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We investigate decentralized detection in clustered sensor

networks with hierarchical multi-level fusion. We focus on simple

majority-like fusion strategies, leading to closed-form analytical

performance evaluation. The sensor nodes observe a binary

phenomenon and transmit their own data to an access point

(AP), possibly through intermediate fusion centers (FCs). We

investigate the impact of uniform and nonuniform clustering

on the system performance, evaluated in terms of probability

of decision error on the phenomenon status at the AP. Our

results show that, under a majority-like fusion rule, uniform

clustering leads to the minimum performance degradation,

which depends only on the number of decision levels rather

than on the specific clustered topology. We then extend our

approach, taking into account the impact of spatial variations of

the phenomenon, noisy communication links, and weighed fusion

rules. Finally the proposed distributed detection schemes are

characterized with simulation and experimental results (relative

to IEEE 802.15.4-based networks), which confirm the analytical

predictions.
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I. INTRODUCTION AND MOTIVATION

Distributed detection has been an active research

field for a long time [1]. The increasing interest in

sensor networks has spurred significant activity in the

design of efficient distributed detection techniques

[2—6]. In the last years, a larger and larger number

of civilian applications based on this technology

have been developed [7], e.g., for environmental

monitoring [8].

While in typical sensor network scenarios all

sensors communicate directly to an access point

(AP), which acts as a collector and processes the

received information, this configuration might not be

feasible in scenarios with a large number of nodes

or scenarios where the nodes are spread over a wide

surface. In this case, the information collected by a

sensor can be transferred to the AP through multiple

hops, i.e., by exploiting intermediate nodes as relays.

Besides the need to support multiple communications,

in several scenarios the information received by a

relay from sensors placed in a specific region might

be redundant. For example, a sensor network could

be used to monitor the average temperature of an

industrial plant: each industrial machinery could

be monitored by a group of sensors connected to

an intermediate relay. In this case, the relay does

not need to forward the information received by all

sensors, but can extract a concise “picture” of the

status of the monitored machinery.

The goal of this paper is the investigation of

the impact of clustering on the performance of

distributed detection schemes with multi-level fusion.

In particular, a simple majority-like rule is used at

each fusion level. This choice is motivated by the

fact that we consider scenarios where the AP does

not know the exact distribution of the sensors among

the clusters. This is meaningful, for instance, in large

networks where only local topology knowledge

is feasible and where the AP might assume that

all clusters have the same dimension. Moreover in

dynamic sensor networking scenarios, sensors might

die, and the clusters might become unbalanced. In this

case, intelligent reclustering techniques can be used

to improve the system performance [9]. On the other

hand, if the distribution is very unbalanced (e.g., most

of the sensors concentrate inside one cluster) and the

AP knows the exact network topology, more refined

fusion rules can be applied. The key performance

indicator considered here is the probability of decision

error (at the AP) on the status of the phenomenon

under observation.

In order to carry out the analysis outlined in the

previous paragraph, we consider network scenarios

where sensors, which observe a binary phenomenon,

are grouped into clusters and directly connected with

local fusion centers (FCs) (one per cluster), denoted

as first-level FCs. In most of this paper, we assume
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that the observed phenomenon is spatially constant.

This is meaningful, for example, when it is of interest

to detect if the phenomenon under observation

(e.g., temperature, humidity, pressure) overcomes

a critical threshold. However, we also investigate

the impact of spatial variations of the phenomenon

under observation. Each first-level FC makes a local

information fusion based on the data collected from

its associated sensors and then transmits its decision

to the AP. Both uniform and nonuniform clustering

configurations are analyzed.

The main contributions of this paper can be

summarized as follows. We first introduce an

analytical framework for the evaluation of the

probability of decision error in a clustered sensor

network scenario. While we first consider a network

scenario with ideal communication links between

sensors and first-level FCs, we then extend our

analysis to encompass the presence of noisy

communication links between sensors and first-level

FCs. For simplicity, a noisy link is modeled as a

binary symmetric channel (BSC) [10—14]. In general

a BSC might not be the best modelling choice

for a wireless communication link, which might

experience (block) fading [15—18]. However in the

presence of memoryless communication channels,

the use of a crossover probability p is accurate.
More precisely, p can be given a precise expression
depending on the type of channel (with additive white

Gaussian noise (AWGN) or bit-by-bit independent

fading). The use of a more refined channel model is

expedient to devise joint detection/decoding/fusion

strategies, which can avoid the information loss

due to the presence of hard-detection before fusion

[19]. The analytical framework proposed here

can be extended to incorporate these strategies.

Through an OPNET-based simulator [20], we obtain

performance results in more realistic Zigbee [21]

clustered network scenarios. These simulation

results confirm the theoretical performance results,

which are further verified by experimental results

based on the use of MicaZ nodes [22]. Our

findings suggest that uniform clustering techniques,

combined with simple majority-like (intermediate

and final) fusion rules, are to be preferred in terms

of robustness against spatial variations of the

phenomenon and observation/communication noises.

On the other hand, weighed fusion strategies can

improve the system performance, provided that the

observation/communication quality are jointly taken

into account.

This paper is structured as follows. In Section II

we comment on the literature related to the material

presented in this paper. In Section III we propose,

after a few preliminaries on decentralized detection,

an analytical framework for the evaluation of the

probability of decision error at the AP in various

clustered scenarios. In Section IV simulation

and experimental results relative to realistic

(IEEE 802.15.4-based) clustered wireless networks

with data fusion are presented. In Section V, the

main results obtained in this paper are discussed, and

concluding remarks are given.

II. RELATED WORK

Several communication-theoretic approaches to

decentralized detection have been proposed [23, 24].

In [25], the author considers minimum mean-square

error (MMSE) parameter estimation in sensor

networks. In [26], the authors analyze, according

to the same MMSE criterion, the problem of joint

decoding of correlated data in sensor networks.

They show that an MMSE decoder is not feasible

for large-scale sensor networks and propose an

approach based on decoding over factor graphs

[27]. In [28], MMSE-based algorithms to estimate

a spatially nonconstant phenomenon are proposed.

Use of censoring algorithms at the sensors has also

been studied for the design of decentralized detection

schemes [29]. In [30], the authors analyze aspects

related to compression of observed data (using

distributed source coding) and data transmission.

In [31], the authors follow a Bayesian approach for

the minimization of the probability of decision error

and study optimal fusion rules. Most of the proposed

approaches are not immediately applicable to realistic

sensor networks because of the common assumption

of ideal communication links between the sensors and

the AP. However in a realistic (e.g., wireless) sensor

network scenario, the communication links are likely

to be noisy [32]. The impact of noisy communication

links on the design of optimal fusion rules is evaluated

in [10—14]. Information-theoretic approaches have also

been proposed for the study of sensor networks with

decentralized detection. In [33], the authors propose

a framework to characterize a sensor network in

terms of its entropy and false alarm/missed detection

probabilities [34]. Other information-theoretic-based

approaches can be found in [35, 36].

III. ANALYTICAL FRAMEWORK

We consider a network scenario where N sensors

observe a common binary phenomenon whose status

is defined as follows:

H =

½
H0 with probability p0

H1 with probability 1¡p0
where p0

¢
=P(H =H0). The sensors are clustered into

nc <N groups, and each sensor can communicate

only with its local first-level FC. The first-level FCs

collect data from the sensors in their corresponding

clusters and make local decisions on the status of the

binary phenomenon. In a scenario with two levels

of information fusion, each local FC transmits to

the AP, which makes the final decision. A logical
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Fig. 1. Block diagram of clustered sensor network with

decentralized binary detection and two decision levels.

representation of this architecture is shown in Fig. 1.

The observed signal at the ith sensor can be expressed
as

ri = cE + ni, i= 1, : : : ,N (1)

where

cE
¢
=

½
0 if H =H0

s if H =H1

and fnig are additive noise samples. Note that s is
considered as a known parameter. Assuming that

the noise samples fnig are independent with the
same Gaussian distribution N (0,¾2), the common
signal-to-noise ratio (SNR) at the sensors, denoted as

SNRsensor, can be defined as [31]

SNRsensor
¢
=
s2

¾2
:

Each sensor makes a decision comparing its

observation ri with a threshold value ¿i and computes
a local decision ui =U(ri¡ ¿i), where U(¢) is the
unit step function. In order to optimize the system

performance, the thresholds f¿ig need to be optimized.
In particular, in a more general scenario where the

type of event perceived by the sensor might vary, a

more refined per-cluster optimization of the sensor

decision threshold could be considered. However

since we are interested in monitoring a spatially

constant binary phenomenon, we consider a simpler

optimization approach where the same threshold

is used at all sensors. While in a scenario with no

clustering and ideal communication links between the

sensors and the AP the relation between the optimized

value of ¿ and s is well known [31], in the presence
of clustering it is not. In the following, the value

of ¿ is optimized in all considered scenarios, for
given SNR and clustering configuration, in order to

minimize the probability of decision error.

In a scenario with noisy communication links,

modeled as BSCs, the decision ui sent by the ith
sensor can be flipped with a probability corresponding

to the crossover probability of the BSC model and

denoted as p [14]. The received bit at the fusion point
(either an FC for clustered networks or directly the

AP in the absence of clustering), referred to as u(r)i ,

can be expressed as

u(r)i =

½
ui with probability 1¡p
1¡ ui with probability p:

In the presence of noisy links, the value of the

optimized local threshold ¿ , fixed for all sensors,
might be different from that in a scenario with ideal

communication links. Therefore a different optimized

value of ¿ is needed, as outlined at the end of the
previous paragraph.

We point out that the specific topologies

of the considered networks are not explicitly

taken into account. For instance, the distances

between nodes are not explicitly mentioned. This

corresponds to the assumption of modelling all

noisy communication links as BSCs with the

same crossover probability. In order to extend

our analytical framework while still keeping the

simple BSC-based link modelling, one can consider

different crossover probabilities (they could be

associated with a specific network topology). This

motivates the use of weighing fusion schemes,

where the decisions to be fused together are weighed

by the corresponding link qualities. The impact

of this weighing fusion strategy is investigated in

Section IIIE.

A. Uniform Clustering

In Fig. 2(c), the logical structure of a sensor

network with three decision levels is illustrated.

For comparison, in the same figure the schemes

with (a) no clustering and (b) two-decision-level

uniform clustering are also shown. One should note

that Fig. 2(b) is logically equivalent to the network

schemes shown in Fig. 1. We focus our analytical

derivation on a three-level scenario. However, our

approach can be easily extended to a generic number

of decision levels.

In a three-decision-level scenario, the N sensors

observe a common binary phenomenon H and send

their decisions fuig to the nc1 first-level FCs. Each of
the nc1 first-level clusters contains dc1 (N = nc1 ¢ dc1 )
sensors connected to the associated first-level FC. We

preliminarily define the majority-like fusion rule as

¡ (x1, : : : ,xM ,k)
¢
=

8>>>><>>>>:
0 if

MX
m=1

xm < k

1 if

MX
m=1

xm ¸ k
(2)

where x1, : : : ,xM are the M binary data (xm 2 f0,1g) to
be fused together, and k 2 f0, : : : ,Mg is the decision
threshold.

The jth (j = 1, : : : ,nc1 ) first-level FC makes a first
information fusion and computes the following local

decision:
hj = ¡ (u

(j)
1 , : : : ,u

(j)
dc1
,k1) (3)
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Fig. 2. Basic structures for sensor networks with decentralized detection. Three cases are shown. (a) Absence of clustering.

(b) Uniform clustering with two levels of information fusion. (c) Uniform clustering with three levels of information fusion.

where k1 = bdc1=2c+1 is the decision threshold at the
first-level FCs. After the decisions at the first-level

FCs are made, they are sent to the nc2 second-level
FCs, each of which is connected to dc2 first-level FCs,
with nc1 = nc2 ¢ dc2 . We point out that the majority
fusion rule (2) with decision threshold k = bM=2c+1
is exact for odd values of M. For even values of M,
the proposed fusion strategy tends to favor a final

decision equal to ‘0.’ However for sufficiently large

values of N, this unbalancing is negligible.
The second-level FCs perform another information

fusion, and compute local decisions using the

following majority-like rule:

Ĥr = ¡ (h
(r)
1 , : : : ,h

(r)
dc2
,k2) (4)

where r = 1, : : : ,nc2 , and k2 = bdc2=2c+1 is the
decision threshold at the second level FCs. Finally

the decisions are sent to the AP, which makes the final

decision

Ĥ = ¡ (Ĥ1, : : : ,Ĥnc2
,kf) (5)

where kf = bnc2=2c+1 is the AP decision threshold.
Using a combinatorial approach (based on the

repeated trials formula [37]) and taking into account

the decision rules (3)—(5), the probability of decision

error at the AP can be expressed as follows:

Pe = p0bin(kf,nc2 ,nc2 ,bin(k2,dc2 ,dc2 ,bin(k1,dc1 ,dc1 ,Q(¿ ))))

+ (1¡p0)bin(0,kf¡ 1,nc2 ,bin(k2,dc2 ,dc2 ,
£ bin(k1,dc1 ,dc1 ,Q(¿ ¡ s)))) (6)

where Q(x)
¢
=
R1
x (1=

p
2¼)exp(¡y2=2)dy and

bin(a,b,n,z)
¢
=

bX
i=a

μ
n

i

¶
zi(1¡ z)(n¡i) (7)

where a,b,n 2 N and z 2 (0,1). If nc = kf = 1 and
dc =N, i.e., there is no clustering, the probability of
decision error (6) reduces to that derived in [14].

B. Nonuniform Clustering

Assuming for the sake of simplicity a two-level

sensor network topology, the probability of decision

error in a generic scenario with nonuniform clustering

can be evaluated as follows. Define the cluster size

vector D ¢
=fd(1)c ,d(2)c , : : : ,d(nc)c g, where d(i)c is the

number of sensors in the ith cluster (i= 1, : : : ,nc) andPnc
i=1 d

(i)
c =N. Furthermore define also the following

two probability vectors:

P1j1 ¢=fp1j11 ,p1j12 , : : : ,p1j1nc g

P1j0 ¢=fp1j01 ,p1j02 , : : : ,p1j0nc g

where p
1j1
` (p

1j0
` , respectively) is the probability that

the `th FC decides for H1 when H1 (H0, respectively)
has happened. We still consider the use of a common

threshold ¿ at the sensors. The elements of P1j1
(equivalently, the elements of P1j0) are, in general,
different from each other and depend on the particular

distribution of the sensors among the clusters. In

Appendix I, it is shown that the probability of

decision error can be expressed as follows:

Pe = p0

ncX
i=kf

(nci )X
j=1

ncY
`=1

fci,j(`)p1j0` +(1¡ ci,j(`))(1¡p1j0` )g

+(1¡p0)
kf¡1X
i=0

(nci )X
j=1

ncY
`=1

fci,j(`)p1j1` +(1¡ ci,j(`))(1¡p1j1` )g

(8)

where ci,j = (ci,j(1), : : : ,ci,j(nc)) is a vector which
designates the jth configuration of the decisions from
the first-level FCs in a case with i 1s (and, obviously,
nc¡ i 0s). In Table I, the possible configurations of
ci,j are shown in the presence of nc = 3 clusters. For
example, c1,2 is the second possible configuration
with one 1 (and two 0s): the 1 is the decision of the

second FC. The proposed approach can be extended to

a scenario with a generic number of fusion levels.
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TABLE I

Possible Configurations of ci,j in a Scenario with nc = 3 Clusters

i j ci,j

0 1 000

1 100

1 2 010

3 001

1 110

2 2 101

3 011

3 1 111

We remark that a scenario with uniform clustering

can be interpreted as a special case of a generic

nonuniform scenario. In this case, in fact, the elements

of the three vectors D, P1j1, and P1j0 become equal,
i.e.,

d(i)c = dc

p
1j1
i = bin(k,dc,dc,Q(¿ ¡ s))
p
1j0
i = bin(k,dc,dc,Q(¿))

8i= 1, : : : ,nc. It can be shown that (8) reduces to (6)
in the presence of uniform clustering and two decision

levels.

C. Scenarios with Noisy Communication Links

In a scenario with nonuniform clustering and

two decision levels, the probability of decision

error can be derived from (8) by replacing the

probabilities fp1ji` gi=0,1`=1,:::,nc
with the probabilities

fp1ji`,noisygi=0,1`=1,:::,nc
, which take into account the noise

in the communication links between sensors and

first-level FCs and are defined as

p
1j0
`,noisy

¢
=

d(`)cX
m=k`

μ
d(`)c

m

¶
Pmc0 P

d(`)c ¡m
e0

(9)

p
1j1
`,noisy

¢
=

d(`)cX
m=k`

μ
d(`)c

m

¶
Pmc1 P

d(`)c ¡m
e1

: (10)

In (9), Pc0 = 1¡Pe0 is the probability that a sensor
decision sent to a first-level FC is in favor of H1 when
H0 has happened; it can be expressed, according to the
BSC model for a noisy communication link, as

Pc0 =Q(¿)(1¡p) + [1¡Q(¿ )]p: (11)

Similarly in (10), Pc1 = 1¡Pe1 represents the
probability that a decision sent by a sensor to a

first-level FC is in favor of H1 when H1 has happened;
it can be given the following expression:

Pc1 =Q(¿ ¡ s)(1¡p) + [1¡Q(¿ ¡ s)]p: (12)

Fig. 3. Probability of decision error as function of sensor SNR

in scenario with equal a priori probabilities of phenomenon

(p0 = p1 = 1=2), N = 16 sensors, and uniform clustering.

Finally the probability of decision error in a

scenario with noisy communication links becomes

Pe = p0

ncX
i=kf

(nci )X
j=1

ncY
`=1

fci,j(`)p1j0`,noisy + (1¡ ci,j(`))(1¡p1j0`,noisy)g

+(1¡p0)
kf¡1X
i=0

(nci )X
j=1

ncY
`=1

£fci,j(`)p1j1`,noisy + (1¡ ci,j(`))(1¡p1j1`,noisy)g: (13)

In this case as well, the proposed approach can be

extended to scenarios with a generic number of fusion

levels.

D. Numerical Results: Ideal Communication Links

In Fig. 3, the probability of decision error is shown

as a function of the sensor SNR in the case with

N = 16 sensors, considering two and three decision
levels. In the scenario with two decision levels, the

following topologies are possible:

1) 8-8 (2 clusters with 8 sensors each);

2) 4-4-4-4 (4 clusters with 4 sensors each);

3) 2-2-2-2-2-2-2-2 (8 clusters with 2 sensors

each).

For a three decision level scenario, the following

topologies are considered:

1) 4-4-4-4/2-2 (4 first-level FCs, each connected

with 4 sensors, and 2 second-level FCs, each

connected with 2 first-level FCs);

2) 2-2-2-2-2-2-2-2/4-4 (8 first-level FCs, each

connected with 2 sensors, and 2 second-level FCs,

each connected with 4 first-level FCs);

3) 2-2-2-2-2-2-2-2/2-2-2-2 (8 first-level FCs, each

connected with 2 sensors, and 4 second-level FCs,

each connected with 2 first-level FCs).
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Fig. 4. Probability of decision error as function of sensor SNR

in scenario with equal a priori probabilities of observed

phenomenon (p0 = p1 = 1=2) and N = 16 sensors. Various

configurations are considered.

Lines (solid, dashed, and dotted) and symbols (circles,

triangles, and stars) correspond to analytical and

simulation results, respectively. For comparison, the

probability of a decision error with no clustering is

also shown.

In Fig. 3, only one curve is shown for the scenario

with two levels of information fusion since the

performance curves associated with all possible

configurations (i.e., 8-8, 4-4-4-4, 2-2-2-2-2-2-2-2)

overlap. This implies that one can choose between a

uniform network topology with a small number of

large clusters and a uniform network topology with

a large number of small clusters, still guaranteeing

the same performance level. The intuition behind this

result is the following. If one considers an architecture

with small clusters, then fusion at the first-level FCs

is not effective. However, many local cluster decisions

are then fused together, and this allows us to recover

(partially) the first-level information loss. On the other

hand, considering large clusters leads to more reliable

local first-level decisions. However, a few of them

are then fused together, so that the supplementary

(higher level) refinement is not relevant. Similar

considerations also hold for a three-decision-level

scenario.

Comparing the performance in the absence of

clustering with that in the presence of uniform

clustering (with either two or three decision levels),

one can conclude that the larger the number of

decision levels is, the worse the performance. This

is intuitive since a larger number of decision levels

corresponds to a larger number of partial information

losses corresponding to the fusion operations.

In order to evaluate the impact of nonuniform

clustering, we consider a scenario with N = 16
sensors and various nonuniform network topologies.

In Fig. 4, the probability of decision error is shown

as a function of the sensor SNR, considering

no clustering, two-level uniform clustering, and

various configurations with two decision levels and

nonuniform clustering (explicitly indicated). For

comparison, the curve in the absence of quantization

at the sensors is also shown. The lines correspond

to analytical results, whereas symbols are associated

with simulations. In the scenarios with nonuniform

clustering, the considered configurations are 8-2-2-2-2

(5 clusters, out of which 4 contain 2 nodes, and 1

contains 8 nodes), 10-2-2-2, and 14-1-1. As one

can see from Fig. 4, in the presence of majority-like

information fusion, the higher the nonuniformity

degree among the clusters, i.e., the more unbalanced

the clustering, the worse the system performance is.

In unbalanced scenarios, however, one may use more

sophisticated fusion rules. In Fig. 4, the performance

for a weighed fusion scheme for the 14-1-1 case is

also shown. The weighed fusion is implemented by

weighing each decision with a weight proportional to

the number of sensors in the corresponding cluster.

More precisely, the decision from the 14-node cluster

is weighed by 14/16, and the decisions from the

1-node clusters are weighed by 1/16. As one can

see, using a more refined fusion rule leads to better

performance: at Pe = 10
¡4, a sensor SNR gain equal

to 5.5 dB can be obtained. This is to be expected

since the weighed fusion rule is basically equivalent

to considering a nonclustered 14-node sensor network.

In fact the obtained performance is between that of

the nonclustered 16-node sensor network and that of

a uniformly clustered scheme. However, the use of

a weighed fusion rule requires that the AP know the

exact distribution of the sensors among the clusters,

while here, we are interested in scenarios where this

does not hold.

As mentioned at the beginning of Section III, it is

of interest to understand the impact of phenomenon

spatial variations on the system performance. As

a measure of their impact, we denote as Â the
percentage of the total number of sensors which

observe a “flipped” status of the phenomenon with

respect to the status sensed by the other nodes.

For instance, if H =H0 (H =H1, respectively),
Â% of the N sensors (randomly chosen across all

clusters) observe H1 (H0, respectively). In Fig. 5, the
probability of decision error is shown as a function of

Â in a scenario with N = 64 sensors, SNRsensor = 4 dB,
and ideal communication links. The following sensor

network architectures are considered: 1) no clustering,

2) uniform clustering (with 2, 4, or 8 clusters), and

3) nonuniform clustering (with the topologies 56-4-4,

40-8-8-8, or 32-8-8-8-8). Obviously the performance

degrades if the number of “faulty” sensors, i.e.,

the number of sensors observing a different status,

increases. Moreover although this performance

degradation can be observed in all scenarios, it is

more pronounced in the scenarios with nonuniform

clustering rather than in the scenarios with uniform
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Fig. 5. Probability of decision error as function of Â in scenario

with N = 64 sensors, SNRsensor = 4 dB, and ideal communication

links. Various sensor network architectures are considered.

clustering. This is due to the fact that in nonuniformly

clustered scenarios, the presence of “faulty” sensors in

very small clusters has a more detrimental impact on

the quality of the decisions taken at the corresponding

first-level FCs.

E. Numerical Results: Noisy Communication Links

In order to investigate how the probability

of decision error behaves as a function of the

communication noise level, i.e., the crossover

probability p, we introduce a communication-theoretic
quality of service (QoS) condition in terms of the

maximum tolerable probability of decision error,

denoted as P¤e . This physical layer-oriented QoS
condition can be written as

Pe · P¤e : (14)

Since the probability of decision error is a

monotonically decreasing function of the sensor SNR,

the QoS condition (14) can be equivalently rewritten

as
SNRsensor ¸ SNR¤sensor

where SNR¤sensor depends on P
¤
e . It is then possible

to evaluate the performance under a desired

QoS constraint, given by the maximum tolerable

probability of decision error P¤e .
In Fig. 6, the value of the minimum sensor SNR

required to guarantee P¤e , i.e., SNR
¤
sensor, is shown as

a function of the crossover probability p, in scenarios
1) without clustering and 2) with clustering and two

decision levels, respectively. Two possible values for

P¤e are considered: 1) 10
¡3 (curves with circles) and

2) 10¡4 (curves with triangles). As expected, when
the noise level increases, the minimum sensor SNR

required to guarantee the desired network performance

also increases. In fact since communications become

less reliable, a higher accuracy in the observation

phase is needed in order to maintain the same overall

performance. Besides, one can observe that there

Fig. 6. Minimum sensor SNR required to obtain desired QoS in

scenarios with noisy communication links in the cases 1) without

clustering and 2) with uniform clustering and two decision levels.

Two possible QoS are considered: 1) P¤e = 10
¡3 (lines with

circles) and 2) P¤e = 10
¡4 (lines with triangles).

exists a vertical asymptote in each curve in Fig. 6.

In other words there exists a critical value pcrit of
the noise level such that 1) for p < pcrit, the sensor
network is operative, i.e., there exists a finite value

of the sensor SNR which satisfies the desired QoS

condition (14) and 2) for p > pcrit instead, the network
is not operative, i.e., it is not possible to achieve the

desired performance level regardless of the value of

the sensor SNR.

In the presence of varying communication link

quality, the use at the first-level FCs of weighing

fusion algorithms, which take into account the

qualities of the communication links, can improve

the system performance. For the sake of simplicity

and illustrative purposes, we assume that the

BSC communication links have the same average

crossover probability, denoted as p̄, while the actual
crossover probability of the ith link, denoted as pi,
is uniformly distributed in [p̄¡ ´p̄, p̄+ ´p̄], where1
´ 2 (0,minf1,(1=2p̄)¡ 1g). At this point the first-level
FC decision in a cluster containing dc sensors, denoted

as Ĥlevel 1, is obtained by thresholding a weighed
version of the decisions received from the sensors,

i.e.,
dcX
i=1

yi£
1¡piPdc

j=1(1¡pj)
Ĥlevel 1=H1
?

Ĥlevel 1=H1

0 (15)

where yi
¢
=2u(r)i ¡ 1, and u(r)i is the decision received

from the ith sensor, i= 1, : : : ,dc. The rationale behind
(15) is that the decisions from more reliable links

are taken into account with a higher weight, whereas

the decisions from less reliable links are taken into

account with a lower weight.

In Fig. 7, the probability of decision error is

shown as a function of ´ in a scenario with N = 16
sensors and uniform clustering (with 2 or 4 clusters),

1The maximum allowed value for ´ comes from the fact that it

must hold that (p̄¡ ´p̄)> 0 (i.e., ´ < 1) and (p̄+ ´p̄)< 1 (i.e.,
´ < (1=2p̄)¡ 1).
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Fig. 7. Probability of decision error as function of ´ in scenario

with N = 16 sensors, uniform clustering (with 2 or 4 clusters),

and sensor SNR set to 8 dB. Two possible values for average

crossover probability are considered: 1) p̄= 0:1 and 2) p̄= 0:01.

considering a sensor SNR equal to 8 dB. Two

possible values for the average crossover probability

are considered: 1) p̄= 0:1 and 2) p̄= 0:01. As a
reference, a horizontal line corresponding to the

probability of decision error with ideal communication

links is also shown. The following comments can

be carried out. One can immediately observe that

various uniform clustering topologies (for the

same value of N) behave differently for ´ > 0 (i.e.,
for variable quality of the communication links).

Therefore the conclusion reached in Section IIID

(i.e., the fact that different uniformly clustered

scenarios have the same performance) holds only

when a majority fusion rule is used. Moreover,

while in a scenario with mild communication noise

(p̄= 0:01), the use of weighed fusion leads to a
performance degradation, with respect to schemes

which use a simple majority fusion rule, in a scenario

with strong communication noise (p̄= 0:1), a
varying communication link quality (´ > 0) leads,
regardless of the fusion strategy, to a performance

improvement. Finally, for ´ = 1 there is convergence
to specific limiting values. More precisely, all

clustered configurations with majority fusion are

characterized by a probability of decision error

equal to that in the presence of ideal communication

links. In the presence of weighed fusion, the limiting

probability of decision error depends on the clustering

configuration, regardless of the average crossover

probability.

IV. CLUSTERED REALISTIC NETWORKS

In this section we present simulation and

experimental results which validate our analytical

framework in practical sensor networking scenarios,

where nodes comply with the Zigbee (simulation

results) or IEEE 802.15.4 (experimental results)

standards.

A. Simulations

The simulations have been carried out with the
Opnet Modeler simulator [20] and a built-in Zigbee
network model designed at the National Institute
of Standards and Technologies (NIST) [38]. This
model provides only the first two layers of the
ISO/OSI stack, and we have extended it with a
simple Opnet model for an FC, which, in addition
to providing relaying functionalities, implements the
intermediate data fusion mechanisms described in the
previous sections. Our Opnet model assumes strong
line-of-sight communications between the sensors and
the FCs and between the FCs and the coordinator.
According to the theoretical analysis, the sensors

make a noisy observation (affected by AWGN) of
a randomly generated binary phenomenon H and
make local decisions on the status of the phenomenon.
Subsequently the sensors embed their decisions
into proper data packets of length 216 bits,2 which
are sent either to the coordinator (in the absence of
clustering) or to the first-level FCs (in the presence of
clustering). The decisions are assumed to be either 0
(no phenomenon) or 1 (presence of the phenomenon).
Obviously if some packets are lost due to medium
access collisions, decisions (either at the FCs or at
the AP) are made only on the received packets (this
leads to a reduced reliability of the decisions). If all
the packets related to a set of observations of the
same phenomenon are lost instead, the final binary
decision is random. Finally if half of the decisions are
in favor of one phenomenon status and the other half
are in favor of the other, the coordinator decides for
the presence of the phenomenon. More details about
the implementation of the data fusion mechanism in
Opnet can be found in [39].
In both scenarios it is possible to evaluate, by

simulation, the probability of decision error. Together
with the probability of decision error, the simulator
allows us to evaluate the 1) packet delivery fraction,
denoted as » and defined as the ratio between
the number of packets correctly delivered at the
coordinator and the number of packets sent by the
sensors, and 2) the delay, defined as the time interval
between the transmission instant and the reception
instant of a generic packet. The last parameter that
we have considered is the aggregate throughput
(dimension: [pck/s]), defined as Sagg =N ¢ g ¢ », where
N is the number of transmitting sensors and g is the
packet generation rate (set to 2 pck/s in all simulation
results presented in the remainder of this section).
Moreover no acknowledgement (ACK) messages are
used to confirm successful transmissions. Results on
network performance with the use of ACK messages
are presented in [39].

2This length corresponds to a payload of 96 bits and a header of

120 bits introduced by physical and media access control (MAC)

layers.
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Fig. 8. Probability of decision error as function of SNR at

sensors in scenarios without clustering. Results are obtained both

with simulations (solid lines) and with theoretical analysis

(dashed lines).

In Fig. 8, scenarios without clustering are

considered and the probability of decision error is

shown as a function of the observation SNR. In order

to eliminate possible statistical fluctuations, each

simulation performance point is obtained by averaging

the results of ten Opnet simulation runs. For each

network configuration, in the same figure we show the

simulation results (solid lines) and the corresponding

analytical results (dashed lines). Since the theoretical

framework does not take into account the medium

access strategy, analytical and simulation performance

results are identical only in the scenario with N = 1.
In the other scenarios the probability of decision error

predicted by the analytical framework is better than

that predicted by the simulations. This degradation

becomes more and more pronounced for an increasing

numbers of nodes. In the Zigbee scenarios, the

performance worsens because the simulator takes

into account the losses due to collisions. Since some

packets may be lost, the probability of decision error

is influenced by the collisions.

In Fig. 9, the packet delivery fraction and the

delay are shown as functions of the number N of

transmitting sensors. These curves are obtained

considering a fixed observation SNR at the sensors

(equal to 0 dB). Our results, however, show that

the packet delivery fraction and the delay are not

affected by the value of the observation SNR at the

sensors. We consider, in fact, ideal communication

channels so that only the observations at sensors are

noisy, whereas the packets sent from the sensors to

either an FC (clustered schemes) or the coordinator

(nonclustered schemes) are received without error.

Consequently, the performance does not depend on

the considered SNR since packet delivery fraction

and delay are network performance indicators and do

not depend on the observation reliability. The packet

delivery fraction (solid line with circles) decreases

Fig. 9. Performance analysis in scenario without clustering:

packet delivery fraction and delay performance as functions of

number N of transmitting sensors.

TABLE II

Aggregate Throughput Performance in a Scenario without

Clustering as a Function of the Number of Transmitting Sensors

N Sagg [pck/s]

1 2

3 5.35156158

5 8.1906672

10 13.4860858

20 20.1639324

30 22.1357394

monotonically. In particular, for small values of N, it
remains close to 1. When the number of transmitting

nodes increases instead, the number of collisions in

the channel increases as well and the packet delivery

fraction reduces. In the same figure, the delay (dotted

line with diamonds) is also shown. As the intuition

suggests, the delay is low for small values of N.
When the traffic increases instead, due to a larger

number of collisions, the delay is higher, since the

channel is busy for a longer period of time and

the probability of finding the channel idle reduces.

Finally for large values of N, the delay seems to start
saturating to a maximum value. In this case, in fact,

due to the increased offered traffic, at least one sensor

is likely to be ready to send its packet as soon as the

channel becomes idle.

In Table II, we show the aggregate throughput

extracted from the results shown in Fig. 9. When the

number of transmitting nodes is small, the aggregate

throughput is high (close to the maximum possible

for each network configuration). When the number of

transmitting sensors increases instead, the aggregate

throughput tends to reach a saturation value, after

which the number of collisions is so large that an

increase of the traffic load has no further effect.

In Fig. 10, we analyze the impact of nonuniform

clustering on the probability of decision error; as a

performance benchmark, the probability of decision

error in the case with uniform clustering is also

shown. We consider scenarios with N = 16 sensors
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Fig. 10. BER performance in scenarios with N = 16 sensors both

in case of uniform and nonuniform clustering. Various topologies

(indicated in figure) are considered.

and the following network configurations: 1) no

clustering, 2) 8-8, 3) 4-4-4-4 FCs, 4) 14-1-1, 5)

10-2-2-2, and 6) 8-2-2-2-2. According to the results

in Fig. 10, the best performance is obtained in the

absence of clustering, whereas the worst performance

is obtained in the 14-1-1 scenario, i.e., with three

FCs and nonuniform clustering. From Fig. 10, one

can conclude that, in the presence of nonuniform

clustering, the performance improves for relatively

balanced clusters (as also predicted by the analytical

framework). In this case, in fact, decisions made

by intermediate FCs are more reliable, so the final

decision made by the coordinator is more likely to

be correct. In the case of uniform clustering, instead,

the probability of decision error is not affected by the

number of clusters in the network, as long as the total

number of sensors remains the same. In this case in

fact, observing Fig. 10, one can note that the curves

relative to the scenarios with 4 4-sensor clusters and

2 8-sensor clusters are almost overlapped. This is

due to the fact that a smaller number of clusters is

compensated by a higher quality of the intermediate

decisions. This result is in agreement with the

theoretical conclusions reached in Section IIID.

B. Experiments

In order to verify the predictions of the theoretical

framework from an experimental perspective, we

consider a networking setup formed by MicaZ nodes

[22]. MicaZ platforms include an ATmega128L

7:3 MHz micro-controller [40], FLASH and EEPROM
memories, and a 2.4 GHz IEEE 802.15.4 Chipcon

CC2420 RF transceiver [41]. The nodes’ operating

system is TinyOS. The experimental setup is

characterized by N = 16 nodes, organized in uniform
clusters, with 2 and 3 decision levels, respectively.

In our implementation, each node observes a “0”

phenomenon and adds a Gaussian observation noise

generated through the function “random” available

Fig. 11. Experimental BER performance in scenarios with

N = 16 sensors and uniform clustering. Two and three decision

levels are considered.

in the TinyOS environment. According to the local

decision threshold, each source node makes a decision

on the observed phenomenon and embeds it in a

packet to be transmitted. Since each TinyOS packet

is formed by a payload of 30 bytes (the first byte

contains the dimension, and the following 29 the

information data), we embed in each packet 29£8 =
232 consecutive binary decisions. This corresponds

to 232 consecutive (time-wise) realizations of

the observed binary phenomenon. The packets

originated by the source nodes are then transmitted

through the intermediate FCs to the AP. Note that

a packet duration is on the order of 1 ms, and

consecutive packet transmissions are separated

by approximately 0.1 s. The transmit power is set

to ¡25 dBm, and the sensitivity threshold at the
receivers is ¡100 dBm. The distances between
communicating nodes (on the order of 2 m) are such

that the received power is significantly higher than

the sensitivity threshold. The data fusion mechanisms

at the intermediate FCs and at the AP follow the

majority decision rules described in the analytical

framework.

The experimental bit error rate (BER) performance

is shown in Fig. 11. In the same figure, for

comparison, we also show the corresponding

theoretical results extracted from Fig. 3. As one can

see, the experimental results are slightly worse than

the theoretical ones (as observed also in Section IVA

for simulation results), but confirm the trend. This

discrepancy is due to the more realistic experimental

scenario, where some packets may get lost because

of the wireless communication links. Since the

decision rules at the FCs and at the AP do not adapt

to the number of received observations, this explains

the performance degradation. We point out that

in our experiments the packet losses are typically

not due to collisions, i.e., the traffic load of the

considered network scenarios is too low to create
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problems at the access level. On the opposite side, the

performance degradation is due to losses of packets

due to propagation reasons. An interesting research

extension consists of incorporating these effects into

our analytical framework.

V. CONCLUDING REMARKS

In this paper, we have characterized the behavior

of clustered sensor networks with decentralized

detection in the presence of multi-level majority-like

information fusion. Upon the derivation of an

analytical framework, we have shown that, in the

considered scenarios, uniform clustering, i.e., balanced

tree network architectures, leads to a lower probability

of decision error than nonuniform clustering, i.e.,

unbalanced tree network architectures. In the former

case, the probability of decision error depends only

on the number of decision levels and not on the

specific clustering configuration. In the presence of

nonuniform clustering, the performance significantly

improves if the AP is given knowledge of the

network topology and uses proper weighed fusion

rules.

Although the analytical framework has been

derived in scenarios with a spatially constant

phenomenon, we have also analyzed the impact of

phenomenon spatial variations. Our results show

that for stronger phenomenon spatial variations, the

performance worsens in all considered scenarios,

and this loss is more pronounced in scenarios with

nonuniform clustering, where the quality of the FCs’

decisions is rather low.

Ideal and noisy communication links have

been considered. The presence of noise in the

communication links has a strong bearing on the

ultimate achievable performance. In order to combat

the effects of communication noise, we have devised

a simple weighed fusion strategy, which takes into

account the noise level of the communication links.

Our results show that the improvement is limited and

that observation and communication noises should be

jointly taken into account.

Finally we have presented simulation and

experimental results (in terms of probability of

decision error, throughput, and delay) relative to

Zigbee and IEEE 802.15.4-based clustered sensor

networks with information fusion. The obtained

results confirm the validity of our analytical

framework in realistic networking scenarios.

APPENDIX I. PROBABILITY OF DECISION ERROR IN
A NONUNIFORMLY CLUSTERED SENSOR NETWORK

Consider a sensor network with a generic topology

characterized by D, P1j0, and P1j1. In Section IIIA, we
derived expression (6) for the probability of decision

error using a combinatorial approach based on the

repeated trials formula [37]. However, this formula

cannot be exploited in the derivation of the probability

of decision error in a scenario with nonuniform

clustering since the probabilities of correct decision

are not the same for all FCs (and equivalently, the

probabilities of incorrect decision). In this case, the

evaluation of the probability of decision error can

be framed as a properly extended repeated trials

problem [37].

Define the random variable Sn as follows:

Sn
¢
=fnumber of successes in n trialsg:

For a fixed value of k successes in n trials, we are

interested in the probability of the event E ¢=fSn = kg,
which includes all possible combinations (with a 1

corresponding to a success and a 0 corresponding to

a failure) of k “1”s in the positions fi1, i2, : : : , ikg, with
ij 2 f1, : : : ,ng, j = 1, : : : ,k [42]. The total number of
these combinations is

¡
n
k

¢
[43]. The probability of the

event E is given by

P(E) = P
0@ [
fi1,i2,:::,ikg

fEkg
1A= X

fi1,i2,:::,ikg
P(Ek)

where Ek
¢
=fk successes in positions i1, i2, : : : , ikg,

and we have used the fact that all combinations

are mutually exclusive. For a fixed value of k, one
obtains

P(E) =
(nk)X
i=1

nY
j=1

fci,j(k)p̄j +(1¡ ci,j(k))(1¡ p̄j)g

(16)

where we have used the fact that all the combinations

are independent; ci,j(k) is defined as in Section IIIB,
and p̄j is defined as

p̄j
¢
=Pfsuccess in position jg:

Using (16) in the derivation of the probability of

decision error for a nonuniformly clustered sensor

network, one obtains

P(Ĥ =H1 jH0)

=

ncX
i=kf

(nci )X
j=1

ncY
`=1

fci,j(`)p1j0` +(1¡ ci,j(`))(1¡p1j0` )g

P(Ĥ =H0 jH1)

=

kf¡1X
i=0

(nci )X
j=1

ncY
`=1

fci,j(`)p1j1` +(1¡ ci,j(`))(1¡p1j1` )g

where p
1j0
` (p

1j1
` , respectively) is defined as the

probability that the lth sensor decides for H1 when
H0 (H1, respectively) has happened.
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APPENDIX II. PROBABILITY OF DECISION ERROR IN
A LARGE SCALE CLUSTERED SENSOR NETWORK

Although the analytical framework derived in

Section III is general, the presented results refer to

networks with a (relatively) small number of sensors.

This is due to the fact that the evaluation of some

of the formulas becomes numerically critical when

the number of sensors increases. In order to apply

our framework to scenarios with a large number

of sensors, we propose a simple yet very accurate

approximation of the derived framework based on

the application of the DML theorem. We focus on

scenarios with uniform clustering. The extension of

the following derivation to the case with nonuniform

clustering is possible.

Recall the definition (7) of the function “bin.”

Provided that the DML theorem applies [37], one

can approximate a binomial probability mass function

(with parameters n and z) with a Gaussian probability
density function N (´DML,¾2DML), where ´DML = nz and
¾2DML = nz(1¡ z). In particular one can write

bin(a,b,n,z)'
Z b

a

1q
2¼¾2DML

exp

μ
¡ (y¡ ´DML)

2

2¾2DML

¶
dy:

This result is not immediately applicable to the

considered multi-level clustered scenarios. In fact if

the dimension of the first-level clusters is too large,

the dimension of higher level clusters is (relatively)

small, and the condition of applicability of the DML

theorem is not satisfied in the latter case. In order

to avoid this problem, we consider a scenario where

nodes are grouped in the largest possible clusters

at the first level, whereas at the higher levels the

groups have the minimum dimension, i.e., dci = 2
for i= 2, : : : ,nlevels. In other words, the upper portion
of the sensor network architecture corresponds to a

binary tree. Consequently, it follows that the number

of sensors in each cluster is dmaxc1
=N=2nlevels¡1. In

this case, the DML theorem can be applied at the

first-level fusion centers, whereas simple binomial

formulas can be used for higher level information

fusions. Considering a uniformly clustered scenario

with two levels of information fusion, after a few

manipulations, one obtains

P(Ĥ =H1 jH0) = bin(kf,nc1 ,nc1 ,p1j0,1¡p1j0) (17)

P(Ĥ =H0 jH1) = bin(0,kf¡ 1,nc1 ,p1j1,1¡p1j1)
(18)

where pijj (i,j = 0,1) represents, as in Section IIIB,
the probability that a first-level FC decides for Hi
when Hj has happened. Using the DML theorem, it
can be shown that

p1j0 'Q(
q
dc1®), p1j1 ' 1¡Q(

q
dc1¯)

Fig. 12. Probability of decision error as function of sensor SNR

in uniformly clustered scenario with two and three decision levels,

respectively, and three values for number N of sensors.

where

®
¢
=
Pc0¡ 1

2p
Pc0Pe0

, ¯
¢
=
Pc1¡ 1

2p
Pc1Pe1

and Pc0, Pe0, Pc1, Pe1 are defined as in Section IIIC.
In Fig. 12, the probability of decision error is

shown as a function of the sensor SNR in a scenario

with uniform clustering and various values of N,
namely, 128, 256, and 512. For each number of

sensors, clustered scenarios with two and three

decision levels are considered. One can observe that

when the number of sensors increases, the curve

corresponding to the asymptotic analysis (dashed line)

becomes more and more accurate, i.e., the difference

between exact and approximate performance becomes

smaller and smaller–note that the probability of

decision error predicted by the DML theorem is

slightly optimistic if N is not sufficiently large. As

one can see from Fig. 12, the DML theorem-based

probability of decision error becomes asymptotically

(for N!1) exact. For instance, in the case with
N = 512 sensors, the performance predicted with the
proposed approximation is very accurate at almost all

values of the probability of decision error.
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[19] Martalò, M. and Ferrari, G.

Decoding and fusion in sensor networks with noisy

observations and communications.

In Proceedings of the 10th International Symposium on

Spread Spectrum Techniques and Applications (ISSSTA

2008), Bologna, Italy, Aug. 2008, 7—11.

[20] Opnet Website

http://www.opnet.com.

[21] Zigbee Alliance Website

http://www.zigbee.org.

[22] Cross-Bow

Wireless Sensor Networks.

Website: http://www.xbow.org.

[23] Blum, R. S., Kassam, A., and Poor, H. V.

Distributed detection with multiple sensors: Part II.

Proceedings of IEEE, 85, 1 (Jan. 1997), 64—79.

[24] Chamberland, J-F. and Veeravalli, V. V.

Wireless sensors in distributed detection applications.

IEEE Signal Processing Magazine, 24, 3 (May 2007),

16—25.

[25] Luo, Z-Q.

An isotropic universal decentralized estimation scheme

for a bandwidth constrained ad hoc sensor network.

IEEE Journal on Selected Areas in Communications, 23, 4

(Apr. 2005), 735—744.

[26] Barros, J. and Tückler, M.

Scalable decoding on factor trees: A practical solution for

wireless sensor networks.

IEEE Transactions on Communications, 54, 2 (Feb. 2006),

284—294.

[27] Kschischang, F. R., Frey, B. J., and Loeliger, H. A.

Factor graphs and the sum-product algorithm.

IEEE Transactions on Information Theory, 47, 2 (Feb.

2001), 498—519.

[28] Ferrari, G., Martalò, M., and Sarti, M.
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