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Abstract— In this paper, we present a low-complexity hybrid
time-frequency approach for the detection of audio signal pat-
terns by proper spectral signatures. The proposed detection
algorithm evolves through two main processing phases, denoted
as coarse and fine, respectively. The evolution through these
two phases is described by a finite state machine model. The
use of different processing phases is expedient to reduce the
computational complexity and thus the energy consumption. Our
results show that the proposed approach allows the efficient
detection of the presence of signals of interest. The efficiency
of the proposed detection algorithm is first investigated using
“ideal” audio signals recovered from publicly available databases
and then experimental audio signals acquired with a commercial
microphone.

Index Terms— Audio signal pattern detection, experimental
validation, finite state machine (FSM), time-frequency processing.

I. INTRODUCTION

IN VARIOUS applications (such as, for example, surveil-
lance, health care assistance, etc.) it is often of interest to

determine the class which a specific audio signal belongs to.
This problem is typically referred to as sound recognition [1].
Several approaches (often computationally intense) have been
proposed in the literature and most of them rely on the
analysis of the statistical properties of the audio signals [1].
In [2], the authors propose an audio detection and classification
scheme based on machine learning techniques, which can
outperform classical sound recognition schemes. In [3], the
authors characterize the relevant spectral peaks of different
audio patterns (for health care purposes) in order to perform
the recognition task. In [4], an audio-based recognition system
for gun shot detection is presented and its robustness against
variable and adverse conditions is analyzed. Different time and
frequency domain metrics for audio-based context recognition
systems are analyzed in [5], comparing system performance
with the accuracy of human listeners performing the same task.

The problem of voice activity detection (VAD) has also
been widely studied. Unlike the previous problem of sound
recognition, in this case one wants to detect the time intervals
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during which a (known) audio signal of interest (typically
voice) appears, given that it will (sooner or later) appear
for sure. A first possible strategy to detect the presence of
an audio signal of interest, through a time domain-based
analysis, consists of evaluating the energy of the audio signal
samples, as in [6]. Another class of VAD algorithms is based
on statistical analysis of the signal frames’ spectra, obtained
through the discrete Fourier transform (DFT) [7], as discussed
in [8], [9].

In this paper, we focus on the following problem: detecting,
with limited complexity, the presence and the pattern of an
audio signal. In this sense, our problem is related to both
sound recognition and VAD. As in sound recognition, we want
to determine the type of a detected signal, but the processing
complexity needs to be kept as low as possible. As in VAD,
we want to determine the presence of a signal of interest, but
its presence is not guaranteed. This problem is meaningful, for
example, in wireless sensor networking surveillance scenarios,
where nodes, typically battery-powered, need to recognize
intruders and the node energy consumption is a critical
issue [10]. The proposed algorithm has been considered in the
implementation of the MasterZone wireless sensor network-
based surveillance system produced by SELEX Sistemi Inte-
grati [11]. Our approach relies on two main processing phases:
(a) a coarse processing phase, carried out in the time domain,
to detect the presence of an “atypical” signal and (b) a fine
processing phase to verify, through a comparison with a pre-
defined spectral signature, if the atypical signal is of the type
of interest. To the best of our knowledge, the combination
of time and frequency domain processing, typically kept
separate in the literature (e.g., in [5]), is novel. The evolution
between the two processing phases is described through a finite
state machine (FSM) model. In particular, we first present
simulation results, based on the use of “ideal” audio signals
(available in public audio signal databases and acquired with
sophisticated microphones), and then show the effectiveness of
our approach with experimental audio signals acquired through
a low-cost commercial microphone.

II. TRAINING AND TIME DOMAIN ENERGY DETECTION

Let us consider a discrete-time representation (with sam-
pling frequency fs) of the front-end of the audio sensor (i.e.,
the microphone), which can be represented by a proper linear
filter. The output signal samples are denoted as {xk}, with

xk =
{

sk + nk in the presence of an atypical signal
nk in the absence of any atypical signal
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where sk is the useful signal component and nk is the
noise sample. More precisely, nk can be expressed as
nk = nmic,k + nenv,k , where nmic,k is the noise generated by
the microphone (on the order of 100 nV/Hz0.5 [12]) and nenv,k

is the environmental audio noise. Typically, nmic,k � nenv,k .
Our approach is based on per-frame processing, where a

frame corresponds to a sequence of consecutive discrete-time
samples. Denoting as K the number of samples per frame, the
average per frame SNR can be defined as follows:

SNR � Evoice

Enoise
=

∑K
i=1 |si |2

K∑K
i=1 |ni |2

K

=
∑K

i=1 |si |2∑K
i=1 |ni |2

. (1)

Under the assumption that the noise is ergodic, its average
energy Enoise at the denominator in (1) can be estimated during
an initial training phase, when the background (noisy) audio
signal is sensed but the system is still inactive for the purpose
of pattern detection.

The presence of an audio signal (of interest) can therefore
be identified by the “appearance” of an energy variation with
respect to existing audio background noise. Therefore, one
could first analyze, as in VAD approaches, the energies of
consecutive audio signal frames in order to detect abrupt
energy changes.1 The basic principle consists in comparing the
average energy of a frame with a proper threshold Eth−initial,
which depends on the mean and variance of the background
noise energy (denoted as μlow and σ 2

low, respectively). There-
fore, accurate estimation of the latter energy is fundamental
and is the goal of a training phase.

Denoting as Ntr−f the number of consecutive frames consid-
ered in the training phase and as N tr−s the number of samples
per frame, the mean and the variance of the noise energy can
be computed as follows:

μlow � 1

Ntr−f

Ntr−f∑
i=1

1

N tr−s

N tr−s∑
k=1

∣∣∣x (i)
k

∣∣∣2

σ 2
low � 1

Ntr−f

Ntr−f∑
i=1

1(
N tr−s − 1

)
N tr−s∑
k=1

(∣∣∣x (i)
k

∣∣∣2 − μlow

)2

.

Upon completion of the training phase, denoting as
{xk}N low−s

k=1 the N low−s samples in a generic collected frame, the
following binary decision rule can be considered to determine
the presence (Dlow = 1) or absence (Dlow = 0) of an
“atypical” signal:

∑N low−s

k=1 |xk|2
N low−s

Dlow = 1
>
<

Dlow = 0
Eth−initial (2)

where Eth−initial � μlow + εσlow, with the parameter ε > 0
tuning the sensitivity in detecting the signals. Our results
show that ε = 1 leads to a good performance. Note that if
Dlow = 0 (i.e., no significant energy variation is detected), the

1Note that one may also consider frequency-based VAD approaches [8], [9].
However, this approaches are not effective in the considered scenario, since
they require the use of larger numbers of collected frames and, therefore, have
higher computational complexity.

average energy and the variance of the background noise can
be adapted by taking into account the newly processed frame.
In particular, the following adaptation rule can be used upon
the reception of the �-th frame (� = 1, 2, . . .)

μlow(� + 1) = μlow(� − 1) + μlow(�)

2

σ 2
low(� + 1) = σ 2

low(� − 1) + σ 2
low(�)

2
(3)

where μlow(0) � μlow and σ 2
low(0) � σ 2

low. Note that the
updates (3) are useful especially in the presence of noise
characterized by a highly fluctuating variance, e.g., with pink
or factory noise. In this case, when no signal of interest is
identified in the “triggered” fine processing phase (described
in Section III), the noise characteristics can be updated, to
track the environmental changes.

Our approach can be extended to a more general scenario
where the audio signal to be detected might be subject to
filtering (i.e., to the presence of convolutional noise). Under
the assumption of perfect estimation of the channel response,
the proposed detection strategy can be then applied, as its
training phase takes into account automatically the statistics
of the filtered noise. In the case of unknown or time-varying
channel impulse response, one should first consider channel
estimation, but this goes beyond the scope of this paper.

By using the introduced energy-based processing (based
on (2)), one can detect the presence of an atypical energy
variation. However, our problem requires also to distinguish
different audio signal patterns. Time-domain energy detection
does not allow to do this, as the probability mass functions
(PMFs) of the frame normalized energies2 of very different
signals tend to be very similar. This should be expected, since a
VAD-inspired approach only allows to detect the time intervals
where a signal of interest (e.g., the voice) is present, without
giving any information about the “content” of the audio signal.

III. SPECTRAL SIGNATURE EXTRACTION AND AUDIO

SIGNAL PATTERN RECOGNITION

Since VAD-inspired approaches are not sufficient to distin-
guish different audio signal patterns, we resort to speech recog-
nition techniques [13]. More precisely, we apply the ideas
behind these techniques, typically used to recognize different
spoken words, to classify different audio signal patterns. In
particular, our key idea is that of characterizing an audio signal
frame with a spectral signature and then, through frequency
domain processing, detect if the received audio signal matches
with the signature.

Upon the collection of the sequence of the samples of a
single frame, denoted as {xk}Nhigh−s

k=1 , its DFT3 {X (n)}Nhigh−s

n=1 is
computed

X (n) =
Nhigh−s∑

k=1

xk exp

{
− j

2π

Nhigh−s kn

}
.

2Normalization is required to make the comparison meaningful.
3It is possible to efficiently compute the DFT through a fast Fourier

transform (FFT) if Nhigh−s is a power of 2 or by properly applying zero-
padding. Note also that Nhigh−s might, in general, be different from N low−s

(introduced in Section II).
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The sequence {|X (n)|2} is a particular instance of periodogram
(in the absence of windowing between consecutive frames)
associated with the sequence {xk} obtained by sampling the
received audio signal with a sampling rate denoted as f high

s .
The sequence {|X (n)|2} thus represents an accurate estimate
of the signal power spectral density [7]. Depending on the
chosen technology, evaluating the periodogram mat be com-
putationally heavy (because of the presence of the squares of
the moduli of the DFT coefficients). In particular, this may
happen in wireless sensor networking applications, where the
computational load should be kept as low as possible in order
to extend the battery’s lifetime. Therefore, we simply consider,
as a representative “spectral shape” of the audio signal frame,
the sequence of the moduli of the DFT coefficients, i.e.,
{|X (n)|}. As the spectral shape depends on the particular
SNR, in order to use the same spectral signature, regardless
of the SNR, we consider the following heuristic “normalized”
spectral shape:

|Y (n)| � |X (n)|∑Nhigh−s

m=1 |X (m)|
n = 1, . . . , Nhigh−s (4)

such that the condition
∑Nhigh−s

n=1 |Y (n)| = 1 holds.
The key principle of the proposed approach is to compare

the normalized spectral shape of the frames of the received
audio signal with a proper reference spectral signature (with
unitary energy) of a frame of the signal of interest: if there
is a “good agreement” between them, then the detected
signal is declared of interest. In order to implement this
strategy, the spectral signature and the “agreement” crite-
rion have to be properly identified. Note that the proposed
spectral signature-based approach cannot be applied if the
signature is not available. The identification of the spec-
tral signature requires the availability of a sufficiently large
number of frames of the audio signal pattern of interest.
However, our results show that a “coarse” characterization
of the spectral characteristics of the audio signal of interest
(e.g., using a few frames) is sufficient to guarantee good
performance.

In the presence of non-stationary audio signals (e.g., voices),
our results have shown that the best choice is to emphasize
the high energy frequency components of the audio signal of
interest. To this end, the best spectral signature of an audio
signal of interest is typically given by the envelope of the
sequence of normalized spectral shapes of the available frames
of the reference audio signal of interest. In the following, we
propose an efficient (recursive) approach to the extraction of
an envelope spectral signature.

Denote as {|Yi (n)|}Nframe
i=1 the normalized spectral shapes of

the overall Nframe available frames of the reference signal
of interest. For example, suppose that the reference signal
of interest has a duration of 30 s and is acquired with a
sampling frequency equal to f high

s = 4096 Hz. If each frame
has Nhigh−s = 128 samples, then Nframe = 960. The partial
(spectral) envelope over m consecutive frames is defined as
follows:

I (m)(n) � max
i=1,...,m

|Yi (n)| n = 1, . . . , Nhigh−s
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Fig. 1. Comparison between the spectral signatures of the tank and the
Handel chorus signals.

where n corresponds to a frequency bin (for instance, when
f high
s = 4 kHz and Nhigh−s = 128, the bin width is

approximately 32 Hz). In other words, the partial spectral
envelope at the m-th step is obtained by considering the
maximum, bin by bin, of the spectral shapes of all m collected
frames. The spectral signature, denoted as I (n), is given by
the partial envelope obtained considering all available frames,
i.e., I (n) � I (Nframe)(n), n = 1, . . . , Nhigh−s. From an
operative viewpoint, since the partial spectral envelope is a
function which approaches (from below) the overall envelope
(i.e., the signature), it is possible to recursively update it, upon
reception of a new frame, as follows:{

I (0)(n) = 0 ∀n

I (m)(n) = max
{
I (m−1)(n), |Ym(n)|} ∀n

(5)

with m = 1, . . . , Nframe. Since the spectral signature is
normalized according to (4), the spectral envelope is an
adimensional quantity. Moreover, the value of I (n) it can
be interpreted as a percentage of the square root of the signal
energy in the n-th bin.

As an illustrative example, we consider the following two
discrete-time (ideal) audio signals: the audio signal emitted
by a M109 vehicle (tank) moving at a constant speed of
30 km/h, with duration equal to 235 s and sampling fre-
quency equal to 19.98 kHz, extracted from the NOISEX-92
database [14]; the audio signal of a choir singing the Handel’s
“Hallelujah Chorus,” pre-loaded in MATLAB with sampling
frequency equal to 8.192 kHz [15]. The sequences obtained
with different sampling rates are downsampled to a common
rate, denoted as f high

s , so that they can be additively com-
bined. The signatures are shown in Fig. 1 in the case with
Nhigh−s = 128 samples per frame (using 128-point FFT). As
one can see, the spectral envelopes are clearly different. This
suggests that the two audio signal patterns may be success-
fully distinguished using the proposed spectral signature-based
approach.
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Once the spectral signature has been extracted, frequency
domain audio pattern detection can be carried out as follows.
Upon reception of a given number of frames of a (potentially
of interest audio signal), its partial spectral envelope can be
derived and compared with the signature. In particular, one
can evaluate the mean linear error (MLE)

MLE(m) �
∑Nhigh−s

n=1

∣∣∣I (m)
rx (n) − I (n)

∣∣∣
Nhigh−s (6)

where I (m)
rx (n) is the partial spectral envelope after processing

m received frames. It can also be shown that, provided that
the spectral signature I (n) is representative of all possible
instances of the class of audio signals of interest (i.e., I (n) ≥
I (m)

rx (n), ∀n, m), MLE(m) is a decreasing function of m.
Therefore, the signal is declared of interest when the MLE
becomes lower than a given threshold. The following (per
frame) situations are then possible: correct detection (CD), if
the MLE becomes lower than the threshold, given that there is
the signal of interest; missed detection (MD), if the MLE does
not become lower than the threshold, given that there is the
signal of interest; false alarm (FA), if the MLE becomes lower
than the threshold, given that there is not the signal of interest.
The value of the MLE threshold can be chosen according to
the behavior of {MLE(m)}, as will be discussed in more detail
in Subsection V-A. This choice is crucial in order to optimize
the performance of the proposed detection algorithm.

We remark that the complexity of the above frequency
domain processing approach is comparable to other existing
frequency domain-based algorithms (e.g., [5]).

IV. LOW-COMPLEXITY HYBRID TIME/FREQUENCY

AUDIO SIGNAL PATTERN RECOGNITION

The frequency domain-based approach proposed in
Section III does not take into account the energy content of the
acquired signal, which can be evaluated in the time domain
with a much lower computational complexity. In fact, when the
signal of interest is not present in the acquired audio signal,
the energy of the acquired signal coincides with that of the
background noise. Therefore, one may exploit this idea to
significantly reduce the computational complexity as follows.
First, the presence of a possible signal of interest is detected,
in terms of energy variation, by using the simple time domain
processing described in Section II. Then, if an “atypical” signal
is detected, its pattern is analyzed using the frequency domain
processing technique described in Section III.

Taking into account possible correlations between consec-
utive frames, it is expedient to consider (as often done in
VAD schemes [8]) a hangover FSM model, shown in Fig. 2,
where the evolution between the state (Flow) associated with
coarse processing and the state (Fhigh) associated with fine
processing occurs through intermediate states. Every transition
is a direct consequence of a single frame processing. In
particular, the audio signal frames have fixed duration in each
processing phase. Having fixed the frame duration, we denote
as N low−s = T low

frame · f low
s and Nhigh−s = T high

frame · f high
s the

numbers of samples per frame in the coarse and fine processing
phases, where f low

s and f high
s are the sampling rates in the

Flow

Nlow → high

Dlow = 1 Dlow = 1

Dlow = 1

Dlow = 0

Nhigh → low

Fhl
2 Fhl

1

Flh
1 Flh

Nlow → high

Fhl
3Fhl

4Fhl
Nhigh→ low

Dhigh = 0

Dhigh = 0 Dhigh = 0 Dhigh = 0 Dhigh = 0

Nhigh

Fhigh

Dhigh = 1

Flh
2Dlow = 1

Dlow = 0

Fig. 2. FSM model for the proposed hybrid time-frequency audio signal
pattern detection scheme.

two phases, respectively. The sampling frequency f low
s is low:

namely, f low
s < 2 fNyq, where fNyq is the Nyquist frequency

of the audio signal at hand. This choice is not critical, since in
the coarse processing phase our goal is simply to detect abrupt
energy changes, but not an accurate signal reconstruction. On
the other hand, f high

s should be higher than 2 fNyq. However, in
our experimental results we will consider a microphone with
a slightly lower value of 2 fNyq. Our results show that this
does not hinder the performance—recall that the pattern, rather
than the specific signal, needs to be detected—yet allowing
complexity reduction.

The evolution of the proposed processing algorithm over
the FSM can be described as follows. Most of time, the state
of the FSM is Flow. After low-complexity processing (in time
domain) of an N low−s-sample frame, a binary decision Dlow
on the presence of an atypical signal is taken: if Dlow =
0 (no atypical signal), the algorithm remains in Flow; if
Dlow = 1, the algorithm evolves to the next intermediate
state, denoted as Flh

1 , where low-complexity processing is con-
sidered. In general, one can consider Nlow → high intermediate
states (Flh

1 , . . . , Flh
Nlow → high

) to evolve from Flow to Fhigh. The
use of the intermediate states is expedient to avoid useless
and computationally intensive fine processing in the presence
of impulsive noise, which may lead to short significant energy
variations but, obviously, is not of interest. In the illustrative
FSM model in Fig. 2, Nlow → high is set to 3.

If for Nlow → high + 1 consecutive frames the presence of
an atypical signal is verified (i.e., Dlow = 1), then the
algorithm moves to Fhigh. In this state, a fixed number Nhigh−f
(to be properly selected, as discussed in Subsection V-A)
of frames, with Nhigh−s samples each, is collected. After
processing the Nhigh−f frames in the frequency domain, as
described in Section III, a binary decision Dhigh is taken:
if Dhigh = 1 (i.e., MLE(Nhigh−f ) is below threshold), then
the signal pattern is declared of interest, a proper alarm is
emitted, and the algorithm moves back to Flow; if Dhigh = 0,
then the algorithm moves to an intermediate state Fhl

1 and
processes one more frame. At this point, if Dhigh = 1, then
the algorithm moves to Flow and an alarm is emitted; other-
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wise, it moves to the next intermediate state Fhl
2 . Eventually,

if Dhigh = 0 for Nhigh→low + 1 consecutive frames
(after exiting Fhigh), then the algorithm comes back to Flow and
no alarm is emitted: in other words, the atypical signal detected
in the coarse processing phase is declared of no interest. The
intermediate states {Fhl

1 , . . . , Fhl
Nlow → high

} from Fhigh to Flow can
be interpreted as “back-up” states used to collect a larger
number of frames to be fine processed, in order to improve
the reliability of the decision on the presence of a signal of
interest. In the illustrative example in Fig. 2, it holds that4

Nhigh → low = 5.
From a computational point of view, suppose that the signal

of interest is present only in a fraction α of the Nframe
collected frames (typically, α � 1). If only frequency-based
processing is performed, the total computational complexity
can be quantified as follows:

C F
tot = Nframe Cfreq

where Cfreq is the computational complexity of frequency
domain-based processing of a single frame. When, instead,
the hybrid time-frequency approach is considered, the overall
computational complexity becomes

C T−F
tot = αNframeCfreq + (1 − α)NframeCtime

where Ctime is the computational complexity of time-based
processing of a frame.

Since time domain processing consists in computing the per-
frame average energy, its computational complexity (in terms
of basic operations, e.g., summations and multiplications) is
a linear function of the number N low−s of per-frame samples.
The complexity of the frequency-based processing, instead, is
dominated by the signature comparison, which is quadratic
in the number Nhigh−s of per-frame samples. Therefore, one
obtains

C F
tot = Nframe(Nhigh−s)2

C T−F
tot = αNframe(Nhigh−s)2 + (1 − α)Nframe N low−s

� αNframe(Nhigh−s)2

where we have used the fact that, typically, N low−s � Nhigh−s.
After a few simple manipulations, the complexity reduction
brought by the use of the hybrid time-frequency pattern
detection algorithm is on the order of

C F
tot

C T−F
tot

� 1

α
� 1.

This is intuitively expected, since the hybrid approach con-
centrates the complexity only in the presence of an atypical
signal. If the atypical signal is of interest and appears for a
fraction α of the time, then the complexity reduction is on the
order of 1/α.

V. PERFORMANCE ANALYSIS

In the following, we assume that the human voice (e.g., the
Handel chorus or experimentally acquired voices) is the signal
of interest, whereas non-human voice audio signals (e.g., tank

4Typically, in the VAD literature Nhigh → low > Nlow → high [8].

or car) are not. The results in a scenario where the tank/car
signals are of interest and the human voice signal is not are
not reported here for lack of space.

Just to summarize the obtained results, when the considered
signals are acquired by quasi perfect microphones (i.e., ideal
signals), the performance with the tank as signal of interest is
very similar to that (shown in Subsection V-A) obtained with
the human voice. This is due to the fact that, in the presence of
ideal signals, a very good signature can be constructed in both
cases (e.g., tank or human voice). On the other hand, when a
non-ideal microphone commercial microphone is considered,
the performance with the car as signal of interest worsens
and false alarm increases with respect to considering human
voices (as in Subsection V-B). This is due to the fact that the
considered non-speech signal is more repetitive and, therefore,
very similar to the background noise.

A. Ideal Audio Signals

The following set-up is considered. A “slice” of the audio
signal of interest is 8 s long and is randomly additively
combined with a background noisy audio signal of duration
equal to 235 s and sampling frequency equal to 19.98 kHz,
extracted from the NOISEX-92 database [14]. The following
background noises (with the same sampling frequency) are
extracted from the NOISEX-92 database [14]: (i) white noise,
(ii) pink noise, typical of acoustic applications (e.g., durability
or heat tests on loudspeakers or power amplifiers), and (iii) fac-
tory noise, typical of industrial environments. The spectral
envelopes of pink and factory noises have strong components
at low frequencies, whereas they rapidly decrease for higher
frequencies. The filter that will first be considered, in our
simulations, to process ideal audio signals is derived from a
low-pass filter (LPF) of the commercial microphone and its
matching circuit which will be used to collect realistic audio
signals [12], as described in more detail in Subsection V-B.
In order to approximate this LPF, we use a second-order
Butterworth infinite impulse response (IIR) filter with a 3 dB
bandwidth approximately equal to 2.2 kHz.

On top of the background noisy signal, a slice of another
audio signal (with a spectral signature different from that
of the signal of interest) is inserted. The two slices do not
overlap: otherwise, our system would not be able to detect
any of them. The training phase is carried out considering
Ntr−f = 20 frames of the background noisy signal. The
sampling frequencies for the coarse and fine processing phases
are f low

s = 1024 Hz and f high
s = 4096 Hz, respectively. As

anticipated in Section II, the audio sequences (tank, Handel
chorus, and background noise) obtained with different sam-
pling rates are downsampled to f low

s = 1024 Hz in the
coarse processing phase5 and to f high

s = 4096 Hz in the
fine processing phase. The numbers of samples per frame
analyzed in the coarse and in the fine processing phases
are N low−s = 16 and Nhigh−s = 128, so that the frame
durations in the two phases are equal to T low

frame � 16 ms and

5We consider a very small value of f low
s in order to reduce the computa-

tional complexity, thus saving as much battery energy as possible in wireless
sensor network-based applications.
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Fig. 3. MLE, as a function of the number of frames, in a scenario with
AWGN background noise.

T high
frame � 31 ms, respectively. The numbers of intermediate

states in the FSM have been heuristically set in the following
way. More precisely, the value of Nlow→high is set so that
useless and computationally intensive fine processing in the
presence of impulsive noise is avoided. The value of Nhigh→low
is set as a tradeoff between the minimization of the false alarm
probability and the detection delay. In particular, our results
show that Nlow→high = 3 and Nhigh→low = 5 are effective
values.

As a first analysis step, we investigate the behavior of the
MLE (between the partial envelope of the received signal and
the spectral signature), as a function of number of collected
frames, in a scenario with AWGN background noise. To
this purpose, the SNR is set to 20 dB. In order to evaluate
the system performance, we have performed 20 independent
simulation runs (with random generation of disjoint initial time
instants of the Handel chorus and tank audio signals). In Fig. 3,
the MLE is shown as a function of the number of processed
frames.

It is possible to observe that the set of curves associated
with the signal of interest is lower than that associated with
the signal of no interest. This behavior is pronounced also
for a small number of frames: for instance, after 3 frames, the
signals are easily separable. In other words, the proposed spec-
tral signature-based detection approach is effective also when
a few frames are collected and analyzed. From the results in
Fig. 3, one can determine the number of frames Nhigh−f which
need to be processed, in the state Fhigh of the FSM, in order
to reliably recognize the signal of interest. Simultaneously, the
corresponding value of the threshold τhigh can be determined
as a function of the selected value of Nhigh−f . For instance,
if Nhigh−f = 5, then τhigh � 2.7. Reducing Nhigh−f , τhigh
should increase. However, our results show that a higher value
of τhigh makes the probability of FA increase dramatically.
Therefore, for Nhigh−f < 5, the best performance is obtained
with a “conservative” value of τhigh equal to 2.7.

In Fig. 4, (a) the probabilities of MD and CD and (b) the
delay, in the presence of CD, are shown, as functions of the
SNR, in the presence of white, pink, or factory background
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Fig. 4. Performance of the proposed algorithm in scenarios with white, pink,
or factory background noises. (a) Probabilities of MD and CD. (b) Delay, in
the presence of CD, as functions of the SNR.

noise. For every value of SNR, 1000 independent simulation
runs are performed, in order to eliminate possible statistical
fluctuations. In all cases, Nhigh−f and τhigh are set to 5 and
2.7, respectively. In Fig. 4(a), no result for the probability
of FA is shown, since in all cases it is very small (on the
order of 10−3 to 10−4). One can note that approximately the
same performance can be observed for both signals of interest.
In particular, for sufficiently high values of the SNR (around
8 dB) the probability of MD goes to zero, whereas the prob-
ability of CD goes to 1. One may argue that this value is too
high; however, it is possible to observe that for SNR ≥ 4 dB
the probability of MD is already below 10%. Moreover, as it
will be shown in the next subsection, the penalty with respect
to “classical” frequency-based algorithms is limited. In general
terms, one can consider that the detection algorithm is properly
working when the probability of CD becomes significantly
higher than the probability of MD. For instance, in the scenario
considered in Fig. 4 the proposed detection algorithm becomes
effective for SNR ≥ 7 dB. Note also the performance with
pink or factory noise is better than that with white noise.
This is intuitive, as the spectral signature of the Handel chorus
does not have relevant peaks in correspondence to those of
pink and factory noises.
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In Fig. 4(b), the delay (dimension: [ms]) is considered. The
delay is evaluated only when there is CD, since, otherwise, it
would not be meaningful. In fact, when the signal of interest
is not detected, the state of the system continuously iterates, in
the FSM, between the coarse and fine processing states.6 For
small values of the SNR, the delay is around 4 s and it would
not be possible to detect signals with duration shorter than this
maximum delay—recall that the entire duration of the signal
“slice” of interest is 8 s. This is due to the large number of
frames which are processed before the presence of an atypical
signal is declared in the coarse processing phase. For large
values of the SNR, instead, in 0.5 s the signal of interest if
correctly detected, thus making the proposed algorithm almost
real-time. One can observe that the delay depends only slightly
on the number of processed frames.

The limiting lower value of the delay for large values of
the SNR is due to the fact that, even in the presence of
correct detection of the signal of interest, Nlow→high+1 frames
(with low sampling frequency) and Nhigh−f frames (with high
sampling frequency) need to be processed, thus leading to the
following minimum achievable delay:

Dmin = (Nlow→high + 1)T low
frame + Nhigh−f T high

frame. (7)

Expression (7) holds for sufficiently large values of Nhigh−f
(e.g., Nhigh−f = 5). For Nhigh−f = 1, instead, the delay is
slightly large, since more backup frames need to be processed
before a spectral match is declared (i.e., till the MLE lowers
below threshold). In other words, a single frame is not suffi-
cient in Fhigh and it may happen that the system state starts
moving back towards Flow before declaring a match.

B. Experimentally Acquired Audio Signals

We now analyze the performance of the proposed audio
pattern detection algorithm in the presence of signals acquired
through a realistic microphone characterized by a flat fre-
quency response and with a sampling frequency equal to
3450 Hz [12], which has been used as the sampling frequency
f high
s in the fine processing phase for all audio sequences.

Moreover, the acquired audio sequences are further down-
sampled to f low

s = 1024 Hz in the coarse processing phase
and Nhigh−s = 8 to reduce the overall complexity. The other
simulation parameters are set as described at the beginning
of Subsection V-A. The use of proper filtering techniques at
the output of the microphone, in order to improve the system
performance, is investigated in [16].

The acquired speech signals used to derive the spectral sig-
nature correspond to the voices of 5 males (with ages between
23 and 35, at the University of Parma) reading some texts,
both in Italian and in English. Since the manufacturer provides
the microphone characterization only for frequencies higher
than 100 Hz, the microphone behavior is unpredictable for
frequencies below this threshold, although the matching circuit
performance is known in this band [12]. Therefore, the signal
components are highly distorted and in our analysis, with
“realistic” acquired signals, we neglect the signal contributions

6One may consider a maximum number of iterations after which the system
is reset.
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Fig. 5. Performance. (a) Probabilities of FA, MD, and CD. (b) Delay, in
the presence of CD, as functions of the SNR. The frequency-based algorithm
in [5] is compared to the proposed hybrid time-frequency algorithm.

below 100 Hz. To this end, in the fine processing phase the
FFT of each frame is set to zero in the [0, 100] Hz band.
As non-speech signal, we have acquired the sound emitted by
the engine of a non-moving car (FIAT Punto, 1900 cc, turbo-
diesel [17]) running at 3000 rpm. The duration of all acquired
signals is around 30 s.

The spectral signature for the human voice is obtained by
computing the arithmetic average of the spectral envelopes
associated with all persons (speaking in Italian or English).
This choice is motivated by the fact that the system should be
robust against possible variations of the signals to be detected,
i.e., we ideally want to be able to detect all audio signals
belonging to the same class (e.g., human voice) with a single
spectral signature. The 8 s speech signal slices, randomly
additively combined with a background white noise signal in
the simulator, correspond to various people reading different
scripts. By performing a preliminary MLE analysis, as in
Fig. 3, it is possible to derive that Nhigh−f = 15 frames are
needed to distinguish between different audio patterns. In this
case, the MLE threshold τhigh (to be used in Fhigh) is set to
3.9.

In Fig. 5, (a) the probabilities of FA, MD, and CD and
(b) the delay (in the presence of CD) are shown as functions
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of the SNR. Let us first comment on the performance of
the proposed hybrid time/frequency algorithm. Comparing the
results in Fig. 5(a) with those in Fig. 4, one can observe that
the trends are similar, although the probability of CD reaches 1
for larger values of the SNR. Comparing the results in Fig. 5(b)
with those in Fig. 4(b), the following observations can be
carried out. Unlike in Fig. 4(b), in Fig. 5(b), for small values of
the SNR, the delay decreases. This is due to the fact that the
number of correct detections also reduces (according to the
behavior of the probability of CD in Fig. 5(a)). In this case,
a weighed average delay between the estimated delay (in the
presence of CD) and a pre-determined maximum delay Dmax
(in the absence of CD), defined as D � Dmax(1 − PCD) +
Dest PCD, is more meaningful. In Fig. 5(b), a maximum delay
Dmax = 4 s is considered. As expected, the D curves compare
favorably with the delay curves in Fig. 4(b).

The proposed hybrid time/frequency algorithm is compared
to the frequency-based detection algorithm in [5], with spec-
trum quantization in 8 sub-bands. It is possible to observe
that there is a performance degradation with respect to the
scenario presented in Fig. 5, due to the fact that the spectrum
is quantized with a smaller number of points. One can note
that the performance loss, in terms of probabilities of FA,
MD, and CD, incurred by the hybrid approach is very limited
(on the order of a fraction of dB). However, the delay
with the proposed hybrid approach is lower than that with
the frequency-based approach. This is due to the fact that
in the latter case the system spends more time processing
frames without energy atypicalities and this might delay the
recognition of the pattern of interest.

VI. CONCLUSION

In this paper, we have presented a novel hybrid time-
frequency approach to audio signal pattern detection. The
algorithm relies on two main processing phases (coarse and
fine) and the evolution between them is described by a
hangover FSM model. The use of different processing phases
is expedient to obtain a limited computational complexity.
In fact, spectral signature-based fine processing (in the fre-
quency domain and computationally heavy) is carried out
a few times, namely only when an atypical (thus possibly
of interest) signal is detected through coarse processing (in
the time domain and computationally light). The performance
of the proposed detection algorithm has been investigated,
in terms of MLE, probabilities of CD/MD/FA, and delay,
through simulations. Our results show that the proposed
approach allows to efficiently detect the presence of an
audio signal of interest, with significant complexity reduction
and negligible performance loss with respect to frequency
domain-based approaches. While this analysis has been first
carried out using ideal audio signals (extracted from publicly
available databases), we have then validated it through the
use of realistic audio signals acquired with a commercial
microphone.
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