
J. Parallel Distrib. Comput. 74 (2014) 2029–2038
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Sporadic decentralized resource maintenance for P2P distributed
storage networks✩

M. Martalò a,b,∗, M. Amoretti c, M. Picone b, G. Ferrari b
a E-Campus University, Novedrate (CO), Italy
b Department of Information Engineering, Università degli Studi di Parma, Italy
c Centro Interdipartimentale SITEIA.PARMA, Università degli Studi di Parma, Italy

h i g h l i g h t s

• We analyze a distributed storage architecture based on a DHT-based overlay.
• An innovative decentralized resource maintenance strategy has been developed.
• A complete theoretical mathematical framework and realistic simulations are provided.
• The proposed approach leads to a fully decentralized strategy.
• Maintenance bandwidth is kept very low.

a r t i c l e i n f o

Article history:
Received 22 August 2012
Received in revised form
29 October 2013
Accepted 6 November 2013
Available online 12 November 2013

Keywords:
Distributed storage
Decentralized maintenance
Erasure coding
Randomized network coding
Peer-to-peer (P2P)

a b s t r a c t

In this paper, we propose a novel decentralized resource maintenance strategy for peer-to-peer (P2P)
distributed storage networks. Our strategy relies on theWuala overlay network architecture, (TheWUALA
Project). While the latter is based, for the resource distribution among peers, on the use of erasure codes,
e.g., Reed–Solomon codes, here we investigate the system behavior when a simple randomized network
coding strategy is applied. We propose to replace theWuala regular and centralized strategy for resource
maintenance with a decentralized strategy, where users regenerate new fragments sporadically, namely
every time a resource is retrieved. Both strategies are analyzed, analytically and through simulations, in
the presence of either erasure and network coding. It will be shown that the novel sporadic maintenance
strategy, when used with randomized network coding, leads to a fully decentralized solution with
management complexity much lower than common centralized solutions.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Peer-to-peer (P2P) applications have attracted the interest of
the research community because of their potential (e.g., high
scalability, fault tolerance, etc.). An important application of the
P2P paradigm is distributed storage, where information (e.g., a
file) is stored with proper redundancy at different nodes of the
network: this allows efficient retrieval and low probability of
error. In these systems, users place their own data on Storage

✩ This paper has been in part presented at the IEEE Int. Symposium on Network
Coding (NetCod), Toronto, Canada, June 2010 and the Information Theory and
Applications (ITA) Workshop, UCSD, San Diego, CA, USA, February 2011.
∗ Corresponding author at: Department of Information Engineering, Università

degli Studi di Parma, Italy.
E-mail addresses:marco.martalo@unipr.it (M. Martalò),

michele.amoretti@unipr.it (M. Amoretti), marco.picone@unipr.it (M. Picone),
gianluigi.ferrari@unipr.it (G. Ferrari).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.11.001
Nodes (StNs) using proper encoding functions, thus generating
redundancy to counter-act possible faults. To protect data against
theft, files are encrypted on the user’s desktop, and the password
never leaves his/her computer. It is necessary to have a public key
infrastructure and strong node identities. This is very important
to incentivize users in providing their unused disk spaces. On the
other hand, it is important to include rewarding mechanisms, for
users that share their storage resources, and penalties, for selfish
users. A large amount of literature is available on this topic (see,
e.g., [7,9]), which is, however, out of the scope of this paper.

The most popular (source) encoding strategy is based on the
use of efficient maximum distance separable (MDS) erasure codes,
e.g., Reed–Solomon codes, parity-array codes, and low-density
parity-check (LDPC) codes [26,25]. With MDS coding, an informa-
tionmessage with k symbols is encoded into amessage with n > k
symbols (thus with coding rate Rc = k/n). The users can then re-
trieve the information by downloading a proper subset (of size k)
of the encoded packets, owing the fact that thisminimum size sub-
set is sufficient to reconstruct the original information. When the

http://dx.doi.org/10.1016/j.jpdc.2013.11.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.11.001&domain=pdf
mailto:marco.martalo@unipr.it
mailto:michele.amoretti@unipr.it
mailto:marco.picone@unipr.it
mailto:gianluigi.ferrari@unipr.it
http://dx.doi.org/10.1016/j.jpdc.2013.11.001


2030 M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038
information available in the overall network reduces below a crit-
ical level, a maintenance event needs to be scheduled in order to
restore an amount of information sufficient to allow resource re-
trieval.

Since the appearance of the seminal paper [2] in 2000, network
coding has held the promise to increase the throughput and
reliability of a large class of distributed systems, such as wireless
networks, sensor networks, P2P networks, etc. [14]. In particular,
a significant (theoretical and applied) research activity in the field
of network coding for P2P networks has recently spurred, thanks
to [17], where, for the first time, the integration of randomized
network coding [19] with the topology management of a classical
P2P content distribution system (e.g., BitTorrent [6])was proposed.
In [11], the authors analyze a P2P distributed storage system
where the data is not encoded with erasure codes but, rather,
with random linear combinations. Results show that this approach
allows to achieve the optimal redundancy–reliability tradeoff.

In this paper, we propose a decentralized network coding-
based approach to P2P distributed storage, relying on the archi-
tecture of the Wuala project [29]. In particular, we reproduce at
our best the architecture of the Wuala project [18], which is
representative of the more general class of DHT-based overlay
architectures. Unlike the Wuala-based system, where resource
maintenance is periodic and centralized—and more precisely, is
carried out by a few Super-Nodes (SuNs), we propose a novel
proactive ‘‘sporadic’’ maintenance strategy, according to which a
resource is regenerated each time a Client Node (CN) downloads
it. This sporadic maintenance strategy can be implemented either
in centralized (with erasure coding) or fully decentralized (with
randomized network coding) ways. Although our DHT-based ar-
chitecture has been preliminary proposed in our previous works
[23,22], the key goal of this manuscript is to provide a compre-
hensive analysis, bothwithmathematical analysis and simulations,
of this distributed storage architecture. To this end, the analyti-
cal performance evaluation framework is a properly extended ver-
sion of the preliminary attempts in [23,22]. Previous works in this
field focus on the resource availability, but we think that the us-
age of shared resources is important as well. Thus, we propose a
simple but effective analysis of the required maintenance band-
width, to highlight the conditions under which sporadic main-
tenance (SM) has to be preferred to periodic maintenance (PM).
Analytical results are further confirmed by realistic simulation re-
sults. Our results show that the novel decentralized sporadicmain-
tenance strategy, besides reducingmaintenance complexity (at the
SuNs), incurs a negligible performance loss, in terms of resource
availability and used storage space, with respect to a centralized
maintenance approach.

This paper is structured as follows. Section 2 summarizes re-
lated work. In Section 3, we present the network coding-based ar-
chitecture used in our distributed storage system, which is applied
to aWuala overlay network architecture. Analytical and simulation
results are shown in Section 4 and Section 5, respectively. Finally,
in Section 6 concluding remarks are given.

2. Related work

2.1. P2P distributed storage systems

Distributed data storage has been widely studied by the file
system and database community. A conceptually simple example
is the Google File System, built to host the state of Google’s internal
applications [16]. This system uses a single master server for
hosting the entire data. Moreover, the data is split into chunks and
replicas of these chunks are stored in chunk servers. Conversely,
the highly available key–value storage system Dynamo is based
on a fully decentralized approach [10]—Dynamo is used by some
of Amazon’s core services to provide an ‘‘always-on’’ experience.
It can be characterized as a zero-hop overlay scheme where each
node locally maintains a sufficient routing information to route
directly a request to the appropriate node. Malugo is a recently
developed P2P storage system [8], where peers are clustered in
groups. New inserted files are replicated to different groups and
different files have different numbers of replicas according to the
pre-specified replication policy. Additional copies are cached in
different peers to balance the load of storage peers, which host
popular files.

Wuala [29], which is our main reference, is a P2P distributed
storage system, with more than 110 million stored files, where
a node can simultaneously be supplier and client [29]. The main
reason for the success of Wuala is the high resource availability
(99.9% guaranteed file availability). Each new user is immediately
allowed to use 1 GB of free storage space. Moreover, users can buy
more storage space and, possibly, share their own local disk spaces.

The distributed architecture of Wuala is based on Chord [27],
probably the most known P2P overlay scheme adopting the Dis-
tributed Structured Model (DSM) [3], i.e., implementing a Dis-
tributed Hash Table (DHT) to store data or, in general, information
about resources, with uniformdistribution of responsibility among
peers. It can be proved that, with high probability, the number of
nodes that must be contacted to find a desired data chunk in a
network composed by N nodes is O(logN) [27]. With respect to
the traditional Chord structure, Wuala defines three node classes:
SuNs, StNs, and CNs. Data redundancy is achieved by means of
MDS erasure coding and SuNs periodically generate maintenance
events, in order to guarantee, for each stored file, the presence of a
number of fragments sufficiently large to allow its reconstruction.
Further details will be given in Section 3.

2.2. Network coding for distributed storage

Network coding is a recently proposed network-oriented chan-
nel coding paradigm, arising in the field of information theory,
which generalizes the classical concept of routing in wired net-
works. With network coding, in fact, intermediate nodes, besides
forwarding incoming packets, can also encode them. This allows
to achieve the multicast capacity [2] and, therefore, leads to
potential advantages in terms of bandwidth and computational ef-
ficiency, robustness, etc. Although network coding has been exten-
sively studied from a theoretical point of view, several practical
scenarios, where benefits can be observed, have been recently pro-
posed [15,14].

Nowadays, distributed storage is one of the main applications
where benefits of network coding have emerged [12,20]. In [11],
the authors propose a solution to the repair problemusing network
coding and evaluate the fundamental tradeoff between the storage
space and the amount of data required to repair a resource. After
the publication of this pioneering work, a significant research ac-
tivity has been devoted to this topic and, in particular, to the design
of optimal codes which allow to achieve this tradeoff. An inter-
esting survey on the main problems in distributed storage ap-
plications with network coding can be found in [13], whereas a
complete bibliography on this topic is maintained at the Dis-
tributed Storage Wiki [28].

3. System architecture

As anticipated at the end of Section 2.1, there are three
different groups of nodeswith specific behaviors. CNswork as data
publishers and consumers: they can publish or retrieve resources
through the system, as will be discussed later. When joining the
network, a CN has to find a SuN gateway to be used for its
communication activities.



M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038 2031
Fig. 1. The considered P2P overlay scheme with illustrative examples of (a) resource store and (b) resource retrieval process. In both cases, the resource consists of 5
fragments.
StNs guarantee high availability and great reliability. They store
fragments published by CNs. However, they can (temporarily)
disconnect from the network, thus leading to a possible resource
unavailability. CNs can evolve and become StNs if their presence
has been sufficiently continuous in the network—for instance,
in Wuala they need to be online for at least 4 h a day and 10
consecutive days. However, if a promoted StN is unavailable for
more than a given time (3 days inWuala), it ismarked as unreliable
and downgraded to the CN level.

SuNs form the architecture kernel, implementing an overlay
network based on the Chord scheme. The main purpose of this
class of peers is to provide a mechanism for message routing that
allows clients to find StNs. SuNs play a crucial role in the system
and they must be online all the time. Therefore, it is expected
that these peers are managed by the organization that provides
the distributed storage service or by trusted parties. In order to
guarantee storing operations also in unstable scenarioswith a large
number of disconnections, each SuN is also associated to a StN on
the samemachine. This is crucialwhen the system is in its transient
phase, after being bootstrapped, as there may be only a few CNs
which could not be immediately promoted to the StN level.

In Fig. 1, a logical scheme of the system structure is shown,
with (i) an ‘‘inner ring’’ of Super-Nodes, (ii) an ‘‘outer ring’’ of StNs,
and (iii) a CN. The figure provides illustrative representations of
(a) resource publishing (‘‘Store’’) and (b) resource retrieval (‘‘Get’’)
actions from a CN. In the remainder of this section, we detail the
operations performed by nodes involved in the network.

One should observe that the proposed network architecture is
composed by (and can be analyzed at) two different levels. The
first level is the system architecture, which is composed, in our
case, by the DHT-based overlay network where different classes
of nodes are employed. The other level at which the system can be
analyzed is associated to the operations that nodes can perform
on resources, e.g., files. In this case, three different operations,
performed on the overlay network, arise: publish, retrieval, and
maintenance. The description of these operations is subject of the
following sections.

3.1. Resource publishing

A file of size M (dimension: (Bytes)), which needs to be stored,
is divided into Ng (adimensional) generations composed of k
(adimensional) fragments {si}ki=1 each, so that M = NgkdF, dF
being the common size (dimension: (Bytes)) of each fragment.
We now focus on a single generation, since all the operations do
not depend on the generation. All fragments can be equivalently
described as symbols belonging to the Galois field GF(q), where
q = 2m is the field size—note that, according to our definition,
m = 8dF bits. The fragments of a generation can be collected in
a column vector denoted as s = (s1, . . . , sk)T , where T denotes the
transpose operator. Each fragment (q-ary symbol) corresponds to
the payload of a packet and the coefficients representing the linear
combination of the original fragments {s1, . . . , sk} are stored in the
so-called coding vector, which is contained in the packet header
together with the information about the generation the fragment
belongs to. Given that the generation has k fragments in GF(2m),
the coding vector has size ℓcv = mk bits. Typical values of ℓcv (as
will be considered in the simulations in Section 5) are on the order
of hundreds of bytes. Since the typical payload size is of the order
of hundreds of kB, the overhead can be kept sufficiently small.

The n redundant (published) fragments can be collected in a
column vector denoted as δ = (δ1, . . . , δn)

T , so that the following
linear combination holds:

δ = Bs

where B is a matrix whose rows {Bj}
n
j=1 correspond to the coding

vectors of the generated fragments. In the case with MDS erasure
coding (namely, Wuala), the combined fragments {δj}

n
j=1 are

guaranteed to be linearly independent, whereas in the randomized
network coding-based approach, each coefficient βji (j = 1, . . . , n;
i = 1, . . . , k) is uniformly chosen among all possible values
in GF(q). Note that the use of erasure coding incurs a larger
computational complexity, since possible new fragments need to
be linearly independent of those already published. This operation
typically requires a computational complexity on the order of
n3 [5].

Resources and nodes are identified by binary keys in the same
keyspace range. To publish a file, a unique key is assigned to the
resource, allowing to route it to the responsible SuN (the one
being identified by the nearest key). Moreover, a fixed number
of linearly encoded fragments is generated. The SuN responsible
for the resource, denoted as gateway SuN, assigns each fragment
to a specific SuN, which selects the StN with the current largest
portion of available free disk space. The SuN responsible for the
resource maintains a list with fragments and corresponding StNs,
and communicates that list to the CN. At the end of the lookup
process, the CN can upload its generated fragments in parallel to
its assigned StNs.

3.2. Resource retrieval

According to the previously illustrated lookup functionality, in
order to retrieve a published file it is necessary to obtain, for each
generation, k linearly independent fragments {ρ1, . . . , ρk}, which
can be collected in the column vector ρ = (ρ1, . . . , ρk)

T . Note that
ρ is one of the possible subsets of size k drawn from {δj}

n
j=1 (n ≥ k).



2032 M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038
After these fragments have been collected, the following system of
linear equations can be solved using the classical Gauss elimination
algorithm [5]:

ρ = As (1)

where A is a size k submatrix of B whose rows {Ai}
k
i=1 correspond

to the coding vectors of the retrieved fragments {ρi}
k
i=1. In order

to solve (1), A needs to be inverted. In the case with MDS erasure
coding, it is guaranteed that A is full rank for every subset {ρi}

k
i=1.

In the presence of randomized network coding, instead, there is a
non-zero probability that A’s rank is not full. Our simulations, not
shown here for lack of space, show that in the considered settings
this probability is below 10−4 and, therefore, the performance of
randomized network coding is very close to that of MDS erasure
coding [23].

Referring to the ‘‘GET’’ function in Fig. 1, the SuN gateway
routes the CN’s request to the responsible node and then to the
StNs which have the fragments. Once the fragments have been
retrieved, i.e., the file has been downloaded, the CN is able to
trigger a regeneration process, aswill be discussed inmore detail in
Section 3.3, thus publishing new (linearly independent) fragments.

3.3. Resource maintenance strategy

In the originalWuala system, resourcemaintenance is reactively
carried out by SuNs that periodically (every TM (min)) check the
availability, in the StNs, of the resources under their responsibility.
If, for each generation, the percentage of surviving fragments
falls below a properly defined retrieval ‘‘guard threshold’’ (which
represents the fraction of fragments below which the resource
is likely to become soon unavailable), the SuN generates new
fragments independent of the surviving ones, and distributes them
to StNs. The threshold is denoted as τ and is equal to a fraction of
the total number of fragments, i.e., τ , ϵn, ϵ ∈ [Rc, 1]. The number
of newgenerated fragments is chosen so that the overall number of
available fragments for a generation is equal to n, i.e., the published
number of fragments.

Network coding can be efficiently employed to perform the fol-
lowing novel proactive resource maintenance strategy. Whenever
a CN retrieves (on average, every Ts (min)) a resource, it generates a
given number of new fragments for each generation. In particular,
the CN decides how to generate fragments after checking, through
its gateway SuN, if/how the network has evolved.More precisely: if
one ormore StNs have been downgraded to CNswithin a given pe-
riod (the last 24 h in our simulations), a whole new set of n linearly
independent fragments are regenerated; otherwise, each fragment
is generated with probability equal to 0.5. This leads to upload, on
average, n/2 fragments. Note that this strategy is effective if CNs
have a sufficiently large upload bandwidth. This is not a limitation,
as final users can nowadays have access to sufficiently powerful
Internet connections and, therefore, it may be possible to move
themaintenance complexity from the core network towards them.
It is obviously still true that the larger the file to be maintained,
the higher the maintenance complexity, as will be shown in Sec-
tion 4.3.

We remark that, in the proposed strategy, maintenance is per-
formed only when a client has successfully completed a download
and, therefore, a resource may not be regularly maintained if it is
not shared between the owner and a sufficient number of other
CNs. However, the complexity of the maintenance operations is
significantly reduced, as will be shown later, with respect to that of
the Wuala approach. Moreover, as the number of exchanged con-
trol messages is significantly smaller, bandwidth consumption is
lower.

In the following,wewill refer to the reactivemaintenance strat-
egy as ‘‘periodic maintenance’’ (PM), whereas the (novel) proac-
tive one will be denoted as ‘‘sporadic maintenance’’ (SM). Note
that, in both cases, according to the taxonomy in [11], the main-
tenance strategy aims at performing functional (not exact) repair.
In both cases, in fact, the new generated fragments are not exactly
the same as those lost by disconnected nodes, but they still allow
the reconstruction of the same generations.

4. Analytical performance evaluation framework

We now present some results to characterize the performance
of the distributed storage architecture. As already anticipated in
Section 3, the proposed network architecture is composed by two
different levels: (i) theDHT-based overlay networkwhere different
classes of nodes are employed, and (ii) the level associated to
the operations that nodes can perform on resources. To this end,
we characterize the performance in terms of resource availability,
storage/repair tradeoff, and required maintenance bandwidth.
Note that all the performance indicators are related to both the
architecture levels at the same time. The preliminary analysis
in [23,22] is properly extended. In particular, previous works in
this field take care about the resource availability, but the usage
of shared resources, e.g., bandwidth, is important as well. To this
end, we propose a simple, but effective, analysis of the required
maintenance bandwidth.

In particular, in this section we present an analytical frame-
work that, although based on simple assumptions, is meant to give
significant insights on the considered distributed storage systems’
behavior. The analytical framework will be compared with simu-
lation results in Section 5.

4.1. Resource availability

Resource availability is defined as the probability that, at any
given time, it is possible to successfully download a given resource.
For simplicity, we assume, as in [26], that each coded fragment is
stored in a different StN. Although this assumption is not always
verified in our DHT-based overlay architecture, in Section 5 we
will show that simulations confirm, at least trend-wise, the results
predicted by the analytical framework. Similar considerations for
MDS codes and files divided into a single generation have also been
carried out in [11].

Since all generations are independent, the availability of the
entire resource can be written, regardless of the chosen coding
strategy, as

AX =

AX,g

Ng

where X = E, R, or NC in the presence of erasure, repetition, or
randomized network coding, respectively. Note that, as in Wuala,
a hybrid strategy can be considered, by also storing a full copy of
the resource in a remote server, to make the system more fault-
tolerant. This situation will not be considered, but the resource
availability can be derived through considerations similar to those
provided in [11]. In the following, we specify the value of AX,g for
the above mentioned coding strategy.

If MDS codes are adopted, one can successfully recover a sin-
gle generation of the file if k out of the n fragments are down-
loaded.1Assuming that (i) each StN is available with probability2
p and (ii) disconnection events are independent, the availability of

1 Note that, at a given time, the number of fragments for a given resource may be
larger than n due to maintenance. This event is neglected, since we assume that the
available number of fragments per resource is sufficiently close to n.
2 The value of p will be characterized by means of simulations in Section 5 for

realistic distributed storage networking scenarios.



M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038 2033
Fig. 2. Resource availability, as a function of the StN availability, in a scenario with
k = 10 fragments and Ng = 1. The code rate is set either to 1/2 (n = 20) or 1/5
(n = 50). Different coding strategies are considered.

a single generation can be computed as

AEC,g =

n
i=k

n
i


pi(1 − p)n−i. (2)

It is well known that, for a given value of n and sufficiently large
p, the availability (2) is larger than that of a repetition code [26],
which is given by

AR,g = 1 − (1 − p)
1
Rc .

In a randomized network coding-based scheme, a node can
successfully recover a resource if, for each generation, at least k
fragments can be downloaded and at least k of these are linearly
independent. Let us denote as Ei the event ‘‘i (i ≥ k) fragments
are recovered’’ and as B the event ‘‘at least k of the recovered
fragments are linearly independent’’. Therefore, one can write

ANC,g = P


n

i=k

{EiB}


=

n
i=k

P (B|Ei) P (Ei)

where mutual exclusivity of the events {Ei} has been used.
Note that P(Ei) equals the ith term in (2) and P(B|Ei) ≤ 1 (i =

k, . . . , n). Therefore, the availability with randomized network
coding is not higher than that with erasure coding. Moreover,
from well-known results in the field of network coding [15], it
is expected that the larger is the field size, the closer are the
availabilities for the two systems. In particular, if one defines as Di
the dimension of the subspace spanned by i vectors, it is possible
to write

P (B|Ei) = P (Di ≥ k) =

i
j=k

P (Di = j)

where the term P(Di = j) can be written as [1]

P (Di = j) =

j−1
ℓ=0


qi − qℓ

 
qk − qℓ


qki

j−1
ℓ=0


qj − qℓ


and q is the field size.

In Fig. 2, the resource availability is shown, as a function of
the StN availability, in a scenario with k = 10 fragments, Ng =

1, and q = 28. The code rate is set either to 1/2 (n = 20)
or 1/5 (n = 50). Different coding strategies are considered:
(i) repetition, (ii) erasure, and (iii) randomized network coding. As
can be observed from the results in Fig. 2, the use of randomized
network coding leads to a performance loss with respect to the use
of erasure coding. However, for sufficiently large values of p, this
loss is negligible and the use of a sufficiently large value of the field
size q allows to approach the performance with erasure coding.
Finally, the smaller the code rate, the lower the performance loss
incurred by network coding-based schemes.

4.2. Storage/repair tradeoff

The storage/repair tradeoff has been first introduced in [11],
focusing on a single resource composed by a single generation
(i.e., Ng = 1). Suppose that the n coded fragments of a file of size
M = NgkdF are stored at n active StNs, each of which contains
a single fragment formed by α bits (denoted as ‘‘storage size’’).
Whenever a StN fails, a new StN is placed in the network. In order
to generate a new coded fragment, the newcomer needs to receive
β ≤ α bits from d ≤ n − 1 surviving StNs. Therefore, the number
of bits that are necessary to generate a new coded fragment is
γ = dβ (denoted as ‘‘repair size’’).3 In [11], the authors show that,
given n, k, d, and γ , there exists an optimal tradeoff storage size
(with closed-form expression) α∗(n, k, d, γ ) such that a storage
size α ≥ α∗ is feasible, whereas a storage size α < α∗ is not.
Moreover, the so-called regenerating codes [28], based on the use
of randomized network coding, allow to achieve every point of the
optimal tradeoff curve.

In order to estimate the storage/repair tradeoff in our schemes,
assume that each StN has, on average, NgnF fragments for each
resource and each fragment has an average size dF (the size of
each fragment depends on the total size of the resource). Thus,
the average storage size is α = NgnFdF. Since new fragments are
generated only when the node responsible for the maintenance (a
CN with SM or a SuN with PM) can recover the entire resource,
the repair size can be computed as γ = NgkFdF, where kF is the
average number of fragments that need to be retrieved in order
to find k linearly independent fragments per generation. Note
that, in general, kF ≥ k, i.e., it would be necessary to download
more fragments before obtaining a set of k linearly independent
fragments. In Section 5, we will evaluate α and γ by simulations
and compare themwith the optimal storage curve (α∗ as a function
of γ ) in [11].

4.3. Maintenance bandwidth

In this subsection, we investigate the bandwidth required by
maintenance operations. In particular, we define this bandwidth
as follows:

B ,
#of exchanged bits
maintenance period

.

We now compute the number of exchanged bits for both PM
and SM strategies. In a scenario with PM, for each resource the
SuN interrogates the StNs with a packet4 containing the resource
ID. Since a few bits are transmitted, they can be neglected. At this
point, nR,i (nR,i ≤ n) packets of size dF are downloaded by the SuNs
for the ith generation (i = 1, . . . ,Ng). If k ≤ nR,i ≤ τ , where
τ is the maintenance threshold, packets’ regeneration is triggered
and n − nR,i fragments are injected in the network. This happens
with a probability denoted as PR,i. It is reasonable to assume that
PR,i is constant, i.e., PR,i = PR (i = 1, . . . ,Ng). The parameter PR
is related to network conditions and depends on traffic statistics

3 Note that, in [11], the authors use the term ‘‘repair bandwidth’’ for γ (dimen-
sion: [bits]). Since in this paper the term bandwidth will be used, in Section 4.3,
to refer to the maintenance bandwidth B (dimension: (bits/s)), we refer to γ as
‘‘repair size’’.
4 As already said in Section 3.1, a fragment corresponds to a packet payload.



2034 M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038
(e.g., network dynamics, stability, etc.). In particular, regeneration
happens if some network conditions are matched. In the proposed
framework, the parameter PR is not a design parameter and is
used in the analytical framework to determine the corresponding
required maintenance bandwidth. In other words, given specific
network operational conditions, the realistic value of PR can be
computed by simulations. An interesting extension of our work
consists in the derivation of an analytical framework which, by
taking into account a propermodel of network evolution, allows to
compute the regeneration probability. However, this goes beyond
the scope of this paper. In the presence of erasure coding, more
than nR,i packets may be generated in order to obtain nR,i linearly
independent packets, whereas this is not the casewith randomized
network coding. Therefore, the maintenance bandwidth can be
written as

BPM =
Nres

TM


Ng
i=1

nR,idF +

Ng
i=1

(n − nR,i)dFPR


(3)

whereNres is the number of resources in the network. Since nR,i can
be expressed as k+φi (φi ∈ {0, . . . , n− k}) and using the fact that
k/n = Rc, after a few manipulations, not shown here for lack of
space, (3) becomes

BPM =
NresdF
TM

Ng
i=1


k

1 +


1
Rc

− 1

PR


+ φi(1 − PR)


.

At this point, recall (from Section 4.2) that kdF is equal (for erasure
coding) toγ /Ng and approximately equal (for randomizednetwork
coding) to γ /Ng. Therefore, in the randomized network coding case
it holds that

BPM ≃

γ

(1 − PR)


1 +

φ

k


+

PR
Rc


TM

Nres (4)

whereφ ,
Ng

i=1 φi/Ng. Eq. (4) is exact for erasure coding.Note that
the parameters PR, φ, and Nres depend on the particular network
configuration, e.g., number of nodes, connection/disconnection
period, etc. Moreover, since 0 ≤ φ ≤ n − k, the following upper
and lower bounds for BPM are obtained:

γ

1 − PR Rc−1

Rc


TM

Nres ≤ BPM ≤

γ

1 − PR

R2c−1
Rc


TM

Nres. (5)

In a scenario with SM, a CN downloads γ bit in order to
reconstruct the resource. If the resource is available (this happens
with probability A, as stated in Section 4.1), a given number of
fragments is regenerated for each generation. According to the
considerations carried out in Section 3.3, if the network is dynamic
n fragments are generated; otherwise (i.e., the network is static),
the average number is n/2. Since it may be reasonable to assume
that the two network statuses (e.g., static or dynamic) are equally
likely, the average number of regenerated packets is
1
2


n +

n
2


Ng =

3
4
nNg.

Therefore, the maintenance bandwidth with SM can be written as

BSM =
γ +

3
4ANgndF
Ts

≃

γ

1 +

3
4Rc

A


Ts
(6)

where, as in the case with PM analyzed above, we have used the
fact that γ ≃ NgkdF and k/n = Rc. Comparing (6)with (5) allows to
clearly identify the set of parameters’ values for which one should
prefer one strategy or the other. Comparing expression (6) with
expression (4), it can be concluded that, unlike BPM, BSM does not
depend onφ. Note also that, unlike the corresponding PM scenario,
Table 1
Main framework parameters.

Parameter Description

nF Number of fragments for a given generation
dF Fragment size
kF Number of per generation fragments needed to

find k linearly independent fragments
p Availability probability of a StN
Pr Probability of packets’ regeneration

(6) does not clearly depend on A. However, this dependence
is hidden by the fact that the SM strategy performs fragment
regeneration only if the considered resource can be downloaded
and, therefore, it is available in the network. The bandwidth for the
PM strategy is instead computed assuming that Nres resources are
available in the network at the time of themaintenance. Obviously,
if the total number of injected resources is Ntot, it follows that
Nres ≤ Ntot depending on the particular resource availability.

In Fig. 3, the maintenance bandwidth is shown, as a function
of φ, in a scenario with k = 50, Rc = 1/2, γ = 10, with either
PM (with TM = 30 min) or SM (with Ts = 3 min)—the selected
values of TM and Ts are chosen as they correspond to the realistic
parameters used in the simulations in Section 5. Different values of
PR and Nres are considered. As observed at the end of the previous
paragraph, BSM does not depend on φ and, hence, is constant. For
a small number of resources (e.g., 2), the maintenance bandwidth
required by PM is always smaller than that of SM, since in the latter
case a larger number of fragments is uploaded after regeneration.
When the number of resources increases, instead, the performance
of SM becomes better than that of PM. Therefore, when there is a
large number of resources in the network, SM is to be preferred
to PM. Our results, not shown for lack of space, suggest that SM is
preferable if TM = Ts. In other words, when several resources are
stored in the network one should performmoremaintenance oper-
ations to guarantee that the resources cannot be lost. In particular,
if resource searches have sufficiently small frequency so that the
availability is high but the scheduledmaintenance events are lower
than those with PM, SM guarantees to reduce the bandwidth occu-
pation in the network. In Section 5, we will validate these consid-
erations by estimating the values of the parameters PR, φ, and Nres
through realistic simulation results relative to practical P2P appli-
cations.

4.4. Discussion

The proposed analytical framework depends on several system
parameters, which are summarized for brevity in Table 1. In
particular, some of them are related to the resources exchanged
within the network and can be obtained according to the chosen
coding strategy and the type of traffic (i.e., what is stored). Other
parameters (e.g., p or Pr) are more related to network conditions
and depends on traffic statistics (e.g., network dynamics, stability,
etc.). However, all of them are strictly related to each other,
to derive the performance. As an example, resource availability
depends on data characteristics, e.g., the number of fragments
and the coding rate, but also on the network situation, e.g., the
availability of storage nodes p.

Moreover, the analyticalmodels above presented are character-
ized by a few assumptions. The main inaccuracies of the model are
the following.

• More than one coded fragment may be stored in a given StN.
• At a given time, the number of fragments for a given resource

may be larger than n, due to maintenance.
• StN disconnections may not be independent.
• All generations may not behave in the same way—for instance,

packet regenerations may happen with different probabilities.



M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038 2035
Fig. 3. Maintenance bandwidth (dimension: (kB/s)), as a function of φ (adimensional), in a scenario with k = 50, Rc = 1/2, γ = 10, with either PM (with TM = 30 min) or
SM (with Ts = 3 min). In case (a) Nres = 2, in case (b) Nres=15 , and in case (c) Nres = 40. Different values of PR are considered in the PM scenarios.
However, these assumptions cannot be considered critical, as the
simulation results (especially those regarding resource availability
and maintenance bandwidth) will be shown to be in good agree-
ment with analytical results.

5. Simulation-based performance analysis

The simulation tool used in this paper is DEUS, a discrete event
universal simulator, based on Java and XML, created by the Dis-
tributed Systems Group (DSG) of the University of Parma [4].5
In [24], simulation results, based on DEUS, and experimental re-
sults, based on PlanetLab, are compared in a traffic information
system application, showing the effectiveness of this simulator. In
order to evaluate the performance of the proposed P2P distributed
storage systems, the scenario summarized in Table 2 has been sim-
ulated. This scenario is representative of a realistic dynamic net-
work, where many users connect, share, and look for resources.
The rationale behind the chosen simulation settings is the follow-
ing. The simulation length is such that 30 days of network function-
ing are considered. During this time, a sufficient number of events
is scheduled: in particular, if 100 events per hour are scheduled
a total amount of 72,000 events is generated. The churn verifica-
tion period equal to 1 h is set as a reasonable tradeoff between
the storage node availability and a realistic node functioning. In
real networks, in fact, some nodes may be disconnected for longer
times and some others for shorter time. The storage node capacity
instead is compliant with simulations in [18]. The file size distri-
bution has been chosen as a reasonable value to obtain simulation
results with not too lengthy simulations; however, in [21] a more
realistic distribution of the space occupied by files, according to

5 This simulator has been used instead of classical network simulators (e.g., ns-2
or Opnet), since it is optimized to analyze P2P networks at a higher level (up to the
overlay network).
Table 2
Main simulation parameters.

Parameter Value

Number of SuNs 10
Number of StNs 50 (10 disconnected at t = 0)
Number of CNs 500 (80 disconnected at t = 0)
Disk space for each StN 10 GB
Resource Size M Uniform in [1, 35] MB
Simulation duration 30 days
Number of events per hour 100
Number of independent runs 100
Resource search period Ts 3 min
Connections/disconnections period 12 min
Churn verification period 1 h
Number of regenerated fragments k + 0.15k (without churn)
with SM k + 0.25k (with churn)
τ (regeneration with PM) 0.7n

Wuala data, is derived. Finally, the search time is given so that each
client performs, on average, 1 lookup per day. At the end of this sec-
tion, we will investigate the impact of a different (more realistic)
file size distribution and different values of Ts.

We first investigate the storage/repair tradeoff discussed in
Section 4.2. In Fig. 4, the storage/repair tradeoff is shown for
resources of average size M = 18 MB. Each resource corresponds
to Ng = 1 generation composed by k = 50 fragments, coded
with rate Rc equal to 1/2 or 1/5. The operating points (obtained
by simulations) with erasure coding and randomized network
coding, considering either PM or SM, are shown in the figure as
symbols (•, �, ⋆, N). One can observe that, for a given value of
the coding rate, the different coding/maintenance strategies entail
minor differences. In particular, the repair size γ is approximately
equal to M . Moreover, for decreasing values of Rc, a larger amount
of storage α is required, since the average resource availability is
larger (aswill be shown inmore detail in Table 3). However, the SM
strategy is to be preferred, since it requires a lower computational
complexity and network overhead. We remark that Fig. 4 is



2036 M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038
Table 3
Average resource availability (denoted as µ) and its standard deviation (denoted as σ ) for k = 50 fragments. Different coding and maintenance strategies are considered.

Rc = 1/2 Rc = 1/5
µ σ An. µ σ An.

EC-PM (TM = 30 min) 0.9891 0.0082 0.9979 0.9999 0.00001 1
EC-PM (TM = 45 min) 0.9863 0.0099 0.9979 0.9999 0.00009 1
EC-SM 0.9883 0.00825 0.9979 0.9999 0.00005 1
NC-PM (TM = 30 min) 0.9918 0.0053 0.9967 0.9999 0.00002 1
NC-PM (TM = 45 min) 0.9862 0.00985 0.9967 0.9999 0.00013 1
NC-SM (q = 23) 0.9899 0.0048 – 0.9999 0.00008 –
NC-SM (q = 28) 0.9901 0.00485 0.9967 0.9999 0.00008 1
NC-SM (q = 216) 0.9899 0.00476 – 0.9999 0.00008 –
Fig. 4. Storage/repair tradeoff for resources of average size M = 18 MB divided
into 50 fragments coded with rate Rc = 1/2 or Rc = 1/5. The operating points of
different strategies are shown.

meant to compare the (theoretical) bound with single points are
associated with simulations. In particular, the bound depends on
two parameters α which can vary γ , but during simulations these
two parameters assume a given value. Therefore, one single point
is obtained for a given simulation scenario.

Wenowanalyze the resource availability, defined as the success
rate of downloading a resource by a CN. In Table 3, the average
resource availability (denoted as µ) and its standard deviation
(denoted as σ ) are shown in a scenario with generations divided
into k = 50 fragments. Different coding and maintenance
strategies are considered. The value ofµ is computed by averaging
the availability over all simulation times and all possible resources.
First, one can observe that the lower the coding rate, the higher the
availability. In this case, in fact, the number of published fragments
n is larger and a larger number of disconnections is needed tomake
a resource unavailable. In particular, for a fixed coding rate, all
strategies have approximately the same performance (almost 99%
whenRc = 1/2 and 99.99%whenRc = 1/5). Finally, the simulation
results are compared with those predicted by the analytical
framework in Section 4.1.With the considered simulation settings,
the averageprobabilitywithwhich a StN is available in thenetwork
(over time and across nodes) is approximately equal to p = 0.77.
The analytical results in Fig. 2 with p = 0.77 are very close but
slightly larger than those in Table 3. This is due to the fact that
in the analytical framework we have considered a ‘‘more benign’’
scenario, where a StN disconnection leads to the loss of only one
fragment.

In Fig. 5, the average free available disk space per StN is shown,
as a function of time, in a scenario with k = 50, TM = 30 min,
Ts = 3min, and q = 216. Different coding andmaintenance strate-
gies are considered. As previously observed for the resource avail-
ability, for a fixed coding rate, the performances of all considered
strategies are approximately the same.Unlike the results in Table 3,
the higher the coding rate, the smaller the storage occupancy. In
Fig. 5. Average free available disk space per StN, as a function of time, in a scenario
with k = 50, TM = 30 min, Ts = 3 min, and q = 216 . Different coding and
maintenance strategies are considered.

Fig. 6. Maintenance bandwidth, as a function of φ, in a scenario with k = 50 with
either PM with TM = 30 min or SM with Ts = 3 min. Two values Rc for the coding
rate are considered: 1/2or 1/5.Other parameters are obtained through simulations.

fact, as one can see, the case with Rc = 1/2 allows to save, on av-
erage, about 1.2 GB with respect to the case with Rc = 1/5. From
our simulations, we have observed that this is due to the fact that
scenarios with higher coding rates generate a smaller number of
fragments. Therefore, there exists a tradeoff between the resource
availability and the free disk space.

Since all performance indicators considered so far show that, for
a given coding rate Rc, all strategies are almost equivalent (with
erasure/randomized network coding and PM/SM strategies), we
now evaluate the maintenance bandwidth. As the simulated sys-
tem is operating in the presence of a large amount of resources, we
expect, according to the results in Section 4.3, that SM will guar-
antee bandwidth savings. In Fig. 6, the maintenance bandwidth is
shown, as a function of φ, in a scenario with k = 50 with either
PM (with TM = 30 min) or SM (with Ts = 3 min). Two values



M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038 2037
Fig. 7. Average free available disk space per StN, as a function of time, in a scenario with k = 50, Rc = 1/2, TM = 30min, q = 216 , and the non-uniform file size distribution.
The performance is analyzed for both Ts = 3 min (case (a)) and Ts = 36 s (case (b)). Different coding and maintenance strategies are considered.
for the coding rate Rc are considered: 1/2 or 1/5. Other parame-
ters (i.e., γ , PR, A, and Nres) cannot be evaluated analytically and,
therefore, are obtained through simulations. Note that the curves
associated with Rc = 1/2 stop at φ = 50, since this corresponds to
themaximumallowed value. The results in Fig. 6 show clearly that,
in the simulated scenarios, the maintenance bandwidth with SM
is significantly smaller than that with PM. In particular, operating
points corresponding to the average simulated values of φ are also
shown. Therefore, one can conclude that SM is the best choice for
the considered P2P distributed storage system, since the same per-
formance of PM (considered in theWuala system) can be achieved
with a saving of two orders of magnitude in terms of maintenance
bandwidth.

Finally, we evaluate the impact of a different (more realistic) file
distribution and more frequent file searches. According to [21], a
more realistic file size distribution may be the following step-wise
function

f (M ) =

0.04 0 ≤ M ≤ 1
0.18 1 ≤ M ≤ 16
0.78 16 ≤ M ≤ 256.

Note that values are given in MB. In Fig. 7, average free available
disk space per StN is shown, as a function of time, in a scenariowith
k = 50, Rc = 1/2, TM = 30 min, q = 216, and the non-uniform
file size distribution. The performances are analyzed for both Ts =

3 min (case (a)) and Ts = 36 s (case (b)). Different coding and
maintenance strategies are considered. The same trend of Fig. 5 can
be observed (similar considerations hold for other performance
indicators). Therefore, the previous performance analysis is not
limited by the chosen simulation settings and can be considered
sufficiently general. The only difference with respect to Fig. 5 is the
fact that the average free available disk space is reduced, due to
the fact that larger file sizes are generated and, as a consequence,
more storage space is occupied. Moreover, one should observe
that more frequent searches do not entail any performance loss
(the available space is approximately the same). Therefore, the
proposed approach is scalable with more dynamic networking
scenarios.

6. Concluding remarks

In this paper, starting from an existing P2P distributed storage
scheme (namely, the one in the Wuala project) with PM and
erasure coding, we have proposed a novel scheme based on
the use of a SM strategy and randomized network coding.
According to our approach, CNs generate new fragments to be
stored in the network ‘‘sporadically’’, namely every time they
successfully download a resource. We have proposed an analytical
framework for performance characterization and validated this
framework bymeans of simulations. Our analytical and simulation
results have shown that, in the presence of a large number of
resources to be stored, SM guarantees the same performance,
in terms of storage/repair tradeoff, resource availability, and
storage occupancy, of PM with savings, in terms of maintenance
bandwidth, of two orders of magnitude. Randomized network
coding is essential to design a fully distributed SM scheme. The
validation of our analytical framework with simulation results
makes it an efficient tool for the design of effective distributed
storage systems for P2P systems. An experimental validation of the
proposed approach is an interesting future research direction.

Acknowledgments

The authors would like to thank Riccardo Bussandri for his help
in the derivation of the presented simulation results. The authors
would also like to thank Prof. Riccardo Raheli (Università degli
Studi di Parma, Italy) for useful discussions.

References

[1] S. Acedanski, S. Deb, M. Medard, R. Koetter, How good is random linear coding
based distributed networked storage? in: Proc. IEEE International Symposium
on Network Coding (NetCod), Riva del Garda, Italy, 2005.

[2] R. Ahlswede, N. Cai, S.-Y.R. Li, R.W. Yeung, Network information flow, IEEE
Trans. Inform. Theory 46 (4) (2000) 1204–1216.

[3] M. Amoretti, A survey of peer-to-peer overlay schemes: effectiveness,
efficiency and security, BSP Recent Pat. Comput. Sci. 2 (3) (2009) 195–213.

[4] M. Amoretti, M. Agosti, F. Zanichelli, DEUS: a discrete event universal
simulator, in: 2nd ICST/ACM International Conference on Simulation Tools and
Techniques (SIMUTools), Rome, Italy, 2009.

[5] A.K. Atkinson, An Introduction to Numerical Analysis, JohnWiley & Sons, New
York, NY, USA, 1989.

[6] BitTorrent, URL: http://www.bittorent.com.
[7] A. Blanc, Y.-K. Liu, A. Vahdat, Designing incentives for peer-to-peer routing,

in: Proc. IEEE Conf. on Computer Commun. (INFOCOM), Vol. 1, Miami, FL, USA,
2005, pp. 374–385.

[8] P.-C.S.Y.-W. Chan, T.-H. Ho, Y.-C. Chung, Malugo: A peer-to-peer storage
system, Int. J. Ad Hoc and Ubiquitous Comput. 5 (10) (2010) 209–218.

[9] C. Courcoubetis, R. Weber, Incentives for large peer-to-peer systems, IEEE J.
Select. Areas Commun. 24 (5) (2006) 1034–1050.

[10] G. DeCandia, D. Hastorun,M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: Amazon’s highly available
key-value store, ACM SIGOPS Oper. Syst. Rev. Arch. 41 (6) (2007) 205–220.

[11] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.O. Wainwright, K. Ramachandran,
Network coding for distributed storage systems, IEEE Trans. Inform. Theory
56 (9) (2010) 4539–4551.

[12] A.G. Dimakis, V. Prabhakaran, K. Ramchandran, Decentralized erasure codes
for distributed networked storage, IEEE Trans. Inform. Theory 52 (6) (2006)
2809–2816.

[13] A.G. Dimakis, K. Ramchandran, Y. Wu, C. Suh, A survey on network codes for
distributed storage, Proc. IEEE 99 (3) (2011) 476–489.

[14] C. Fragouli, E. Soljanin, Network Coding Applications, Now Publisher
Foundations and Trends in Networking, Hanover, MA, USA, 2007.

[15] C. Fragouli, E. Soljanin, Network Coding Fundamentals, Now Publisher
Foundations and Trends in Networking, Hanover, MA, USA, 2007.

[16] S. Ghemawat, H. Gobioff, S. Leung, The Google file system, in: Proc. ACM Symp.
on SymposiumonOperating Systems Principles, SOSP, Landing, NY, USA, 2003,
pp. 29–43.

http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref2
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref3
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref5
http://www.bittorent.com
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref8
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref9
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref10
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref11
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref12
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref13
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref14
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref15


2038 M. Martalò et al. / J. Parallel Distrib. Comput. 74 (2014) 2029–2038
[17] C. Gkantsidis, P. Rodriguez, Network coding for large scale content distribu-
tion, in: Proc. IEEE Conf. on Computer Commun., INFOCOM, Miami, FL, USA,
2005, pp. 2235–2245.

[18] D. Grolimund, Wuala—a distributed (P2P) storage system, in: NASA Informa-
tion Science & Technology ColloquiumSeries, NASAGoddard Space Flight Cen-
ter, Greenbelt, MD, USA, 2009, available at
http://istcolloq.gsfc.nasa.gov/fall2009/speaker/grolimund.html.

[19] T. Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, B.J.S. Leong, A random
linear network coding approach to multicast, IEEE Trans. Inform. Theory 52
(10) (2006) 4413–4430.

[20] A. Kamra, V. Misra, J. Feldman, D. Rubenstein, Growth codes: maximizing
sensor network data persistence, ACM SIGCOMM Comput. Commun. Rev. 36
(2006) 255–266.

[21] T. Mager, K. Biersack, P. Michiardi, A measurement study of theWuala on-line
storage service, in: Int. Conf. Peer-to-Peer Computing (P2P), Tarragona, Spain,
2012, pp. 237–248.

[22] M. Martalò, M. Picone, M. Amoretti, G. Ferrari, R. Raheli, Randomized network
coding in distributed storage systems with layered overlay, in: Information
Theory and Applications Workshop, ITA, UCSD, San Diego, CA, USA, 2011,
pp. 1–7, invited paper.

[23] M. Martalò, M. Picone, R. Bussandri, M. Amoretti, A practical network cod-
ing approach for peer-to-peer distributed storage, in: Proc. IEEE Interna-
tional Symposium on Network Coding (NetCod), Toronto, Canada, 2010,
pp. 103–108.

[24] M. Picone, M. Amoretti, F. Zanichelli, A decentralized smartphone based traffic
information system, in: Proc. IEEE Intelligent Vehicles Symposium, Alcalá de
Henares, Spain, 2012, pp. 523–528.

[25] J.S. Plank, Erasure codes for storage applications, in: 4th USENIX Conf. on File
and Storage Technologies (FAST), San Francisco, CA, USA, 2005.

[26] R. Rodrigues, B. Liskov, High availability in DHTs: Erasure coding vs.
replication, in: Proc. Int. Workshop on Peer-to-Peer Systems (IPTPS), Ithaca,
New York, USA, 2005, pp. 226–239.

[27] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a
scalable peer-to-peer lookup service for Internet applications, in: Proc.
Conf. Applications, Technologies, Architectures, and Protocols for Computer
Communications, San Diego, CA, USA, 2001, pp. 149–160.

[28] StorageWiki, URL: http://csi.usc.edu/~dimakis/StorageWiki/doku.php.
[29] The WUALA Project, URL: http://www.wuala.com.

Marco Martalò was born in Galatina (LE), Italy, on June
1981. He received the ‘‘Laurea’’ degree (3-year program)
and the ‘‘Laurea Specialistica’’ (3+2 year program) degree
(summa cum laude) in Telecommunications Engineering
on September 2003 and December 2005, respectively,
from the University of Parma, Italy. On March 2009, he
received the Ph.D. degree in Information Technologies
at the University of Parma, Italy. From October 2007 to
March 2008, he was a ‘‘Visiting Scholar’’ at the School
of Computer and Communication Sciences of the Ecole
Polytechnique Federale De Lausanne (EPFL), Lausanne,

Switzerland, collaborating with the laboratory of Algorithmic Research in Network
Information, directed by Prof. Christina Fragouli. From January 2009 to April 2012,
he was a Post-Doc Researcher at the Information Engineering Department of the
University of Parma, Italy. From May 2012, he has been an Assistant Professor
at the E-Campus University, Novedrate (CO), Italy, and a Research Associate at
the Department of Information Engineering (DII) of the University of Parma, Italy,
working with Prof. Gianluigi Ferrari on design of digital communication systems
and, in particular, of wireless sensor networks.

Dr. Martalò is co-author of the book ‘‘Sensor Networks with IEEE 802.15.4
Systems: Distributed Processing, MAC, and Connectivity’’ edited in 2011 by
Springer, Germany. Dr. Martalo’ was a co-recipient of a ‘‘best student paper award’’
(withhis tutorDr. Gianluigi Ferrari) at the 2006 InternationalWorkshoponWireless
Ad hoc Networks (IWWAN’06). He also won the first prize award, together with
the WASNLab team, at the first Body Sensor Network (BSN) Contest, organized in
conjunctionwith the 2011 Body Sensor Networks (BSN’11) conference. He has been
TPC member of the International Workshop on Performance Methodologies and
Tools for Wireless Sensor Networks (WSNPERF 2009), the International Conference
on Advances in Satellite and Space Communications (SPACOMM 2009–2010), and
the IEEE Global Communications Conference (GLOBECOM 2011), Communication
Theory Symposium. He also serves as a reviewer for many international journals
and conferences.

Michele Amoretti received the Dr. Ing. (Master) degree
in Electronic Engineering in 2002, and the Ph.D. degree
in Information Technologies in 2006 from Università degli
Studi di Parma (Italy). Currently, he is a Research Associate
and Contract Professor at the Centro Interdipartimentale
SITEIA.PARMA of the same university. His research focuses
on modeling and simulation of large-scale distributed
systems, in particular those based on the peer-to-peer
paradigm; complex adaptive systems and autonomic
computing; design and development of service-oriented
architectures. He has published over 70 technical papers

in refereed international journals and conferences.

Marco Picone currently is a Post-Doctoral Research
Associate at the University of Parma. He received from the
same University the Dr. Ing. degree (Master) in Computer
Engineering ‘‘cum laude’’ in 2008 and the Ph.D. degree
in Information Technologies in 2012. Between January
2011 and June 2011 he was a research visitor in the
Network and Operating Systems group at the Computer
Laboratory, University of Cambridge, where he worked
on mobile based sensing systems and sensor networks
interaction. His research activity focuses on distributed
and peer-to-peer systems, with particular interest in

solutions that involve mobile devices. Application fields include: neighbor
position discovery in peer-to-peer networks, vehicle-to-vehicle and vehicle-to-
infrastructure communications, a P2P approach for inter-vehicular networks,
vehicular networks simulation and mobility models, mobile based sensing systems
and vertical handover algorithms & applications.

Gianluigi Ferrari (http://www.tlc.unipr.it/ferrari) was
born in Parma, Italy, in 1974. He received his ‘‘Laurea’’
and Ph.D. degrees from the University of Parma, Italy, in
1998 and 2002, respectively. Since 2002, he has been with
the University of Parma, where he currently is an Asso-
ciate Professor of Telecommunications. He was a visiting
researcher at USC (Los Angeles, CA, USA, 2000–2001), CMU
(Pittsburgh, PA, USA, 2002–2004), KMITL (Bangkok, Thai-
land, 2007), andULB (Brussels, Belgium, 2010). Since 2006,
he has been the Coordinator of the Wireless Ad-hoc and
SensorNetworks (WASN) Lab (http://wasnlab.tlc.unipr.it/)

in the Department of Information Engineering of the University of Parma.
As of today he has published more than 180 papers in leading international

journals and conferences, and 19 book chapters. He is the co-author of 7 books,
including ‘‘Detection Algorithms for Wireless Communications, with Applications
to Wired and Storage Systems’’ (Wiley: 2004), ‘‘Ad Hoc Wireless Networks: A
Communication-Theoretic Perspective’’ (Wiley: 2006—technical best seller), ‘‘LDPC
Coded Modulations’’ (Springer: 2009), and ‘‘Sensor Networks with IEEE 802.15.4
Systems: Distributed Processing, MAC, and Connectivity’’ (Springer: 2011). He
edited the book ‘‘Sensor Networks: where TheoryMeets Practice’’ (Springer: 2010).
His research interests include digital communication systems analysis and design,
wireless ad hoc and sensor networking, and adaptive digital signal processing. He
participates in several research projects funded by public and private bodies.

Prof. Ferrari is a co-recipient of: a best student paper award at IWWAN’06; a
best paper award at EMERGING’10; an award for the outstanding technical contri-
butions at ITST-2011; the best paper award at SENSORNETS 2012; the best paper
award at EvoCOMNET 2013. The WASNLab team won the first Body Sensor Net-
work (BSN) contest, held in conjunction with BSN 2011. He acts as a frequent re-
viewer for many international journals and conferences. He acts also as a technical
program member for many international conferences. He currently serves on the
editorial boards of several international journals. He was a Guest Editor of the 2010
EURASIP JWCN Special Issue on ‘‘Dynamic Spectrum Access: From the Concept to
the Implementation.’’

http://istcolloq.gsfc.nasa.gov/fall2009/speaker/grolimund.html
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref19
http://refhub.elsevier.com/S0743-7315(13)00222-0/sbref20
http://csi.usc.edu/~dimakis/StorageWiki/doku.php
http://www.wuala.com
http://www.tlc.unipr.it/ferrari
http://wasnlab.tlc.unipr.it/

	Sporadic decentralized resource maintenance for P2P distributed storage networks
	Introduction
	Related work
	P2P distributed storage systems
	Network coding for distributed storage

	System architecture
	Resource publishing
	Resource retrieval
	Resource maintenance strategy

	Analytical performance evaluation framework
	Resource availability
	Storage/repair tradeoff
	Maintenance bandwidth
	Discussion

	Simulation-based performance analysis
	Concluding remarks
	Acknowledgments
	References


