
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 1

RouMBLE: a Sink-Oriented Routing Protocol for
BLE Mesh Networks

Luca Davoli, Member, IEEE, Massimo Moreni, and Gianluigi Ferrari, Senior Member, IEEE

Abstract—In Internet of Things (IoT)-like contexts, there is
often the need to leverage traffic routing mechanisms among
heterogeneous devices, especially when classical (and well-known)
addressing paradigms cannot be adopted or supported by con-
strained IoT devices deployed on the field (e.g., due to memory
footprint, internal limitations, etc.). This is even more true (and
necessary) when nodes interact in unstructured networks (e.g.,
mesh-like) lacking a specific topology (e.g., exploiting flooding
approaches to transfer information) and external “smart” devices
should be allowed to interact with these networks. To this end,
in this paper a multi-sink routing protocol, denoted as Routing
on Mesh Bluetooth Low Energy (RouMBLE), is proposed. Our
implementation relies on BLE advertisement channels and allows
sink nodes to control topology formation and data collection
(with both unicast and broadcast communications), with nodes
identified with compressed addresses. A relevant experimental
application to environmental lighting management is presented.

Index Terms—Wireless Mesh Network, Routing Protocol, Sink
Node, Gateway, Topology.

I. INTRODUCTION

ONE of the main aspects characterizing the Internet of
Things (IoT) regards the need to let “things” interact

through heterogeneous communication protocols, according
to a “system of systems” paradigm. To this end, one of
the most interesting and promising (due to its widespread
adoption) technologies available in devices exchanging data
everyday—in Human-to-Machine (H2M) and Machine-to-
Machine (M2M) ways—is Bluetooth Low Energy (BLE). BLE
has emerged as a major low-power wireless technology, allow-
ing low-energy communication in heterogeneous environments
and contexts (e.g., with sensors, actuators, smartphones, wear-
ables, and so on). Moreover, even standardization entities—
such as the Internet Engineering Task Force (IETF) [1]
and the Bluetooth Special Interest Group (SIG) [2]—are
defining innovative adaptation mechanisms to facilitate the
interaction of BLE nodes within Internet of Things (IoT)-
oriented scenarios—e.g., adaptation layers to support IPv6
over BLE [3].

BLE networks are traditionally organized with a star topol-
ogy. Therefore, they support limited coverage range [4] and
this can represent a limitation in some scenarios (e.g., urban,
agricultural, industrial, etc.) [5]. Direct interaction between

L. Davoli and G. Ferrari are with the Internet of Things (IoT) Lab,
Department of Engineering and Architecture, University of Parma, Parma,
Italy, with the National Inter-University Consortium for Telecommunications
(CNIT), Research Unit of Parma, Parma, Italy, and with things2i s.r.l., Parma,
Italy. E-mail: luca.davoli@unipr.it, gianluigi.ferrari@unipr.it.

M. Moreni is with TCI Telecomunicazioni Italia s.r.l., Saronno, Italy. E-
mail: m.moreni@tci.it.

Manuscript received October X, 2024; revised December Y, 2024.

devices may allow to overcome this limitation. To this end,
BLE-based mesh networks [6, 7] allow to overcome the
coverage limitations of a classical star topology [8, 9].

Another challenge is related to the way in which BLE nodes
can be addressed in such a network. This aspect is crucial
in real deployments, especially with constrained IoT nodes
(e.g., in terms of power constraints, memory footprint, etc.).
The IPv6 protocol may support network integration: this holds
true, in particular, for a BLE network, as proposed in the
literature [3, 10, 11]. However, IPv6 adoption may be critical.
Therefore, alternative addressing approaches are needed to
support services on top of BLE networks.

In this paper, we present and discuss a BLE-oriented
multi-sink routing protocol, denoted as Routing on Mesh
BLE (RouMBLE), for heterogeneous Point-to-Point (P2P),
MultiPoint-to-Point (MP2P), and broadcast-like communica-
tion scenarios, where Over-the-Air (OTA) operations and up-
date mechanisms are needed. In particular, RouMBLE allows
to route data collected by sensing nodes deployed in an envi-
ronment (e.g., on-field Passive InfraRed, PIR, sensors) through
BLE mesh nodes. As a reference scenario, a BlueLightLink
(BLL) [12] network for environmental lighting management
will be considered.

RouMBLE is inspired by the Better Approach to Mobile
Ad-hoc Networking (B.A.T.M.A.N.) routing protocol [13] and
is designed to be deployed on BLE devices composed of
a host micro-controller and a BLE System-on-Chip (SoC)
managing all the networking functionalities. Owing to its
data packets’ format, RouMBLE exploits BLE advertisement
channels to transmit data with a flooding approach. The BLE
nodes are assigned the following roles: (i) on-field devices,
in charge of sensing the environment and performing tasks;
(ii) management devices, denoted as sink nodes, in charge
of managing the behaviour of on-field devices and requesting
them to perform particular actions; and (iii) external nodes,
denoted as smart devices, interested in obtaining information
from the sink nodes for further actions (e.g., visualization,
data analysis, etc.). Finally, it should be highlighted that even
if RouMBLE has been designed to rely on BLE advertisement
channels, it may be applied in a transparent way to other
Wireless Mesh Networks (WMNs) which could benefit from
such a traffic routing mechanism (e.g., protocols relying on
flooding mechanisms).

The remainder of this paper is organized as follows. In
Section II, a discussion on existing mesh-oriented solutions
is presented. In Section III, the main packet types defined in
RouMBLE are introduced, while the network topology con-
struction is detailed in Section IV. In Section V, data collection

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 2

TABLE I: Literature works categorized along their main features.

Reference Flooding Routing Open
source

Multiple GWs
supported in

the WSN

General
applicability

Routing
algorithm
adopted in

the WSN(1)

Compute
multiple path
between nodes

Exploit
routing

table
at run-time

Metric
exploitation

[24] 3 7 3 7 7 Trickle 7 7 7

[25] 3 7 3 7 7 BLEmesh 7 7 3(2)

[26] 3 7 3 7 3 ExOR 7 7 3(2)

[27] 3 7 3 3 3 SOAR 3 3 3(2)

[28] 7 3 3 7 7 7 7 7 7

[29] 7 3 3 7 7 7 7 7 3(3)

[30] 7 3 3 3 3 7 7 3 7

[31] 7 3 3 3 3 RPL 7 3 3(4)

[32] 7 3 3 7 7
On-demand

approach 7 3 7

[33] 7 3 3 7 7 NDN 7 7 7

[34] 7 3 3 3 3 TORA 3 3 3(5)

[35] 7 3 3 3 7 WRP-Lite 7 3 3(6)

[36] 7 3 3 3(7) 7 KRP 3 3 3(5)

[37] 7 3 3 7(8) 7 MRP 7 7 3(5)

[38], [39],
[40], [41],
[42], [43],

[44]

7 3 7 7 7 7 7 7 7

RouMBLE 3 3 3 3 RouMBLE 3 3(9) 3(10)

(1)No need of perform on-the-flight agreements between all nodes receiving the same packet, to select the next hop.
(2)Based on ETX.
(3)In the experimental evaluation, not in the analytical modelling of the protocol: (i) minimum connection interval, (ii) worst-case end-to-end latency.
(4)Based on residual energy and degree of the device.
(5)Based on hop counter.
(6)Based on link cost: if the link fails, the cost is set to infinity.
(7)Connected to a wired backbone network.
(8)Every client selects a single GW to connect to Internet.
(9)Routing paths discovered during BOM replies collection.
(10)Based on hop counter and number of received BOMs.

from on-field mesh nodes is detailed, while reference use
cases and application functionalities enabled by RouMBLE are
presented in Section VI, with an experimental performance
evaluation being discussed in Section VII. Finally, in Sec-
tion VIII we draw our conclusions.

II. RELATED WORKS

In the literature, Wireless Mesh Networks (WMNs) have
been extensively investigated in terms of design aspects [14,
15], as well as routing metrics [16, 17]. In the context of
BLE, BLE SIG and IETF have guided this process, cre-
ating the Bluetooth Smart Mesh Working Group [18] and
proposing to adopt the IPv6 Low-Power Wireless Personal
Area Networks (6LoWPAN) protocol [19] to support IPv6
over BLE networks [20]–[23]. To this end, there exist two
main approaches to data transmission in BLE mesh networks,
namely: (i) flooding-based and (ii) routing-based. For the
sake of clarity and completeness, in Table I a summary of
the literature works discussed in the following is reported,
categorizing them along their main features to better underline
the novelty of the proposed RouMBLE protocol.

Flooding-based solutions do not perform any kind of rout-
ing among the nodes composing the network, but, rather,
broadcast packets over BLE advertising channels. An example
of this approach is proposed in [24], where authors analyze the
performance of a routing algorithm exploiting Trickle [45] and

operating in a BLE mesh Wireless Sensor Network (WSN),
focusing only on disaster seismic events monitoring and pre-
diction, and supporting only one sink node in the network. In
detail, the authors focus on how to keep energy consumption
low and, at the same time, to bound latency and Packet Deliv-
ery Ratio (PDR), introducing a simple sleep/awake schedule.
Similarly, in [25] the authors propose BLEmesh, a flooding
mechanism limiting re-broadcasting in intermediate nodes by
only admitting a sub-set of these nodes, selected on the basis
of the Expected Transmission Count (ETX) [46], to perform
broadcasting operations. In detail, being only applicable to
BLE networks, BLEmesh forces the traffic to be sent as
batch of data—guaranteeing ordered delivery and other—and
exploits opportunistic routing. BLEmesh is thus forced to rely
on the presence of a list of participating nodes (denoted as
Forwarder List) sorted by priority, whose size is derived from
the number of participating nodes and which is periodically
flooded by the source node initiating a data transmission. The
authors in [26] propose a flooding-oriented integrated routing
and MAC protocol targeting multi-hop wireless networks,
denoted as ExOR, which, unfortunately, faces the following
four main challenges: (i) nodes inside the WSN have to
agree on the sub-set of devices which will receive each
information packet—this agreement phase introduces overhead
in the communication; (ii) the protocol must have a metric
reflecting the likely cost of moving a packet from any node

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 3

to the destination; (iii) there is the need to define proper
policies to select useful nodes as WSN participants; and
(iv) similarly to [25], the protocol operates on batches of
packets, instead of managing single information contents, thus
requiring to include a list of candidate forwarders in each
packet (prioritized by the estimated cost to the destination
node) and a copy of the sender’s batch map, containing
the sender’s best guess of the highest priority node to have
received each packet in the batch. In [27], a similar routing
protocol, denoted as Simple Opportunistic Adaptive Routing
(SOAR), supporting multiple simultaneous flows in WMNs,
is proposed. In detail, SOAR requires every WMN node to
periodically measure links quality (in terms of ETX) and
maintain the entire network topology. Then, on the basis of
the collected information, SOAR selects the default path and
a list of (next-hop) forwarding nodes eligible for broadcasting
data (including this additional overhead).

Routing-based solutions adopt a routing protocol for packet
forwarding and transmit data over BLE data channels. These
solutions can further be separated in static and dynamic
routing. An example of static routing schemes is discussed
in [28], where the authors propose a static tree topology
serving as network backbone for a BLE-based WSN with
a 2-byte addressing space and involving nodes with differ-
ent roles: (i) root node (acting as a central device, as per
BLE specifications lexicon) collecting data from the WSN;
(ii) intermediate nodes, physically formed combining two
BLE devices—one peripheral node and one central node—
in one package; and (iii) leaf nodes, performing as peripheral
entities. Unfortunately, this solution (i) being tree-oriented,
lacks a mechanism to rebuild the network after a node or
link failure, (ii) suffers from the single-node failure problem,
(iii) involves an addressing enumeration strictly dependent on
the depth which a node is located at in the WSN, and (iv)
is applicable only to BLE networks. In [29], another static
routing solution, denoted as Real Time BLE (RT-BLE), is
proposed for industrial WMNs. RT-BLE creates multiple net-
works (denoted as sub-networks), each coordinated by a master
node and requiring multiple slave nodes (acting as “bridges”)
between sub-networks to enable data sharing. Therefore, this
solution lacks of scalability for both masters and slaves—
keeping only a default route and an alternative route as a
backup, and with a master able to establish a connection
with at most another master. On the other hand, examples of
dynamic routing schemes have been proposed in [30], where
a BLE mesh solution, denoted as MultiHop Transfer Service
(MHTS) and based on next-hop on-demand routing over the
Generic ATTribute (GATT) layer, is discussed. In order to
enable multi-hops data transfer, MHTS forces the usage of
four specific read/write GATT characteristics, and requires the
definition of two mechanisms: (i) connection discovery and
establishment with neighboring nodes, and route discovery
toward distant nodes; (ii) data storing inside intermediate
nodes, and transmission handling toward the destination node.
In [31], another routing-based solution, denoted as BLE Mesh
Network (BMN) and similar to the Adaptation Layer between
BLE and RPL (ALBER) protocol [47], exploiting a Directed
Acyclic Graph (DAG) structure—inspired by the IPv6 Routing

Protocol for low Power and Lossy networks (RPL) [48]—
for transmitting routing messages via advertising channels, is
proposed. Similarly, in [32] an on-demand routing protocol
targeting the formation of scatternets—network topologies
composed of interconnected piconets, so strictly applicable
only to BLE networks—is proposed. In [33], authors leverage
attributes, characteristics, and GATT services to apply Named
Data Networking (NDN) [49, 50] to support BLE mesh net-
works. Finally, several routing protocols have been proposed
in the literature for Mobile Ad-Hoc Network (MANET)-based
scenarios [34]–[36, 51, 52]. In particular, a distributed routing
protocol, denoted as Temporally-Ordered Routing Algorithm
(TORA), structured as a temporally-ordered sequence of dif-
fusing computations, each consisting of a sequence of directed
link reversals, is proposed in [34]. In [35], a table-driven
routing protocol using non-optimal routes, requiring the usage
of both a routing table and a distance table, applicable only to
IP-based networks, and denoted as Wireless Routing Protocol
(WRP), is introduced. Then, a “beaconing” approach denoted
as k-hop Routing Protocol (KRP), focusing on route discovery
and maintenance employing the ad-hoc mode in IEEE 802.11
networks, extending the Ad-Hoc On-Demand Distance Vector
(AODV) [53] protocol, and requiring a fixed backbone network
of sink nodes, is proposed in [36]. Finally, in [37], it is
discussed how routing functionalities (performed through a
new routing paradigm, denoted as Mesh Routing Protocol,
MRP) may introduce benefits in MANETs managing traffic
flows only arriving from Internet. Unfortunately, MRP forces
each node to reach only one sink node, preventing the use
of multiple sink nodes. Moreover, it needs to rely only on
Linux-based OSs, being implemented at user space and having
to interface with the kernel only through the routing table
changing calls.

Finally, the interest towards BLE mesh networks has
led also to proprietary network solutions, including:
CSRmesh [38], OpenMesh [39], Wirepas Mesh [40],
MeshTek [41], EtherMind [42], and solutions from Esti-
mote [43] and NXP [44]. Unfortunately, due to their closed
nature, these solutions are not amendable to extensions or
integration into devices and nodes not manufactured by the
original manufacturers.

Unlike existing works, it is of interest to connect BLE nodes
using routing algorithms even in scenarios oriented to the use
of advertisement channels (as in flooding-based solutions).
This is exactly the aim of the BLE mesh-oriented routing
protocol proposed in the remainder of this paper, namely
RouMBLE.

III. A SINK-ORIENTED ROUTING PROTOCOL

As anticipated in Section I, RouMBLE has been inspired
(as general idea) by the B.A.T.M.A.N. routing protocol, even
if differences among RouMBLE and the Layer-2 (L2)/Layer-
3 (L3) B.A.T.M.A.N. protocol arise. In detail, B.A.T.M.A.N.
has been developed for multi-hop mesh networks composed by
Linux-compliant devices and mainly features two operational
components: (i) batman-adv [54, 55], providing routing
functionalities at L2 (Ethernet layer), and (ii) batmand [56,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 4

External Smart Devices Sink Nodes External Smart DevicesGatewaysWMN Nodes

Fig. 1: Example of a generic BLE-based mesh network composed by heterogeneous devices.

57], operating at L3. In particular, batman-adv is im-
plemented as a Linux kernel module and provides a vir-
tual network interface (denoted as bat0) that transparently
forwards data packets (not only routing information) using
raw Ethernet frames. In fact, all nodes participating to the
mesh network appear to be link-local and are unaware of the
network’s topology and unaffected by any network changes.
Instead, batmand corresponds to a L3 Linux single user-
space routing daemon exploiting UDP packets for managing
the mesh network, hence requiring the involved nodes to be
IP-compliant. This prevents B.A.T.M.A.N. to be applied to
BLE-based mesh networks, which instead is the main target
of the proposed RouMBLE protocol.

Nevertheless, as will be clarified looking at the definition of
RouMBLE (in the remainder of this work), RouMBLE shares
with B.A.T.M.A.N. the idea of featuring (in the mesh net-
work) the presence of nodes transmitting (during specific
time intervals, denoted as originator intervals) broadcast mes-
sages, referred to as originator messages (OGMs), to inform
neighbours about their existences. In detail, OGMs are re-
broadcasted by mesh nodes according to specific rules (thus
flooding the mesh network itself), with a specific 52-byte
OGM raw packet including IP and UDP overheads, and at
least the address of the originator node, the address of the
node transmitting the packet, a Time-To-Live (TTL), and a
sequence number. In fact, this approach allows to share the
knowledge of end-to-end paths between mesh nodes to all
participating nodes. However, while B.A.T.M.A.N. fosters the
possibility for each node to extract and maintain only the
information about its best next-hop towards any other node, it
will be shown that RouMBLE allows to maintain information
on multiple paths, collecting knowledge also on “backup”
routes weighed on the basis of specific storage policies and
needs (e.g., given a specific service to be provided by the
BLE mesh network). Finally, since B.A.T.M.A.N. (through its
batmand component) maintains a sort of “tunnel connection”
to every “B.A.T.M.A.N. Internet client” having to access the
IP-compliant mesh network, it follows that every data has to go
through this tunnel. Since this is a Linux user-space tunnel,
a huge amount of copy operations between user-space and
kernel areas is necessary, and this might have a detrimental

impact (resulting as a bottleneck for the system) depending
on the number of clients and the (CPU) computational power
available at the mesh nodes.

Focusing on RouMBLE, it has been designed for BLE-
based mesh networks composed by the following types of
mesh nodes, depicted in Fig. 1:
• on-field devices, often based on commercial SoCs, in

charge of sensing the environment (e.g., through ex-
ternal sensors connected directly to the device itself)
and performing tasks (e.g., through the activation of
specific registers on the host micro-controller handling
the physical outputs);

• sink nodes, in charge of managing the behaviour of on-
field devices and requesting them to perform particular
actions;

• external smart devices, interested in obtaining data from
the on-field nodes in the BLE-based mesh network: this
happens through the (intermediate) sink nodes managing
the on-field nodes and allowing the external devices to
perform further actions (e.g., data analysis, visualization,
etc.).

According to their nature, sink nodes can be considered as
“frontier” entities allowing traffic to flow into/out of the BLE-
based mesh network. For this reason, different types of data
messages1 have been defined in RouMBLE, as will be detailed
in the following.

However, before focusing on the data packets to be used
in the proposed routing protocol, an overview on how mesh
nodes can be identified in RouMBLE is expedient. To this
end, as shown in Fig. 2, in addition to the MAC address each
device is assigned the following two addresses:
• 2-byte length address, adopting a binary encoding scheme

(e.g., 0001 1010 1011 0011);
• 4-byte length address, where each byte corresponds to a
HEX character (e.g., 1AB3).

In detail, under the assumption of identifying a mesh
node with an address in the range 0000-79FF, the en-
coding/decoding conversion mechanism shown in Fig. 2 is
obtained considering only the LSB part of each byte and

1In the following, the terms “packets” and “messages” will be used with
the same meaning.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 5

1 A B 3
0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1
1 A B 3

Fig. 2: Address conversion mechanism adopted in the proposed mesh-oriented routing protocol RouMBLE.

PSMS DTYPE ATYPE AT P

Fig. 3: Structure of an SMS packet sent from an external smart
device toward the core part of the (e.g., BLE-based) mesh
network.

combining together two LSBs into a resulting unified byte,
thus reducing from 4 bytes to only 2 bytes. As a consequence,
it is possible to encode/decode two HEX characters using
1 byte: the MSBs represent the first character and the LSBs
represent the second character.

For the sake of completeness, in Table II the notation
adopted in this paper is summarized. A detailed discussion
on the main data packets defined in RouMBLE, namely Send
MeSsage (SMS) and Receive MeSsage (RMS) packets, is car-
ried out in Subsection III-A and Subsection III-B, respectively.

A. Send MeSsage (SMS) Packet

SMS packets are used by an external smart device to ask
the sink node to send a request in the mesh network itself.
The general structure of an SMS packet is shown in Fig. 3,
where the various parts have the following meaning.
• PSMS identifies a message as SMS packet, to be used by

a smart device to interact with a sink node.
• DTYPE identifies the type of service requested by a smart

device to be executed inside the mesh network by mesh
node(s)—e.g., useful in the case the target BLE mesh
node(s) will be able to perform different services.

• ATYPE specifies the destination node’s address type
AT , and can assume the following acceptable values:
N (unicast), G (group), U (unit), K (ACK).

• AT contains the address of the destination node, as
well as an indication of a group of nodes, which the
request/command contained in the SMS packet should
be delivered to. Moreover, AT and ATYPE represent
the routing information to be used inside the BLE-based
mesh network to forward data in the proper way (as will
be discussed in Subsection III-B).

• P contains the payload information sent from the external
smart device (preparing the SMS packet) toward the
interested mesh target node(s) in the BLE-based mesh
network itself.

When a sink node receives (via BLE advertisement chan-
nels) an SMS packet sent from an external smart device, it
may perform some preliminary validation steps (based on the
specific implementation of the sink node itself). Once these
steps are completed, the sink node needs to translate the

TABLE II: Main notation adopted in the paper.

H Header of a generic packet used in RouMBLE.

U Identifier of generic packet, defined as an incremental
integer value.

h, hMHN

Hop counter contained in the header of a packet,
and maximum number of hops to be traversed before
considering a packet as “outdated.”

PTYPE
Field reserved for the definition of the packet type to
be used in RouMBLE.

PSMS, PRMS Identifiers of an SMS packet and an RMS packet.
CBOM, CGET,
CSEN

Identifiers of a BOM packet, a GET packet, and a SEN
packet.

DTYPE,
A, S, L, M

Type of service requested by a smart device to be
executed inside the mesh network by WMN nodes,
and allowed values: All, Sensor, Light, Actuator.

ATYPE,
N, G, U, K

Type of address of a WMN node, and allowed values:
unicast, group, unit, ACK.

P Field containing the payload of a packet used in
RouMBLE.

Sx, ASx
Generic WMN node x, and its corresponding address
in the WMN.

Sε, ASε
Randomly-chosen WMN node, and its corresponding
address in the WMN.

AT
Address of a target WMN node to be reached by a
specific packet.

FF
Broadcast address for a transmission toward all the
devices in the WMN.

Gz , AGz
Generic sink node z, and its corresponding address in
the WMN.

nSx
Amount of BOM packets received by the WMN node
Sx.

dSx
Distance (in terms of number of hops) of the WMN
node Sx toward a sink node.

N(Gz) Total amount of BOM packets received from the sink
node Gz .

k, kNTM,
kTO

Type of information a sink node is interested in from
the WMN, and specific values defined for topology
mapping and “Tracking One” functions.

R Set of routing tables defined in the WMN nodes.

R(Gz)
Sx

Routing table maintained by the WMN node Sx with
regard to the sink node Gz .

RMRFS
Maximum number of records to be maintained by a
single routing table.

wy , ΩBS

Identifier of a group of WMN nodes having to reply
with their data to a GET request, and pre-defined group
block size to be used to decide if a single WMN has
to reply.

γRSSI,
γRSSI−TO

Threshold on the RSSI to mark a WMN node as near to
the sensing node (in the heatmap scenario), and more
stringent threshold (to be used in the “Tracking One”
scenario).

ΠSENSE,
ΠPROX

Sensing table and proximity table.

incoming SMS message into a corresponding data structure
recognizable by mesh nodes and able to flow inside the BLE-
based mesh network.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 6

H PTYPE AS DTYPE ATYPE AT P
↓ ↓ ↓ ↓ ↓ ↓ ↓

U h PRMS AS DTYPE ATYPE AT P

Fig. 4: Structure of an RMS packet defined in the routing
protocol RouMBLE.

B. Receive MeSsage (RMS) Packet

An RMS packet is the only packet allowed, by-design,
to flow inside the BLE network and managed by internal
mesh nodes. In detail, an RMS packet is exploited to carry
information requests and responses inside the BLE network,
maintaining all the data needed to identify the entities involved
in the interaction and the actions to be performed by on-field
nodes of the mesh network itself.

As shown in Fig. 4, an RMS packet is composed by the
following fields.
• U represents the identifier of the packet (as an incre-

mental integer value) and is defined by the RMS packet
originator node.

• h represents the current hop counter and defines the
behavior to be adopted in managing the current RMS
packet, e.g., if it needs to be re-transmitted inside the
mesh network—and forwarded towards next-hop mesh
node(s)—or if it has to be discarded. In detail, h is
compared with a reference value (denoted as hMHN)
corresponding to the maximum number of hops that can
be traversed inside the mesh network before consider-
ing the current RMS packet as “outdated.” By default,
hMHN = 3, which corresponds to a reasonable value
for a not-too-large mesh network relying on the use of
flooding. In general, hMHN can assume values in the
range {1, 2, . . . , 10}. At the node emitting the RMS,
h = hMHN. Considering the node emitting the RMS
as the first node, at the t-th node (t ∈ {2, . . . , hMHN})
the number of remaining hops h(t) can be expressed as
follows:

h(t) = h(t− 1)− 1 .

At this point: if h(t) > 0, the RMS packet is retransmit-
ted; if h(t) = 0, the RMS packet is dropped.

• PTYPE identifies the message type and is set to PRMS,
being an RMS packet the only packet allowed to flow
inside the reference mesh network.

• AS contains the address of the source node generating
the RMS packet and will not be modified by intermediate
nodes during its transmission inside the mesh network.

• DTYPE is derived from the corresponding field contained
in the original SMS packet and, as highlighted in Sub-
section III-A, specifies the interested service provided by
the destination node to be reached by the RMS packet—
useful in the case the destination node can provide
different services—and may assume a specific range of
values (e.g., S, M, L, A), as listed in Table II.

• ATYPE and AT are derived from the corresponding
SMS packet (as shown in Subsection III-A) and identify
the address class (e.g., N, G, U, and K, as listed in

Table II) and the specific address of the destination node,
respectively. Then, on the basis of on the value ofATYPE,
AT may correspond to: (i) the address of a single target
node (for a unicast transmission, with ATYPE = N),
(ii) a group address (for a group communication, with
ATYPE = G), or (iii) the broadcast address FF (for a
broadcast transmission toward all the devices in the mesh
network).

• P is derived as-is from the original SMS packet and
contains the payload to be sent to the destination node.

In addition to the validation checks mentioned in Sub-
section III-A, the application component (e.g., a software
daemon) handling the RMS packets internally in a node checks
the node address AT , in order to understand if the packet is for
itself or if it needs to be re-transmitted inside the network (e.g.,
across BLE advertising channels). Should this be a broadcast
message (e.g., with AT = FF), then no further checks, based
on the value of the field ATYPE, will be performed. Moreover,
as part of this additional admission check stage, the daemon
would be able to filter and remove repeated messages (to
avoid to flood the network): this is the case, for example,
that the sender of the RMS packet is itself. Finally, if all
checks are satisfied and 1 ≤ h ≤ hMHN, the RMS packet may
be re-transmitted with different priorities: if ATYPE = U or
ATYPE = G the priority is high; if ATYPE = K the priority
is mid/low.

IV. NETWORK TOPOLOGY CONSTRUCTION

As highlighted in Section III, RouMBLE focuses on the
introduction of routing functionalities in mesh networks with
flooding-like information exchange (namely, BLE mesh net-
works exchanging data through BLE advertisement chan-
nels). To this end, a mechanism enabling the definition of a
topology—as well as multiple ones—oriented to sink nodes
and based on routing tables maintained by each mesh node
participating to the network itself, should be exploited. In
detail, as will be highlighted in the following, this allows to
provide the overall mesh network with multiple topological
overlays (each one referring to a specific sink node), thus
improving the reliability of the entire network.

A. BLE Originator Message (BOM) Packet

In order to start a topology construction (with its conse-
quent routing tables), in RouMBLE a particular RMS packet,
denoted as BLE Originator Message (BOM), is defined. The
BOM can be generated only by a sink node (and not by
intermediate mesh nodes, by construction) and propagates
inside the mesh network through flooding. In the following,
for the sake of simplicity, the case of a single sink node
instantiating BOMs will be considered. However, the proposed
approach already encompasses the presence of multiple sink
nodes, also in the presence of constrained nodes with limited
memory (as the routing tables involved in RouMBLE would
have a limited flash memory footprint).

As shown in Fig. 5, with period TBOM (dimension: [s])
the sink node instantiates a new BOM packet (shown in

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 7

Fig. 5: BOM packets flooding into the BLE-based mesh network for topology construction.

H PRMS ASCURR
L N FF CBOM AGz d

Fig. 6: Structure of a BOM packet used to build a topology
in the BLE-based mesh network.

Fig. 6) carrying the following relevant information for the
construction of routing tables:

• H corresponds to the packet header and, as shown in
Fig. 4, contains both the packet identifier U and the infor-
mation on the already-traversed hops h—by construction,
h = hMHN, since the BOM is generated ex-novo.

• ASCURR
contains the address of the sink node originating

the BOM packet—by construction, ASCURR
= AGz , since

the BOM is generated ex-novo.
• DTYPE = L identifies the class of those nodes to be

involved in the topology construction (for example, only
nodes providing L = light services may be involved).

• ATYPE = N contains the address type (N = unicast).
• AT = FF identifies the broadcast address and, according

to the details given in Subsection III-B, each mesh node
in the network should handle BOM packets, regardless
of the specific value of the field ATYPE.

• CBOM marks the current message as a BOM packet.
• AGz contains the address of the sink node Gz originating

the topology construction (through the BOM packet) and
is expressed with the 2-byte binary encoding scheme
shown in Fig. 2.

• d maintains the distance (e.g., the depth in terms of
number of hops) between the sink node Gz , originating
the topology construction operation, and the node receiv-
ing the BOM. d is incremented at each traversed node.
However, its meaning should not be confused with that
of the field h, as h is increased at each RMS repetition
and forces to discard the message when it reaches a value
equal to hMHN.

The BOM packet originates from the sink node and prop-
agates inside the network till it reaches (thanks to the field
AT equal to FF) all nodes.

As shown in Algorithm 1, when a generic node Sx (iden-

tified by its address2 ASx) receives a packet, it performs the
following checks:

1) it verifies if the received message is a BOM packet: this
is true iif the payload P contains the BOM identifier
CBOM;

2) it verifies if the current node Sx still corresponds to the
sink node Gz originating the BOM packet: this is true
iif ASx = AGz and, should this be the case, the BOM
packet is discarded;

3) it extracts the distance between the originator sink node
Gz and the current node Sx from the field d.

At this point, the knowledge obtained in the third verifica-
tion step requires to perform a lookup operation in the internal
routing tables of the node Sx, denoted as R[·]

Sx and containing
information useful for routing purposes, such as: the identity
of the next-hop node from which a BOM has been received;
the distance (as number of hops) from the specific sink node
Gz; and a ranking among different table records.

Therefore, with regard to the third verification step, if the
originator sink node Gz is considered “too far” from the current
node Sx, then the BOM packet is discarded. Otherwise, if
the number of records for the specific sink node Gz in the
corresponding routing table R(Gz)

Sx has not already reached the
maximum admissible amount (denoted as RMRFS), then the
current node Sx will (i) update its routing table R(Gz)

Sx about the
information related to the specific originator sink node Gz (as
discussed in Subsection IV-B) and (ii) generate a new BOM
packet (as discussed in Subsection IV-C). Hence, a generic
node Sx may avoid to modify (in fact corrupting) and re-
transmit the “old” BOM packet (received by its “predecessor”
parent).3

In the presence of multiple sink nodes, instead of defining a
separate routing table R[·]

Sx for each sink node that will become
known to the node ASx itself, it might be possible to use a
unique routing table RSx containing all the records for all the
sink nodes. This approach would allow further optimizations.

2With reference to Fig. 2, each node is identified inside the mesh network
by its 2-byte compressed address, while internally storing the 4-byte extended
version of the address

3As in fact RouMBLE allows to organize the candidate BLE-based mesh
network as a multi-sink tree-oriented topology, it may have sense to talk in
terms of parent and child nodes, as well as predecessor and successor nodes.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 8

Algorithm 1 Network topology construction procedure.

1: if PTYPE = PRMS then
2: if P contains CBOM then
3: if ASx = AGz then
4: discard BOM packet
5: else
6: if

[
R(Gz)
Sx

]
NUMRECORDS

> RMRFS then

7: discard BOM packet
8: else
9: update routing table R

10: generate new BOM packet
11: discard old BOM packet
12: else
13: continue
14: else
15: continue

TABLE III: Example of a routing table R(Gz)
Sx stored inside a

generic mesh node Sx.

Ranking
(R)

Sender
(AS)

Hops
[num]

Received BOMs
[num] [%]

1 ASa dSa nSa nSa/N
(Gz)

2 ASb dSb nSb nSb/N
(Gz)

3 ASc dSc nSc nSc/N
(Gz)

B. Routing Table Update Operations

Each time a generic mesh node Sx receives a valid BOM
packet from the sink node AGz and does not have an already-
existing routing table R(Gz)

Sx , it will create a new routing table
with the structure shown in Table III. If, instead, the routing
table R(Gz)

Sx already exists, but there is not an entry for the
current predecessor node SPRED, then a new entry is added
into R(Gz)

Sx with the following information: ASPRED as sender
address; dSPRED as the distance (i.e., depth) from the sink node
Gz; the value 1 as number of received BOMs (denoted, in
general, as nSPRED

). Then, the percentage of received BOMs
(over the total number of BOMs received for the sink node Gz ,
denoted as N (Gz)), is calculated. Otherwise, if R(Gz)

Sx is already
existing and there is an already-existing entry for SPRED,
then a comparison between dSPRED

(contained in R(Gz)
Sx) and

d (contained in the received BOM) is carried out:

• if dSPRED < d, then no modifications are needed,
as R(Gz)

Sx contains ranking information more effective
(smaller distance from the sink) than that carried by the
BOM packet;

• if dSPRED
≥ d, then the receiving node Sx needs to

(i) update dSPRED
to d, (ii) increment by 1 the number

of received BOMs nSPRED , and (iii) re-calculate the
percentage of received BOMs as nSPRED/N

(Gz).

In this way, only significant BOM packets are considered
to keep all the routing tables R of a node updated during its
lifetime.

H∗ PRMS A∗SCURR
L N FF CBOM AGz d∗

Fig. 7: Structure of a BOM packet with updated fields (defined
based on an old BOM received by a predecessor node in the
BLE-based mesh network).

Fig. 8: Time instants considered in the routing tables construc-
tion example.

C. BOM Packets Forwarding With Updated Fields

In order to (i) keep as simple as possible the structure
of the data packets defined in RouMBLE and (ii) avoid
modifications in the RMS packets each time an information
should be forwarded in the mesh network (e.g., BOM packets
for topology construction), a new BOM packet, containing
the identity information of the current node Sx (which, in
turn, will appear as SPRED for its successor nodes), has to be
generated.

Assuming that Sx is the current node which has to continue
the topology construction, a new BOM prepared by Sx to
inform of its existence the overall mesh network has the
structure shown in Fig. 7. The fields of this BOM can be
described as follows.
• H∗ is the updated header of the RMS packet (as detailed

in Fig. 4). In detail, the hop counter h will be reduced
by 1, with respect to that contained in the previously re-
ceived BOM packet, while U will contain a new message
identifier for the new BOM packet.

• A∗SCURR
contains the address of the current node emitting

the new BOM packet, so that A∗SCURR
= ASx .

• d∗ is set to the depth contained in the old BOM packet
increased by 1, in order to inform its successor nodes
about the updated distance from the originator sink node
Gz .

The remaining fields in the BOM packet have the same
meanings of those detailed in Subsection IV-A, as the address
of the sink node Gz (i.e., AGz) is not modified, being the
originator sink node which initiated the topology construction.

D. Routing Tables Construction Example

According to the operational steps shown in Algorithm 1
and described in Subsection IV-B and Subsection IV-C, in the
following a step-by-step topology construction procedure is
described. In detail, the time instants that will be considered
refer to the timeline shown in Fig. 8, while the routing tables
refer to the network shown in Fig. 9, in which lines connecting
the different nodes correspond to physical links enabled by
local node coverage. As an example, the sink node Gk is
directly connected to nodes S1, S6 and S7, while S2 is directly
connected to both S1 and S6.

We now characterize the time evolution. At instant t0, the
sink node Gk emits the BOM packet shown in Fig. 10, in which

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 9

Fig. 9: Physical (connectivity-based) topology.

3 PRMS AGk L N FF CBOM AGk 1

Fig. 10: BOM packet built by Gk at instant t0.

2 PRMS AS1 L N FF CBOM AGk 2

Fig. 11: BOM packet built by S1 at instant t1.

2 PRMS AS6 L N FF CBOM AGk 2

Fig. 12: BOM packet built by S6 at instant t1.

TABLE IV: Routing table R(Gk)
S2 at TBOM0, instant t0.

Ranking
(R)

Sender
(AS)

Hops
[num]

Received BOMs
[num] [%]

1 AS1 2 1 1/2 = 50%
2 AS6 2 1 1/2 = 50%

2 PRMS AS6 L N FF CBOM AGk 3

Fig. 13: BOM packet built by S6 at instant t1.

the hop counter h = hMHN = 3, while the depth d (inside the
payload P) is equal to 1 (as the direct children will be at
distance 1 from the originator sink Gk). This BOM packet is
then received by nodes S1, S6 and S7, which, in turn, check
it and add an entry in their routing tables R(Gk)

S1 , R(Gk)
S6 and

R(Gk)
S7 , respectively (all the entries refer to the originator sink

node Gk).
At instant t1 = t0 + TBOM, S1, S6 and S7 are at distance

2 from the sink node Gk. At this point: (i) S1 emits its new
BOM packet (shown in Fig. 11) that will be received by Gk,
S6, S2 and S4; (ii) S6 sends its new BOM packet (shown
in Fig. 12) that will be received by Gk, S1, S2 and S8; (iii)
S7 sends its new BOM packet (not shown here for simplicity)
that will be received by Gk, S8 and S9. Node S2 then receives
two BOM packets (N (Gk)

S2 = 2) and needs to update its routing
table related to Gk (denoted as R(Gk)

S2) as shown in Table IV.
At instant t2 = t0 + 2TBOM, S2 receives another BOM

packet (shown in Fig. 13) from S6, which, instead, is not the
same BOM packet received at instant t1, since, in this case,
S6 is at distance 3 from the sink node Gk (Gk←S1←S6). Then,
S2 checks if it needs to update its routing table R(Gk)

S2 : as the
depth d of the BOM from S6 is higher than that contained in
R(Gk)
S2 , no further updates are needed.

TABLE V: Evolution of the routing table R(Gk)
S2 over different

time slots.

Ranking
(R)

Sender
(AS)

Hops
[num]

Received BOMs
[num] [%]

t1
1 AS1 2 2 2/4 = 50%
2 AS6 2 2 2/4 = 50%

. . .

t2
1 AS1 2 3 3/6 = 50%
2 AS6 2 3 3/6 = 50%

. . .

t3
1 AS1 2 4 4/8 = 50%
2 AS6 2 4 4/8 = 50%

. . .

t4
2 AS1 2 4 4/9 = 44%
1 AS6 2 5 5/9 = 56%

. . .

t5
2 AS1 2 4 4/10 = 40%
1 AS6 2 6 6/10 = 60%

. . .

t6
2 AS1 2 4 4/11 = 36%
1 AS6 2 7 7/11 = 64%

Fig. 14: Routing paths from S2 toward Gk at instant t6 (based
on Table V).

Then, focusing (as an example) on the node S2, its routing
table will change as shown in Table V, assuming that, at instant
t4 = t0 +4TBOM, the node S1 starts failing, sending no BOM
to its neighbors, so that, at that point, a ranking update in
R(Gk)
S2 may be needed. The corresponding routing paths, with

reference to instant t6, are shown in Fig. 14.
In this way, it is possible to classify different routes toward

a specific sink node, as well as to maintain different routing
paths toward all the sink nodes that started (at least once) a
topology construction procedure. For the sake of completeness,
with reference to Fig. 9, an example of all the possible routing
paths among the nodes (with no BOM flooding interruption
due to the hop counter h becoming equal to 0) is shown in
Appendix A. Moreover, the decrease of the hop counter h in
the BOM packet’s header H insures that, after hMHN attempts,
these BOM packets stop. Finally, the strategy of using broad-
cast packets is not exploited in the overall mesh network, but
only between neighboring nodes.

V. ON-FIELD DATA COLLECTION

A. Data Collection - Request (Downlink)

Data collection is initiated by a sink node Gz interested in
collecting data from the nodes composing the mesh network,
thus starting an asynchronous “harvesting”—this could be a
proactive action generated by the sink node Gz itself or a

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 10

PRMS ASCURR L N FF CGET k AT AGz c wy

Fig. 15: Structure of a GET packet used for data collection
from the BLE mesh nodes.

request by an external smart device. Assuming that a tree
topology rooted at the sink node Gz itself has been built as
detailed in Section IV (with routing tables R(Gz) at the mesh
nodes), then Gz emits a specific data collection request to all
nodes in the network. In detail, this is a particular RMS packet,
denoted as GET packet and shown in Fig. 15, containing the
following information (in various fields) useful to characterize
the request.

• CGET marks the current message as a GET packet.
• k identifies the type of information that the originator

sink node Gz is interested on. It is expressed in binary
encoding, thus allowing 28 = 256 different data values.

• AT contains the address of the node(s) that should
react to the current GET request by transmitting to the
originator sink node Gz their k class-related information.
As for similar fields, AT is represented in 2-byte binary
encoding, as shown in Fig. 2.

• AGz contains the address of the sink node Gz originating
the GET data collection request and is represented in 2-
byte binary encoding, as shown in Fig. 2.

• c contains an incremental index useful for packet marking
and endless repetition avoidance.

• wy represents an index identifying the group of nodes that
have to reply with their k class-related data (if present),
as further detailed in the following.

According to the GET packet’s format shown in Fig. 15,
RouMBLE provides two different approaches (in terms of data
collection), leaving the specific sink node emitting the GET
message to (i) send a request to all nodes (in broadcast, to
collect data from all of them), (ii) target only a specific node,
or (iii) target a specific group of nodes (through a group index
wy). In detail, RouMBLE performs as follows.

Should the originator sink node Gz be interested in targeting
all nodes composing the mesh network, then it should emit
a generalized GET request with AT = FF—as discussed in
Fig. 2, this can be considered as a particular broadcast address,
as valid unicast addresses are in the range 0000-79FF.

Should the sink node Gz be interested in targeting only a
specific node, then it should send a GET request enumerating
AT with the 2-byte address representation of the interested
node (e.g., with reference to Fig. 2, the address 1AB3).

Should the sink node Gz be interested in data pertaining only
a specific sub-set of nodes, then it should emit a generalized
GET request with AT = FF and specify a proper integer group
index wy interpreted as follows:{
ASx

}
DEC
∈
{
wyΩBS, wyΩBS+1, . . . , (wy+1)ΩBS−1

}
(1)

where ΩBS it the size of the sub-set and {·}DEC corresponds to
a HEX-to-DEC base conversion. In detail, a node Sx belongs
to a certain group wy if its address ASx (converted in the
decimal base) is included in the values’ set defined in Eq. (1).

PRMS ASCURR L N ANH CSEN k AORIG AGz T v

Fig. 16: Structure of a SEN packet used by nodes to send
information inside the BLE-based mesh network itself.

As a numerical example, considering ΩBS = 40 and wy = 7,
a group-targeted GET request will be handled as follows:
• a node Sx with address ASx = 0127 will reply to a sink

node Gz originating the GET packet, since {0127}DEC =
295 ∈ {280, . . . , 319};

• a node Sx with address ASx = 0144 will not reply
to a sink node Gz originating the GET packet, since
{0144}DEC = 324 /∈ {280, . . . , 319}.

Hence, when a GET packet is received, each node checks
it and, in the presence of a positive outcome, the node starts
preparing a response message (discussed in Subsection V-B)
for each information to be returned to the sink node Gz origi-
nating the GET request. Finally, in the case of a broadcast GET
packet (e.g., with AT = FF), each node receiving the GET
request has to support the propagation of this GET message
in the mesh network: it thus generates a new GET packet with
an updated A∗SCURR

equal to its own address (as detailed for
BOM packets in Subsection IV-C).

B. Data Collection - Response (Uplink)

When a mesh node needs to send data to a sink node (e.g.,
Gz)—in both the cases that the sink node is “polling” the
network or the node itself is proactively sending data because
of its operational characteristics—it will exploit the existence
of the routing tables created as discussed in Section IV. In
particular, each node should use a specific message, denoted
as SEN packet and shown in Fig. 16, able to flow in the mesh
network and targeting the corresponding sink node Gz . The
fields of the SEN packet can be denoted as follows.
• ANH contains the address of the next-hop node toward

the sink node Gz (retrieved by the specific routing table
R(Gz) at the node).

• CSEN marks the current message as a SEN packet.
• k identifies the type of payload (requested by the
Gzthrough a GET request, or proactively decided by the
node itself) carried by the SEN message. As detailed in
Subsection V-A, k is expressed in binary encoding, thus
allowing 28 = 256 different data values.

• AORIG contains the address of the mesh node that
originated the response transmission (through the SEN
packet). As similar address fields, AORIG is represented
in 2-byte binary encoding, as shown in Fig. 2.

• AGz contains the address of the sink node Gz which the
information payload v should be delivered to. As AORIG,
AGz is represented in 2-byte binary encoding, as shown
in Fig. 2.

• T contains the timestamp reference of the collection
instant by the mesh node AORIG and is expressed with
binary encoding.

• v corresponds to the information payload to be delivered
to the sink node Gz .

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 11

Algorithm 2 SEN packets handling by a BLE mesh node Sx.

1: if PTYPE = PRMS then
2: if P contains CSEN then
3: if ANH = ASx then
4: if AGz = ASx then . [sink node Gz]
5: handle received data
6: else . [Mesh node Sx]
7: retrieve new next-hop node from R(Gz)

Sx
8: generate new SEN packet
9: discard old SEN packet

10: else
11: discard SEN packet
12: else
13: continue
14: else
15: continue

Moreover, as highlighted in Fig. 16, since a SEN packet
should strictly address a specific sink node (i.e., the one origi-
nating the previous GET request, e.g., Gz , as well as a specific
destination sink node), the fields DTYPE and ATYPE should
comply with a unicast transmission (e.g., with DTYPE = L and
ATYPE = N).

Since RouMBLE exploits data transmission over BLE ad-
vertisement channels, each SEN packet is received by all
neighbors (i.e., within the transmission range) of each node.
To this end, each neighbor node receiving the SEN packet is
aware (by construction) of being either a sink node or a normal
node. Because of this, each node will perform different checks,
as shown in Algorithm 2, to verify if the identity of the next-
hop node ANH is that of the sink node AGz . Should this be
the case, this would mean that the SEN packet has reached
its final destination Gz . At the opposite (i.e., if ANH 6= Gz),
then the node with address ANH (say, for example, Sx) should
perform the following steps:

1) it retrieves the next-hop node for the referred sink node
Gz from its internal routing table R(Gz)

Sx ;
2) it generates a new SEN packet, updating the address of

the current sending node A∗SCURR
and that of the next-

hop node A∗NH toward the sink node Gz , and transmits
it;

3) it discards the old SEN packet, not re-transmitting it to
avoid congesting the mesh network.

C. Data Collection: an Illustrative Example

In order to better clarify the data collection procedure de-
tailed in Subsection V-A and Subsection V-B, in the following
an illustrative example, based on the network shown in Fig. 9,
is presented.

Given that every node in the network in Fig. 9 has its own
routing table R(Gz) built as shown in Subsection IV-D, assume
that, at a certain time instant, a GET request is sent by the
sink node Gz and node S2 is the destination node which needs
to reply to Gz . Then:

1) S2 executes a lookup operation in its routing table R(Gk)
S2 ,

looking for the best candidate next-hop node toward the

PRMS AS2 L N AS6 CSEN k AS2 AGk T v

Fig. 17: SEN packet sent from node S2.

PRMS AS6 L N AGk CSEN k AS2 AGk T v

Fig. 18: SEN packet sent from node S6.

sink node Gz , and selects S6 (with its address AS6) as
next-hop node;

2) S2 creates a SEN packet (with the structure shown in
Fig. 17), setting the SEN originator address AORIG and
the RMS originator address ASCURR

with its own ad-
dress AS2 , and the next-hop node address with the
address of S6 (namely, AS6).

When S6 receives the SEN packet sent from S2, it performs
the checks detailed in Algorithm 2 and, once positively con-
cluded, it creates a new SEN packet as shown in Fig. 18. In
this new packet, the SEN’s payload is left unmodified, while
inserting as RMS originator address ASCURR its own address
AS6and as next-hop node address the address of the sink node
Gz (namely, AGz), since S6 is directly connected with Gz .

VI. USE CASES

In order to further highlight the possibilities given by
the proposed routing protocol, we now outline potentially
applicable use cases.

A. Topology Mapping at Sink Node Side

In RouMBLE, the use of SEN packets would allow to
map the mesh network topology (built through BOM packets)
directly at the sink node(s). To do this, it would be sufficient
to reserve a specific value for the information type identifier
k (denoted as kNTM): when a GET request is received from
the sink node Gz , each node replies preparing a SEN packet
to Gz with the structure shown in Fig. 19, where the fields can
be described as follows.
• ANH contains the address of the next-hop node toward

the sink node Gz (retrieved by its internal routing table
R(Gz)).

• kNTM represents the information type identifier reserved
for the network topology mapping.

• AORIG contains the address of the node that generates
the response SEN packet. As for similar address fields,
AORIG is expressed in 2-byte binary encoding, as shown
in Fig. 2.

• ` is retrieved from the routing table R(Gz) of the node and
corresponds to the depth (in terms of number of hops)
between the node itself and the sink node Gz which the
SEN packet should be sent to.

• x contains the address of the next-hop node toward
the sink node Gz (retrieved by its internal routing table
R(Gz)).

Through the SEN packet shown in Fig. 19, it is possible
to let the sink node Gz be aware of the next-hop entity of
each node participating to the mesh network itself, with a
“backup” information represented by the depth ` contained in

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 12

PRMS ASCURR
DTYPE N ANH CSEN kNTM AORIG AGz ` x

Fig. 19: SEN packet built by mesh nodes for network topology
mapping purposes.

TABLE VI: Sensing table ΠSENSE based on RSSI information
and stored inside a BLE node.

MAC Address RSSI [dBm] Packets Counter
8A:FD:7A:87:76:11 −87 6
4A:5B:6D:3C:2D:1E −81 45

.

each SEN packet. Thus, once the SEN packet is received by the
sink node, the sink node will be able to infer the current tree
topology (rooted at itself) for further purposes (e.g., graphical
representation)

Finally, it should be noted that, even though the original
SEN packet sent by each node contains the address of its next-
hop node twice (in the fields x and ANH), the value of the
field x will not be modified during the intermediate operations
that will be performed on the intermediate SEN packets, while
ANH will change at each SEN message’s redefinition.

B. Sensing of BLE Devices in the Neighborhood

In addition to routing functionalities, RouMBLE may be
applied, as anticipated in Section I, to sense BLE devices
through BLE signal parameters (e.g., Received Signal Strength
Indicator, RSSI).

1) Sensing Table Definition: Assume that, at fixed times,
each BLE device emits an ADVertisement (ADV) packet
which contains the originator nodes’s MAC address, RSSI
value, and additional information. Each time a BLE ADV
packet is detected by a BLE node, an admission decision
is made, based on the RSSI of the packet itself and on its
information content. If this RSSI-based check is successfully
completed, then the contained information is forwarded to
application functionalities (internal to the node itself) in charge
of processing (and possibly storing) them for further analysis.
As an example, information on discovered BLE devices can
be stored in a structure such as the one shown in Table VI,
containing (i) the MAC address of the detected BLE device
(obtained at lower stack layers), (ii) the number of BLE ADV
packets detected, and (iii) the best RSSI value (dimension:
[dBm]) among all these ADV packets.

2) Heatmap Creation: Upon construction of a BLE sensing
table, as discussed in Subsection VI-B1, one can derive a
“heatmap” of the environment where BLE devices are still
active (and could move in, if needed). In detail, such a heatmap
derives from the sensing table ΠSENSE shown in Table VI,
with a supplementary tracking information. More precisely,
this information is a binary information on the proximity of
the “sensed” BLE device, as shown in Table VII (Near: Yes
or No). In detail, each time an ADV packet is detected by a
listening BLE device, the following steps take place:
• if an entry for the detected MAC address is not present

in ΠPROX, then a new record is added;
• if the MAC address already exists in ΠPROX, then (i)

the packets counter is increased by 1, (ii) a check on

TABLE VII: Enhanced proximity table ΠPROX used for
heatmap generation and based on RSSI information.

MAC Address RSSI [dBm] Packets Counter Near
8A:FD:7A:87:76:11 −87 6 N
4A:5B:6D:3C:2D:1E −81 45 Y

.

Fig. 20: Example of the tracking of a device TTRACK inside
an environment.

PRMS ASCURR
DTYPE N ANH CSEN kTO AORIG AGTRACK

T v

Fig. 21: SEN packet defined for the tracking of a device
TTRACK.

the RSSI strength (with respect to that contained in the
heatmap table ΠPROX) is performed multiple times, and
(iii) if the majority of the sensed RSSIs is above a certain
threshold γRSSI, then the detected MAC address will be
marked as near (Near = Y); otherwise, it will be marked
as far (Near = N) inside the heatmap table ΠPROX.

Moreover, in order to keep the sensed information updated,
the information inside the heatmap ΠPROX may be period-
ically refreshed (e.g., filtering the information with sliding
windows).

3) Device Tracking: Finally, another use case that could
be handled through the adoption of RouMBLE is tracking
of a mobile device TTRACK (identified by its MAC address
MTTRACK

).
In detail, once an ADV packet positively satisfies both

the first admission check for ΠSENSE (discussed in Subsec-
tion VI-B1) and the second proximity check for ΠPROX (dis-
cussed in Subsection VI-B2), then its RSSI is compared with a
third (more stringent) RSSI threshold (denoted as γRSSI−TO).
Should the sensed RSSI be above γRSSI−TO, then, as shown
in Fig. 20, a new SEN packet should be prepared to keep the
specific sink node GTRACK updated on TTRACK. Its structure
is shown in Fig. 21 and its fields can be described as follows.
• ASCURR

contains the address of the BLE node detecting
the specific MAC address MTTRACK

and originating the
current SEN packet.

• ANH contains the address of the next-hop node toward the
sink node GTRACK interested in tracking MTTRACK

in-
side the mesh network itself.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 13

• kTO represents the service type identifier defined and
reserved for the tracking functionality.

• AORIG contains the address of the originator node that
detected the specific MAC MTTRACK

and, as for similar
address fields, is expressed in 2-byte binary encoding (as
shown in Fig. 2).

• AGTRACK
contains the address of the sink node interested

in receiving the tracking information and is expressed in
2-byte binary encoding (as shown in Fig. 2).

• T contains a time reference (e.g., a timestamp) related to
the RSSI detection’s time instant.

• v may contain additional data to be inserted inside the
SEN packet toward the sink node GTRACK.

When the sink node GTRACK receives SEN packets carrying
the service type kTO, it then keeps track of the nodes “sensing”
the specific MAC addressMTTRACK . In this way, each time a
SEN packet is received, GTRACK may process its information
and react, as a consequence, with specific behaviors: as an
example, the sink node might select a BLE node Sε (identified
by its address ASε) among those that previously detected
GTRACK and send it a new request to execute a specific task
(similarly to a GET request).

Finally, an additional use case that is enabled by RouM-
BLE corresponds to an aggregate export (toward a requesting
sink node) of the sensing table ΠSENSE maintained by each
BLE node with an active sensing functionality. Moreover,
defining and reserving a proper set of service types, it would
be possible for a sink node to retrieve (with either unicast
or broadcast communications) statistical information based on
the content of ΠSENSE, such as, for example: (i) the sum of
packets counters for each MAC address stored in ΠSENSE for
each specific BLE node; (ii) the amount of MAC addresses
present in ΠSENSE for each specific BLE node; and (iii) a
mixed combination of these indicators.

Eventually, the format defined for the SEN packet can be
used to retrieve the sensing table content from each node which
is sensing the BLE devices in its neighborhood. In detail, each
node will have to send to the specific sink node (interested on
this kind of information) a SEN packet for each record in its
sensing tables.

C. Node Failures and Network Attack Handling

Finally, we comment on how RouMBLE can handle two
possible problematic situations, namely: (i) the failure of a
mesh node and (ii) an attack to the mesh network itself.

1) Node Failure: Detecting and handling a node failure is
enabled by the inner features of RouMBLE, in particular its
compatibility with multiple sink nodes as well as the identifi-
cation of multiple routes toward a specific sink node. Thanks
to the underlying wireless nature of the BLE protocol and the
flooding paradigm exploited by RouMBLE, each active node
“hears” the network traffic flowing through the mesh network
itself. This allows each node to rank the nodes according
to their transmission activity (“talkative” or “silent”). Each
time an active node (denoted as AALIVE) suspects a “too
silent” node (denoted as ADEAD) to be dead, AALIVE could
send a “warning” SEN packet to all its known—due to their

presence in its routing tables—sink nodes, in order to warn
them about this possibility. Consequently, each of these sink
nodes will be able to estimate (on the basis of the amount
of warning notifications received from the mesh nodes) the
level of criticality brought by ADEAD’s death. If the level of
criticality is recognized as being low, then no action is taken
by the sink node; otherwise, if the level of criticality is deemed
high by a sink node, this sink node broadcasts a GET packet
toward the mesh nodes denoted by a specific service type
identifier (e.g., denoted as kDEAD) and containing ADEAD as
payload, in order to ask each mesh node to mark all their
routing table entries containing ADEAD as next-hop as “not
preferrable.” In a limiting case, a sink node may request each
mesh node to completely remove (and not only to mark it
as “not preferrable”) ADEAD from their routing tables in the
event that ADEAD does not reply to a direct GET request sent
from the sink node itself.

2) Network Attack: We focus on two relevant attacks,
namely: (i) a malicious node trying to join the BLE mesh
network; (ii) a jamming node trying to pollute the network
with malicious traffic.

In order to counteract a new malicious node trying to join
the mesh network, RouMBLE can be integrated with the
following two additional functionalities involving both sink
nodes and legitimate mesh nodes: (i) an admission check and
(ii) the adoption of security group keys. Both these features can
be managed by the sink nodes governing the mesh network,
with the admission check based on pre-filled lookup tables,
containing a direct mapping between MAC and node (BLE)
addresses of each legitimate node, and group keys defined by
sink nodes and distributed (for their consequent adoption) to
all the legitimate nodes. The use of group keys requires to
handle keys’ refreshing (in the presence of ousted nodes), but
this might rely on well-known approaches proposed in the
literature. We remark that a pre-admission stage is already
considered in the current version of RouMBLE to avoid
addresses’ mismatch and duplication.

If a malicious node (generically denoted as AMALICIOUS)
manages to join the network and want to start poisoning
the mesh network with malicious traffic, RouMBLE can
counteract it exploiting knowledge of the behaviour of the
nodes—namely, static or mobile—and the ability to parse the
payloads of the BLE packets defined by RouMBLE itself. With
regard to the nodes’ behaviour, given that a legitimate node
(generically denoted as ALEGIT) can estimate (as detailed in
Subsection VI-B) how neighboring nodes are performing (at
the RSSI level): if the scenario is static and ALEGIT senses
that a (malicious) node (denoted as AMALICIOUS) returns
an “unusual” RSSI, then ALEGIT can mark AMALICIOUS as
a banned mesh node inside its internal admission check
stage, thus discarding (e.g., on the basis of the MAC ad-
dress) each packet sent by AMALICIOUS. As a consequence,
should the sink nodes governing the mesh network be notified
about this malicious entity, a new service type identifier
(e.g., denoted as kMALICIOUS) can be defined and used to
notify the nodes. Finally, exploiting the parsing ability of
RouMBLE, if ALEGIT repeatedly detects exceptions when
parsing the payloads received by a specific mesh node (namely,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 14

AMALICIOUS), it can identify this behavior as representative
of a malicious node attempting to pollute the mesh network
with “unknown” information. In general, it would be useful to
define a guarantee policy to minimize the probability of incor-
rectly classifying a node as malicious. In this case, similarly
to the previous situation, ALEGIT can mark AMALICIOUS as
a banned node and inform all its known sink nodes about this
situation (exploiting the newly-defined kMALICIOUS service
type identifier).

Finally, regardless of the specific threat, RouMBLE is
attractive (in comparison with other routing protocols) since
it allows to also localise the malicious node exploiting, for
example, the operational mode detailed in Subsection VI-B3
and tracking AMALICIOUS.

VII. EXPERIMENTAL PERFORMANCE EVALUATION

In order to investigate the behaviour of RouMBLE in
a real context, an experimental performance evaluation has
been performed considering a BLE mesh network (shown in
Fig. 22) composed by 1 sink node and 50 on-field nodes. In
detail, both sink and on-field nodes are custom-made boards,
each hosting a BMD-300 BLE module [58] (based on the
Nordic Semiconductor’s nRF52832 general-purpose SoC [59])
and a white LED being turned on and off based on the
instructions defined in the nodes’ FirmWare (FW). This testbed
was organised at the headquarter of TCI Telecomunicazioni
Italia s.r.l., Saronno, Italy.

The 50 mesh nodes were deployed in a 2-floor office build-
ing, with the sink node located in a position not allowing direct
interaction with all the on-field nodes and, thus, requiring the
use of mesh networking with RouMBLE. Moreover, as the
operational mode chosen for the experimental evaluation is
identical to that of the use case discussed in Subsection VI-A,
in order to verify the correct implementation of RouMBLE,
the on-board FW of each node has been coded so that its on-
board LED turns on when a BOM packet is received and turns
off upon reception of a GET request.

Various experimental data collection campaigns have been
performed, trying to identify a reasonable number of BOMs to
be sent from the sink node toward the nodes, in order to allow
completion of their routing tables and maximise the amount of
responses (i.e., SEN messages) received by the sink itself when
it requests an action through the emission of a GET packet.
As shown in Fig. 23 (where the error bars’ limits identify
worst and best occurrences among the overall evaluations),
the experimental results suggest that the configuration with
20 BOM packets is the best candidate in such a scenario.
As a general consideration, the obtained results are specific
for the considered configuration, while even a smaller amount
of BOMs might be considered as acceptable in a different
context (e.g., this depends on the acceptability threshold that
each scenario may present).

VIII. CONCLUSIONS

In this paper, we have proposed RouMBLE, a sink-oriented
routing protocol for BLE-based mesh networks intended to
address different classes of devices and build a sink-oriented

(a)

Front Rear

BLE interface

LED

Microcontroller

(b)

Fig. 22: (a) Experimental testbed composed by custom-made
boards hosting a BMD-300 BLE module (based on the Nordic
Semiconductor’s nRF52832 SoC). (b) Front and rear view of
an experimental board involved in the RouMBLE-based mesh
network, and composed by the BMD-300 BLE module, an
Atmel microcontroller hosting the FW functionalities, and a
white LED used for visual feedback.

topology, thus allowing to perform various tasks. In detail,
BLE mesh networks with RouMBLE can be seen as composed
by cooperating heterogeneous devices which exploit a topolog-
ical organisation based on the use of a “controlled” flooding
mechanism at low layers. The proposed approach embodies
the advantages of the flooding mechanism (e.g., simplicity and
absence of connection establishment requirements) with those
of routing-based schemes and, in the specific BLE implemen-
tation case, advertisement channel-based communications.

Further research activities of interest might include: (i) the
integration of IPv6 support (through proper address compres-
sion, to be adopted by IoT constrained devices); (ii) compar-
isons, in the BLE case, with approaches based on the use of

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 15

Fig. 23: Experimental performance results obtained in a BLE-
based mesh network composed by 1 sink node and 50 on-field
nodes.

data channels; (iii) the implementation of RouMBLE through
microcontroller-oriented (e.g., MicroPython) and high-level
(e.g., Python or Java) programming languages, to let the
proposed routing protocol being deployed also on devices
supporting these libraries (with a consequent performance
comparison); and (iv) an experimental performance evaluation
in heterogeneous scenarios (e.g., crowded events, such as
concerts and music festivals) in order to analysis the Quality
of Experience (QoE) perceived by end-users wearing, as
an example, wearable nodes receiving commands from the
control room. Finally, although RouMBLE has been presented
for BLE networks, its principles could be applied to networks
based on different wireless technologies.

ACKNOWLEDGMENTS

This work was supported by TCI Telecomunicazioni Italia
s.r.l.. The work of L. Davoli and G. Ferrari has been partially
funded by the European Union’s Horizon 2020 research and
innovation program ECSEL Joint Undertaking (JU) under
grant agreement No. 876038, InSecTT project - “Intelligent
Secure Trustable Things,” and by the “Technologies, Algo-
rithms, and Protocols for Use Cases of Industrial Networks”
(TAP-IN) cascade call project, under the National Recovery
and Resilience Plan (NRRP) of NextGenerationEU, Mission 4
Component 2 Investment 1.3, “RESearch and innovation on fu-
ture Telecommunications systems and networks, to make Italy
more smart” (RESTART) project (code PE00000001) Call n.
341 of 15.03.2022 of the Italian Ministry of University and
Research (MUR), Spoke 5 “Industrial and Digital Transition
Networks” (IN). The JU received support from the European
Union’s Horizon 2020 research and innovation programme
and the nations involved in the mentioned projects. The work
reflects only the authors’ views; the European Commission
is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] Internet Engineering Task Force (IETF). Accessed on Sept. 25, 2024.
[Online]. Available: https://www.ietf.org/

[2] “Bluetooth Special Interest Group (SIG),” accessed on Sept. 25, 2024.
[Online]. Available: https://www.bluetooth.com/

[3] J. Nieminen et al., “IPv6 over BLUETOOTH(R) Low Energy,”
Internet Requests for Comments, Internet Engineering Task Force
(IETF), RFC 7668, October 2015. [Online]. Available: https:
//tools.ietf.org/rfc/rfc7668

[4] P. Di Marco et al., “Coverage Analysis of Bluetooth Low En-
ergy and IEEE 802.11ah for Office Scenario,” in IEEE Interna-
tional Symposium on Personal, Indoor, and Mobile Radio Communi-
cations (PIMRC), Hong Kong, China, August 2015, pp. 2283–2287,
doi:10.1109/PIMRC.2015.7343678.

[5] Z. Pei et al., “Application-Oriented Wireless Sensor Network Com-
munication Protocols and Hardware Platforms: A Survey,” in IEEE
International Conference on Industrial Technology (ICIT), Chengdu,
April 2008, pp. 1–6, doi:10.1109/ICIT.2008.4608532.

[6] A. Hernández-Solana et al., “Bluetooth Mesh Analysis, Issues,
and Challenges,” IEEE Access, vol. 8, pp. 53 784–53 800, 2020,
doi:10.1109/ACCESS.2020.2980795.

[7] S. M. Darroudi and C. Gomez, “Bluetooth Low Energy Mesh Networks:
A Survey,” Sensors, vol. 17, no. 7, 2017, doi:10.3390/s17071467.

[8] M. R. Ghori, T.-C. Wan, and G. C. Sodhy, “Bluetooth Low Energy Mesh
Networks: Survey of Communication and Security Protocols,” Sensors,
vol. 20, no. 12, 2020, doi:10.3390/s20123590.

[9] S. Sirur et al., “A Mesh Network for Mobile Devices using Bluetooth
Low Energy,” in IEEE SENSORS, Busan, Korea (South), November
2015, pp. 1–4, doi:10.1109/ICSENS.2015.7370451.

[10] S. S. Basu, M. Baert, and J. Hoebeke, “QoS Enabled Heterogeneous
BLE Mesh Networks,” Journal of Sensor and Actuator Networks,
vol. 10, no. 2, 2021, doi:10.3390/jsan10020024.

[11] M. Spörk et al., “BLEach: Exploiting the Full Potential of IPv6 over
BLE in Constrained Embedded IoT Devices,” in ACM Conference on
Embedded Network Sensor Systems (SenSys), Delft, Netherlands, 2017,
pp. 1–14, doi:10.1145/3131672.3131687.

[12] Blue Light Link (BLL), “BLL System,” accessed on Sept. 25, 2024.
[Online]. Available: https://www.bluelightlink.com/bll-system/

[13] Freifunk, “Better Approach to Mobile Ad-hoc Networking
(B.A.T.M.A.N.) Routing Protocol,” accessed on Sept. 25, 2024. [Online].
Available: https://www.open-mesh.org/projects/open-mesh/wiki

[14] I. Akyildiz and X. Wang, “A Survey on Wireless Mesh Networks,”
IEEE Communications Magazine, vol. 43, no. 9, pp. S23–S30, 2005,
doi:10.1109/MCOM.2005.1509968.

[15] S. Waharte et al., “Routing Protocols in Wireless Mesh Networks: Chal-
lenges and Design Considerations,” Multimedia Tools and Applications,
vol. 29, no. 3, pp. 285–303, June 2006, doi:10.1007/s11042-006-0012-8.

[16] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-
Hop Wireless Mesh Networks,” in Annual International Conference on
Mobile Computing and Networking (MobiCom), Philadelphia, PA, USA,
2004, pp. 114–128, doi:10.1145/1023720.1023732.

[17] M. E. M. Campista et al., “Routing Metrics and Protocols for Wireless
Mesh Networks,” IEEE Network, vol. 22, no. 1, pp. 6–12, 2008,
doi:10.1109/MNET.2008.4435897.

[18] Bluetooth, “Mesh Networking,” accessed on Sept. 25, 2024.
[Online]. Available: https://www.bluetooth.com/learn-about-bluetooth/
recent-enhancements/mesh/

[19] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals,” Internet Requests for
Comments, Internet Engineering Task Force (IETF), RFC 4919, August
2007. [Online]. Available: https://tools.ietf.org/rfc/rfc4919

[20] B. Luo et al., “Neighbor Discovery for IPv6 over BLE Mesh Networks,”
Applied Sciences, vol. 10, no. 5, 2020, doi:10.3390/app10051844.

[21] S. M. Darroudi and C. Gomez, “Experimental Evaluation of 6BLEMesh:
IPv6-Based BLE Mesh Networks,” Sensors, vol. 20, no. 16, Aug 2020,
doi:10.3390/s20164623.

[22] C. Gomez et al., “From 6LoWPAN to 6Lo: Expanding the Uni-
verse of IPv6-Supported Technologies for the Internet of Things,”
IEEE Communications Magazine, vol. 55, no. 12, pp. 148–155, 2017,
doi:10.1109/MCOM.2017.1600534.

[23] T. Savolainen, J. Soininen, and B. Silverajan, “IPv6 Addressing Strate-
gies for IoT,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3511–3519,
2013, doi:10.1109/JSEN.2013.2259691.

[24] A. Gogic et al., “Performance Analysis of Bluetooth Low Energy Mesh
Routing Algorithm in Case of Disaster Prediction,” International Journal
of Computer and Information Engineering, vol. 10, no. 6, pp. 1075–
1081, 2016, doi:10.5281/zenodo.1124690.

[25] H. Kim, J. Lee, and J. W. Jang, “BLEmesh: A Wireless Mesh Network
Protocol for Bluetooth Low Energy Devices,” in International Confer-
ence on Future Internet of Things and Cloud (FiCloud), Rome, Italy,
August 2015, pp. 558–563, doi:10.1109/FiCloud.2015.21.

[26] S. Biswas and R. Morris, “ExOR: Opportunistic Multi-Hop Routing for
Wireless Networks,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4,
pp. 133–144, 2005, doi:10.1145/1090191.1080108.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.ietf.org/
https://www.bluetooth.com/
https://tools.ietf.org/rfc/rfc7668
https://tools.ietf.org/rfc/rfc7668
https://www.bluelightlink.com/bll-system/
https://www.open-mesh.org/projects/open-mesh/wiki
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://tools.ietf.org/rfc/rfc4919

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 16

[27] E. Rozner et al., “SOAR: Simple Opportunistic Adaptive Routing Pro-
tocol for Wireless Mesh Networks,” IEEE Transactions on Mobile Com-
puting, vol. 8, no. 12, pp. 1622–1635, 2009, doi:10.1109/TMC.2009.82.

[28] B. K. Maharjan, U. Witkowski, and R. Zandian, “Tree Network
based on Bluetooth 4.0 for Wireless Sensor Network Applica-
tions,” in European Embedded Design in Education and Research
Conference (EDERC), Milan, Italy, September 2014, pp. 172–176,
doi:10.1109/EDERC.2014.6924382.

[29] G. Patti, L. Leonardi, and L. Lo Bello, “A Bluetooth Low Energy real-
time protocol for Industrial Wireless mesh Networks,” in Annual Con-
ference of the IEEE Industrial Electronics Society (IECON), Florence,
Italy, October 2016, pp. 4627–4632, doi:10.1109/IECON.2016.7793093.

[30] K. Mikhaylov and J. Tervonen, “Multihop Data Transfer Service for
Bluetooth Low Energy,” in International Conference on ITS Telecom-
munications (ITST), Tampere, Finland, November 2013, pp. 319–324,
doi:10.1109/ITST.2013.6685566.

[31] Y. K. Reddy et al., “Demo: A Connection Oriented Mesh Network
for Mobile Devices Using Bluetooth Low Energy,” in ACM Conference
on Embedded Networked Sensor Systems (SenSys), Seoul, South Korea,
2015, pp. 453–454, doi:10.1145/2809695.2817850.

[32] Z. Guo et al., “An On-Demand Scatternet Formation and Multi-
Hop Routing Protocol for BLE-based Wireless Sensor Networks,”
in IEEE Wireless Communications and Networking Conference
(WCNC), New Orleans, LA, USA, March 2015, pp. 1590–1595,
doi:10.1109/WCNC.2015.7127705.

[33] A. Balogh et al., “Service Mediation in Multihop Bluetooth Low
Energy Networks based on NDN Approach,” in International
Conference on Software, Telecommunications and Computer Net-
works (SoftCOM), Split, Croatia, September 2015, pp. 285–289,
doi:10.1109/SOFTCOM.2015.7314123.

[34] V. Park and M. Corson, “A highly adaptive distributed routing algorithm
for mobile wireless networks,” in IEEE INFOCOM, vol. 3, Kobe, Japan,
1997, pp. 1405–1413, doi:10.1109/INFCOM.1997.631180.

[35] J. Raju and J. Garcia-Luna-Aceves, “A comparison of on-demand and
table driven routing for ad-hoc wireless networks,” in IEEE International
Conference on Communications (ICC), vol. 3, New Orleans, LA, USA,
2000, pp. 1702–1706, doi:10.1109/ICC.2000.853784.

[36] W. List and N. Vaidya, “A routing protocol for k-hop net-
works,” in IEEE Wireless Communications and Networking Confer-
ence (WCNC), vol. 4, Atlanta, GA, USA, 2004, pp. 2545–2550,
doi:10.1109/WCNC.2004.1311489.

[37] J. Jun and M. L. Sichitiu, “MRP: Wireless Mesh Networks Routing
Protocol,” Computer Communications, vol. 31, no. 7, pp. 1413–1435,
May 2008, doi:10.1016/j.comcom.2008.01.038.

[38] Qualcomm, “CSRmesh Development Kit,” accessed on Sept. 25, 2024.
[Online]. Available: https://www.qualcomm.com/products/technology/
bluetooth/csrmesh-development-kit

[39] Nordic Semiconductor, “nRF OpenMesh (formerly nRF51-ble-
broadcast-mesh),” accessed on Sept. 25, 2024. [Online]. Available:
https://github.com/NordicPlayground/nRF51-ble-bcast-mesh

[40] Wirepas, “Wirepas Mesh,” accessed on Sept. 25, 2024. [Online].
Available: https://haltian.com/resource/what-is-wirepas-mesh/

[41] MeshTek, “Advanced Bluetooth Mesh Network,” accessed on Sept. 25,
2024. [Online]. Available: https://www.meshtek.com/meshtek-platform/

[42] Mindtree, “EtherMind Bluetooth Mesh,” accessed on Sept.
25, 2024. [Online]. Available: https://www.ltimindtree.
com/services/customer-success/product-engineering-services/
wireless-ip-engineering-services/ethermind-bluetooth-mesh/

[43] “Estimote,” accessed on Sept. 25, 2024. [Online]. Available: https:
//estimote.com/

[44] NXP Semiconductors, “Bluetooth Smart/Bluetooth Low
Energy,” accessed on Sept. 25, 2024. [On-
line]. Available: https://www.nxp.com/products/wireless-connectivity/
bluetooth-low-energy:BLUETOOTH-LOW-ENERGY-BLE

[45] P. Levis et al., “The Trickle Algorithm,” Internet Requests for
Comments, Internet Engineering Task Force (IETF), RFC 6206, March
2011. [Online]. Available: https://tools.ietf.org/rfc/rfc6206

[46] D. S. J. De Couto et al., “A High-Throughput Path Metric for Multi-
Hop Wireless Routing,” Wireless Networks, vol. 11, no. 4, pp. 419–434,
July 2005, doi:10.1007/s11276-005-1766-z.

[47] T. Lee et al., “A Synergistic Architecture for RPL over BLE,”
in Annual IEEE International Conference on Sensing, Communica-
tion, and Networking (SECON), London, UK, June 2016, pp. 1–9,
doi:10.1109/SAHCN.2016.7732968.

[48] T. Winter et al., “RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks,” Internet Requests for Comments, Internet

Engineering Task Force (IETF), RFC 6550, March 2012. [Online].
Available: https://tools.ietf.org/rfc/rfc6550

[49] L. Zhang et al., “Named Data Networking,” SIGCOMM Com-
put. Commun. Rev., vol. 44, no. 3, pp. 66–73, July 2014,
doi:10.1145/2656877.2656887.

[50] V. Jacobson et al., “Networking Named Content,” in International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT), Rome, Italy, 2009, pp. 1–12, doi:10.1145/1658939.1658941.

[51] E. Royer and Chai-Keong Toh, “A review of current routing protocols
for ad hoc mobile wireless networks,” IEEE Personal Communications,
vol. 6, no. 2, pp. 46–55, 1999, doi:10.1109/98.760423.

[52] D. B. Johnson and D. A. Maltz, Dynamic Source Routing in Ad Hoc
Wireless Networks. Boston, MA: Springer US, 1996, pp. 153–181,
doi:10.1007/978-0-585-29603-6 5.

[53] C. Perkins and E. Royer, “Ad-Hoc On-Demand Distance Vector Rout-
ing,” in IEEE Workshop on Mobile Computing Systems and Ap-
plications (WMCSA), New Orleans, LA, USA, 1999, pp. 90–100,
doi:10.1109/MCSA.1999.749281.

[54] Freifunk, “B.A.T.M.A.N. Advanced,” accessed on Sept. 25, 2024.
[Online]. Available: https://www.open-mesh.org/projects/batman-adv/
wiki/Wiki

[55] L. Liu et al., “Performance Evaluation of BATMAN-Adv Wireless Mesh
Network Routing Algorithms,” in IEEE International Conference on Cy-
ber Security and Cloud Computing (CSCloud)/IEEE International Con-
ference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai,
China, 2018, pp. 122–127, doi:10.1109/CSCloud/EdgeCom.2018.00030.

[56] Freifunk, “B.A.T.M.A.N. daemon,” accessed on Sept. 25, 2024.
[Online]. Available: https://www.open-mesh.org/projects/batmand/wiki/
Doc-overview

[57] K. Kiran et al., “Experimental Evaluation of BATMAN and BATMAN-
Adv Routing Protocols in a Mobile Testbed,” in IEEE Region 10
Conference (TENCON), Jeju, Korea (South), 2018, pp. 1538–1543,
doi:10.1109/TENCON.2018.8650222.

[58] u-blox, “BMD-300 – Stand-alone Bluetooth Low Energy Module,”
accessed on Sept. 25, 2024. [Online]. Available: https://content.u-blox.
com/sites/default/files/BMD-300 DataSheet UBX-19033350.pdf

[59] Nordic Semiconductor, “nRF52832 System-on-Chip,” accessed on Sept.
25, 2024. [Online]. Available: https://www.nordicsemi.com/products/
nrf52832

Luca Davoli (S’14–M’17) is a (non-tenured) As-
sistant Professor at the Internet of Things (IoT)
Lab, Department of Engineering and Architecture,
University of Parma, Parma, Italy. He obtained his
Dr. Ing. degree in computer engineering and his
Ph.D. in Information Technologies at the Department
of Information Engineering of the same university,
in 2013 and 2017, respectively. He is a Research
Scientist at things2i ltd., a spin-off of the University
of Parma dedicated to IoT and smart systems. His
research interests focus on IoT, Pervasive Comput-

ing, Big Stream and Software-Defined Networking.

Massimo Moreni is a developer and project man-
ager at the wireless and IoT department of TCI
Telecomunicazioni Italia s.r.l., Saronno, Italy. He
has more than twenty years’ experience in 2.4 GHz
wireless systems, since 2000 as Field Application
Engineer for ZigBee components and since 2010
in Bluetooth Mesh Smart Lighting applications. In
TCI Telecomunicazioni Italia he has developed a
proprietary wireless mesh communication protocol
based on BLE technology (BLL - Blue Light Link).
His professional interests are IoT, wireless mesh

networks, open source home/building automation, and energy harvesting
wireless sensors.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.qualcomm.com/products/technology/bluetooth/csrmesh-development-kit
https://www.qualcomm.com/products/technology/bluetooth/csrmesh-development-kit
https://github.com/NordicPlayground/nRF51-ble-bcast-mesh
https://haltian.com/resource/what-is-wirepas-mesh/
https://www.meshtek.com/meshtek-platform/
https://www.ltimindtree.com/services/customer-success/product-engineering-services/wireless-ip-engineering-services/ethermind-bluetooth-mesh/
https://www.ltimindtree.com/services/customer-success/product-engineering-services/wireless-ip-engineering-services/ethermind-bluetooth-mesh/
https://www.ltimindtree.com/services/customer-success/product-engineering-services/wireless-ip-engineering-services/ethermind-bluetooth-mesh/
https://estimote.com/
https://estimote.com/
https://www.nxp.com/products/wireless-connectivity/bluetooth-low-energy:BLUETOOTH-LOW-ENERGY-BLE
https://www.nxp.com/products/wireless-connectivity/bluetooth-low-energy:BLUETOOTH-LOW-ENERGY-BLE
https://tools.ietf.org/rfc/rfc6206
https://tools.ietf.org/rfc/rfc6550
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki
https://www.open-mesh.org/projects/batmand/wiki/Doc-overview
https://www.open-mesh.org/projects/batmand/wiki/Doc-overview
https://content.u-blox.com/sites/default/files/BMD-300_DataSheet_UBX-19033350.pdf
https://content.u-blox.com/sites/default/files/BMD-300_DataSheet_UBX-19033350.pdf
https://www.nordicsemi.com/products/nrf52832
https://www.nordicsemi.com/products/nrf52832

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 17

Gianluigi Ferrari (S’96–M’98–SM’12) received the
Laurea (summa cum laude) and Ph.D. degrees in
electrical engineering from the University of Parma,
Parma, Italy, in 1998 and 2002, respectively. Since
2002, he has been with the University of Parma,
where he is currently a Full Professor of telecom-
munications and also the coordinator of the Internet
of Things (IoT) Lab, Department of Engineering
and Architecture, University of Parma, Parma, Italy.
He is co-founder and President of things2i ltd., a
spin-off of the University of Parma dedicated to IoT

and smart systems. His current research interests include signal processing,
advanced communication and networking, and IoT and smart systems.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, JANUARY 2025 18

APPENDIX
APPENDIX A: ROUTING PATHS

With reference to Fig. 9, a list of all the possible routing paths among the nodes (without considering a BOM flooding
interruption due to the hop counter h) is shown in Table VIII. For the sake of completeness, routing paths considered as “not
allowed” because of the presence of endless loops are highlighted in gray color.

TABLE VIII: Routing paths among the nodes composing the topology shown in Fig. 9.

Distance d from Gk Routing paths
d = 1 Gk←S1; Gk←S6; Gk←S7
d = 2

Gk←S1←S4; Gk←S1←S2; Gk←S1←S6; Gk←S6←S2; Gk←S6←S8; Gk←S6←S1; Gk←S7←S8;
Gk←S7←S9

d = 3
Gk←S1←S4←S1; Gk←S1←S2←S1; Gk←S1←S2←S6; Gk←S1←S6←S2; Gk←S1←S6←S1;
Gk←S1←S6←S8; Gk←S1←S6←Gk; Gk←S6←S2←S1; Gk←S6←S2←S6; Gk←S6←S8←S6;
Gk←S6←S8←S7; Gk←S6←S1←Gk; Gk←S6←S1←S6; Gk←S6←S1←S4; Gk←S6←S1←S2;
Gk←S7←S8←S7; Gk←S7←S8←S6; Gk←S7←S9←S7

d = 4

Gk←S1←S2←S6←Gk; Gk←S1←S2←S6←S1; Gk←S1←S2←S6←S2; Gk←S1←S2←S6←S8;
Gk←S1←S6←S2←S1; Gk←S1←S6←S2←S6; Gk←S1←S6←S8←S6; Gk←S1←S6←S8←S7;
Gk←S6←S2←S1←Gk; Gk←S6←S2←S1←S6; Gk←S6←S2←S1←S2; Gk←S6←S2←S1←S4;
Gk←S6←S8←S7←Gk; Gk←S6←S8←S7←S8; Gk←S6←S8←S7←S9; Gk←S6←S1←S4←S1;
Gk←S6←S1←S2←S1; Gk←S6←S1←S2←S6; Gk←S7←S8←S6←Gk; Gk←S7←S8←S6←S1;
Gk←S7←S8←S6←S2; Gk←S7←S8←S6←S8

d = 5
Gk←S1←S2←S6←S8←S6; Gk←S1←S2←S6←S8←S7; Gk←S1←S6←S8←S7←Gk;
Gk←S1←S6←S8←S7←S9; Gk←S6←S2←S1←S4←S1; Gk←S6←S8←S7←S9←S7;
Gk←S7←S8←S6←S1←Gk; Gk←S7←S8←S6←S1←S6; Gk←S7←S8←S6←S1←S2;
Gk←S7←S8←S6←S1←S4; Gk←S7←S8←S6←S2←S6; Gk←S7←S8←S6←S2←S1

d = 6
Gk←S1←S2←S6←S8←S7←S9; Gk←S1←S2←S6←S8←S7←Gk; Gk←S1←S2←S6←S8←S7←S8;
Gk←S1←S6←S8←S7←S9←S7; Gk←S7←S8←S6←S1←S2←S1; Gk←S7←S8←S6←S1←S2←S6;
Gk←S7←S8←S6←S1←S4←S1; Gk←S7←S8←S6←S2←S1←Gk; Gk←S7←S8←S6←S2←S1←S6;
Gk←S7←S8←S6←S2←S1←S2; Gk←S7←S8←S6←S2←S1←S4

d = 7 Gk←S1←S2←S6←S8←S7←S9←S7; Gk←S7←S8←S6←S2←S1←S4←S1;

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3524746

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Works
	A Sink-Oriented Routing Protocol
	Send MeSsage (SMS) Packet
	Receive MeSsage (RMS) Packet

	Network Topology Construction
	BLE Originator Message (BOM) Packet
	Routing Table Update Operations
	BOM Packets Forwarding With Updated Fields
	Routing Tables Construction Example

	On-Field Data Collection
	Data Collection - Request (Downlink)
	Data Collection - Response (Uplink)
	Data Collection: an Illustrative Example

	Use Cases
	Topology Mapping at Sink Node Side
	Sensing of BLE Devices in the Neighborhood
	Sensing Table Definition
	Heatmap Creation
	Device Tracking

	Node Failures and Network Attack Handling
	Node Failure
	Network Attack

	Experimental Performance Evaluation
	Conclusions
	References
	Biographies
	Luca Davoli
	Massimo Moreni
	Gianluigi Ferrari

	Appendix: Appendix A: Routing Paths

