus the
application becomes part of a WoT sce-
nario in which consumers are not only
“readers” but active participants.

Based on the WoTT’s capabilities,
we developed the application shown
in Figure 2. We tested this applica-
tion on the Android Wear platform
using LG G Watches and Android 5.0.1
smartphones.15 In the near future, as
more SOs are deployed, vendor-pro-
vided apps are less likely to be the
usual means by which we interact with
things, and a more standard approach
will be required to do so effectively.

The application performs the fol-
lowing steps. First, the mobile device
discovers nearby SOs proactively and
reactively, by means of standard ser-
vice discovery and resource directory
mechanisms. Then, it forwards the
collected information to its connected
wearable device interface. Through
wearable interfaces, a user can see and
browse a list of all the resources that
have been discovered and select one to
interact with. Interactions are thereby

performed according to the function
set specified by the selected SO—for
example, a light bulb might provide
an on/off switch, or a temperature
sensor might provide a way to read its
value. Resources and interactions are
revealed gradually, according to the
REST paradigm, so that the application
can adapt itself dynamically.

WoTT resources can be deployed
on different platforms, such as differ-
ent SOs, and by using heterogeneous
protocols. However, this is completely
transparent to a developer who is able
to access all these resources; the only
constraint is to use standard protocols.
This is possible through the IoT Hub’s
abstraction ability—it is not provided
by other existing testbeds, such as
SmartSantander.

The SOs’ own sensors and actu-
ators, users’ devices, and other SOs
can each act as clients and interact
with one another through the follow-
ing approaches:

 › Polling allows clients to retrieve
the value associated with the
queried resource by performing
a CoAP GET request.

 › Observing can be used by clients
to receive asynchronous updates
when the value of the specified
resource changes, which is a more
efficient mechanism because it
avoids periodic data polling.

 › Acting is used by clients to set up
the value of a specified resource,
such as activating an actuator,
depending on the function set
provided by the resource.

The observing approach, which has
not been defined in HTTP, is a light-
weight CoAP-oriented interaction
mechanism.16 SO resource observa-
tion is achieved by performing a par-
ticular CoAP GET request, which con-
tains an “Observe” option. This option
instructs the target SO to add a new
subscriber that will receive subse-
quent resource updates in push mode.
Subscribers can also stop observing a
resource at any time and unsubscribe
from updates.

The use of standard communi-
cation protocols and network
interfaces, well-known Web-

based design approaches, and widely
varied hardware platforms are chang-
ing the IoT and presenting new oppor-
tunities to developers, businesses, and
users. In this dynamic and evolving
scenario, the availability of real and
accessible resource-oriented testbeds
that allow active and direct interac-
tion among users and devices with
low-level nodes and services are a
key enabler for widespread future IoT
adoption—and, indeed, are driving
the transition from the IoT to the WoT.

WoTT exemplifies a novel archi-
tectural and networking approach to
important IoT challenges. Designing
and implementing the testbed has
confirmed the need for open evalu-
ation platforms to explore and inte-
grate innovative IoT applications and
to bridge the gap between users and
things. WoTT’s hardware/software
heterogeneity confirms that proper

OPEN EVALUATION PLATFORMS
ARE NECESSARY TO EXPLORE

AND INTEGRATE INNOVATIVE IoT
APPLICATIONS AND TO BRIDGE THE GAP

BETWEEN USERS AND THINGS.

 S E P T E M B E R 2 0 1 5 39

use of standard protocols such as
HTTP, CoAP, and MQTT and of inter-
action paradigms such as REST and
service/resource discovery are funda-
mental to enabling transparent and
dynamic interactions among multiple
SOs and personal mobile and wearable
devices. Moreover, this heterogeneity
can be extended by improving the IoT
Hub features—for example, by add-
ing support to Bluetooth devices. This
would open WoTT to an emerging cat-
egory of IoT-enabled devices, namely
those using Bluetooth low energy
(BLE), and BLE service discovery mech-
anisms such as UriBeacon.

Nevertheless, important issues
must be addressed to make the IoT
part of daily life. Improved security,
greater device and network interop-
erability, faster data processing, and
easier development and deployment
will be core focus areas for academic
and industrial R&D during the next
few years. Testbeds like WoTT are the
perfect experimental playgrounds
to boost and support IoT application
development by creating a common
space that designers, hardware man-
ufacturers, and companies can exploit
to make the IoT accessible and easy to
use for everyone, just as the Internet is
right now.

REFERENCES
1. J.P. Vasseur and A. Dunkels, Intercon-

necting Smart Objects with IP: The Next
Internet, Morgan Kaufmann, 2010.

2. R. Want, B.N. Schilit, and S. Jenson,
“Enabling the Internet of Things,”
Computer, vol.48, no.1, 2015,
pp. 28–35.

3. Z. Shelby, K. Hartke, and C. Bormann,
The Constrained Application Protocol
(CoAP), IETF RFC 7252, June 2014;
https://tools.ietf.org/html/rfc7252.

4. G.Z. Papadopoulos et al., “Adding

Value to WSN Simulation Using the
IoT-LAB Experimental Platform,”
Proc. IEEE 9th Int’l Conf. Wireless and

Mobile Computing, Networking and
Communications (WiMOB 13), 2013,
pp. 485–490.

ABOUT THE AUTHORS

LAURA BELLI is a PhD student in the Department of Information Engineering

at the University of Parma, Italy. Her research interests include the Internet of

Things (IoT), cloud computing, and mobile computing. Belli received an MSc

in computer engineering from the University of Parma. Contact her at laura

.belli1@studenti.unipr.it.

SIMONE CIRANI is a research engineer at Guglielmo srl. He was a postdoctoral

research associate in the Department of Information Engineering at the Uni-

versity of Parma when this work was done. His research interests include the

IoT, peer-to-peer networks, pervasive computing, and mobile computing. Cirani

received a PhD in information technologies from the University of Parma. He is

a member of the IEEE Computer Society and the IEEE Communications Society.

Contact him at simone.cirani@unipr.it.

LUCA DAVOLI is a PhD student in the Department of Information Engineer-

ing at the University of Parma. His research interests include the IoT, security,

software-defined networking, and pervasive computing. He received an MSc

in computer engineering from the University of Parma. He is a graduate stu-

dent member of the IEEE Communications Society. Contact him at luca.davoli@

studenti.unipr.it.

ANDREA GORRIERI is a PhD student in the Department of Information Engi-

neering at the University of Parma. His research focuses on the IoT, efficient

routing in mobile ad-hoc networks, and broadcast/multicast communications

protocols. Gorrieri received an MSc in telecommunications engineering from

the University of Parma. Contact him at andrea.gorrieri@studenti.unipr.it.

MIRKO MANCIN is a PhD candidate in the Department of Information Engi-

neering at the University of Parma. His research interests include machine-to-

machine networks, cloud computing, databases, UI design, IoT protocols, and

pervasive computing. Mancin received an MSc in computer engineering from

the University of Parma. Contact him at mirko.mancin@studenti.unipr.it.

MARCO PICONE is a research engineer at Guglielmo srl. He was a postdoctoral

research associate in the Department of Information Engineering at the Univer-

sity of Parma when this work was done. His research interests include mobile

and pervasive computing, location-based services, distributed systems, and

the IoT. Picone received a PhD in information engineering from the University

of Parma. Contact him at marco.picone@unipr.it.

GIANLUIGI FERRARI is an associate professor in the Department of Informa-

tion Engineering at the University of Parma. His research interests include the

IoT, wireless networking, and signal processing. Ferrari received a PhD in infor-

mation technologies from the University of Parma. He is a Senior Member of the

IEEE Communications Society. Contact him at gianluigi.ferrari@unipr.it.

40 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

5. L. Sanchez et al., “SmartSantander:
IoT Experimentation over a Smart
City Testbed,” Computer Networks,
vol. 61, 2014, pp. 217–238.

6. C. Bormann, M. Ersue, and A.
Keranen, Terminology for Con-
strained-Node Networks, IETF RFC
7228, May 2014; https://tools.ietf
.org/html/draft-ietf-lwig
-terminology-03.

7. G. Mulligan, “The 6LoWPAN Archi-
tecture,” Proc. 4th Workshop Embed-
ded Networked Sensors (EmNets 07),
2007, pp. 78–82.

8. S. Cirani et al., “The IoT Hub: A Fog
Node for Seamless Management of
Heterogeneous Connected Smart
Objects,” presented at the Fog Net-
working for 5G and IoT Workshop, in
conjunction with the 12th Ann. IEEE
Int’l Conf. Sensing, Communication
and Networking (SECON 15), 2015,

pp. 464–470; http://secon2015
.ieee-secon.org/workshops/fog
-networking-5g-and-iot-workshop
/program.

9. S. Cirani et al., “A Scalable and
Self-Configuring Architecture for
Service Discovery in the Internet of
Things,” IEEE Internet of Things J.,
vol.1, no.5, 2014, pp. 508–521.

10. R. Lea, HyperCat: An IoT Interopera-
bility Specification, tech. report, IoT
Ecosystem Demonstrator Interoper-
ability Working Group, April 2014;
http://eprints.lancs.ac.uk/id
/eprint/69124.

11. F. Bonomi et al., “Fog Computing and
Its Role in the Internet of Things,”
Proc. 1st MCC Workshop Mobile Cloud
Computing (MCC 12), 2012, pp. 13–16.

12. Z. Shelby and C. Bormann, CoRE
Resource Directory, IETF Internet
Draft, Jun. 2015; https://tools.ietf

.org/html/draft-ietf-core-resource
-directory-03.

13. M. Antonini et al., “Lightweight
Multicast Forwarding for Service
Discovery in Low-Power IoT Net-
works,” Proc. 22nd Int’l Conf. Software,
Telecommunications and Computer
Networks (SoftCOM 14), 2014,
pp. 133–138.

14. S. Cirani et al., “IoT-OAS: An OAuth-
Based Authorization Service Archi-
tecture for Secure Services in IoT
Scenarios,” IEEE J. Sensors, vol. 15,
no. 2, 2015, pp. 1224–1234.

15. S. Cirani and M. Picone, “Wear-
able Computing for the Internet of
Things,” to be published in IT Profes-
sional, vol. 17, no. 5, 2015.

16. K. Hartke, Observing Resources in
CoAP, IETF Internet Draft, Dec. 2014;
https://tools.ietf.org/html/draft
-ietf-core-observe-16.

Affective Computing is the � eld of study concerned
with understanding, recognizing and utilizing human
emotions in the design of computational systems. The IEEE
Transactions on Affective Computing (TAC) is intended to
be a cross disciplinary and international archive journal
aimed at disseminating results of research on the design
of systems that can recognize, interpret, and simulate
human emotions and related affective phenomena.

Subscribe today or submit your manuscript at:
www.computer.org/tac

IEEE T R A N S A C T I O N S O N

AFFECTIVE COMPUTING
A publication of the IEEE Computer Society

