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Body-Sensor-Network-Based Kinematic
Characterization and Comparative Outlook

of UPDRS Scoring in Leg Agility, Sit-to-Stand,
and Gait Tasks in Parkinson’s Disease
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Laura Contin, Veronica Cimolin, Corrado Azzaro, Giovanni Albani, and Alessandro Mauro

Abstract— Recently, we have proposed a body-sensor-network-
based approach, composed of a few body-worn wireless inertial
nodes, for automatic assignment of Unified Parkinson’s Disease
Rating Scale (UPDRS) scores in the following tasks: Leg agility
(LA), Sit-to-Stand (S2S), and Gait (G). Unlike our previous works
and the majority of the published studies, where UPDRS tasks were
the sole focus, in this paper, we carry out a comparative investi-
gation of the LA, S2S, and G tasks. In particular, after providing
an accurate description of the features identified for the kinematic
characterization of the three tasks, we comment on the correlation
between the most relevant kinematic parameters and the UPDRS
scoring. We analyzed the performance achieved by the automatic
UPDRS scoring system and compared the estimated UPDRS eval-
uation with the one performed by neurologists, showing that the
proposed system compares favorably with typical interrater vari-
ability. We then investigated the correlations between the UPDRS
scores assigned to the various tasks by both the neurologists and
the automatic system. The results, based on a limited number of
subjects with Parkinson’s disease (PD) (34 patients, 47 clinical
trials), show poor-to-moderate correlations between the UPDRS
scores of different tasks, highlighting that the patients’ motor per-
formance may vary significantly from one task to another, since
different tasks relate to different aspects of the disease. An aggre-
gate UPDRS score is also considered as a concise parameter, which
can provide additional information on the overall level of the motor
impairments of a Parkinson’s patient. Finally, we discuss a possible
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implementation of a practical e-health application for the remote
monitoring of PD patients.

Index Terms—Body sensor network (BSN), gait (G) task, inertial
measurement unit (IMU), leg agility (LA) task, Parkinson’s disease
(PD), sit-to-stand (S2S) task, unified Parkinson’s disease rating
scale (UPDRS).

I. INTRODUCTION

PARKINSON’S disease (PD) is a progressive, chronic, neu-
rodegenerative condition that is responsible for a gradual

motor impairment. Therapies based on the use of dopaminer-
gic drugs, such as L-dopa, are useful to manage the early PD
motor symptoms, but their efficacy worsens over time, causing
additional motor complications, such as dyskinesia and motor
fluctuations, which can further impair the patients’ life quality.
An accurate and continuous monitoring of the symptoms’ pro-
gression and treatment effect should be required in order to de-
fine an effective therapy, but neurologists can often rely only on
qualitative and sporadic clinical observations, which may not be
representative of the actual disease status. A more objective eval-
uation can be achieved using semiquantitative rating scales, such
as the Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) [1]. Although several studies have
pointed out a good test–retest reliability for the global UPDRS
motor score, the latter has some limits in clinical trials. Some of
these limitations are: the need for a trained neurologist to assign
the UPDRS score; the interrater/intrarater variability [2]; the
discrete nature of the UPDRS (scores from 0 to 4), which is not
optimal to detect minimal changes during the disease progres-
sion [3]; and the difficulty to convey a concise score, especially
when several movement components (such as speed, amplitude,
hesitations, etc.) should be taken into account for the evaluation.
In order to improve the UPDRS assessment reliability, raising
the detection rate between disease-modifying and symptomatic
effects over a specific treatment regime, the sample size and the
clinical trial duration should be increased [4]. Obviously, this so-
lution is not always feasible or practical. The clinical judgment
of the disease stage in PD patients has benefited from having
the patients keep motor diaries while at home. However, this
tool is often unreliable because of nonoptimal compliance in
the patient record keeping, recall bias, or weak self-assessment
skill due to cognitive impairment, which is often associated with
late stages of PD [5].
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The advent of new motion-sensing devices, which allow ac-
curate movement measurement through a kinematic analysis,
has enabled the design of “man versus machine” clinical trials,
with relevant implications in practical terms. In recent years,
the use of integrated computerized systems, such as body sen-
sor networks (BSNs), has proliferated in clinical environments,
allowing easier acquisition of objective and quantitative mea-
surements that can be repeated several times on a daily basis at
the discretion of both patients and neurologists [6].

Recently, a unified approach to the evaluation of specific
UPDRS motor tasks, namely, the leg agility (LA) [7], the sit-to-
stand (S2S) [8], and gait (G) tasks [9], [10], has been proposed.
The designed system relies on a simple BSN formed by three
inertial measurement units (IMUs) (two on the thighs and one
on the chest) and aims at characterizing the considered tasks by
extracting and analyzing the kinematic features associated with
their typical movement patterns, in both time and frequency
domains. The automatic data acquisition sessions have been
carried out concurrently with clinical evaluations, performed by
neurologists with expertise in PD and according to the standards
of the MDS. The extracted features and the subjective evalua-
tions of the neurologists were then used to train an automatic
UPDRS scoring system, with the aim to automatically assess the
patients’ motor performance matching as closely as possible the
medical evaluation criteria.

Unlike our previous studies [7]–[10] and the majority of the
existing literature, in which UPDRS tasks are analyzed singu-
larly, in this paper, we focus on the comparative evaluation of
the LA, S2S, and G tasks. An experimental analysis of the data
from 34 PD patients and the UPDRS evaluations of three ex-
pert neurologists was carried out. The most relevant features,
for the kinematic characterization of each task, were identified
and motor performance of patients belonging to the different
UPDRS classes was analyzed. We also considered the perfor-
mance achieved by the designed automatic classification system
in the three tasks, proposing a comparative outlook with the in-
terneurologist assessment. Then, we investigated the correlation
between the UPDRS scores assigned to the tasks by both the
neurologists and our automatic system, highlighting that the
latter shows a performance which is compliant with typical in-
terneurologist variability, i.e., it behaves correctly. Furthermore,
we introduce an aggregate UPDRS score, simply defined as the
sum of the scores obtained in each task, as a significant concise
metric which can provide additional information to neurolo-
gists for deriving insights on the overall level of impairments
of patients and on the relative “weight” of each task in the as-
sessment of the gravity of the symptoms. Finally, the feasibility
of an application for remote rehabilitation and monitoring of
PD patients in a telemedicine environment is discussed, and a
possible efficient implementation approach is proposed.

The structure of the paper is the following. In Section II,
preliminaries and an overview on related works are given. The
hardware configuration and the set of subjects considered in
the experiments are presented in Section III. In Section IV, we
describe the methods used for the kinematic features extraction
through the inertial BSN in each task and for the automatic
UPDRS scoring system implementation. The experimental re-

sults are shown in Section V and discussed in Section VI, to-
gether with a possible application of the proposed system for the
management of PD patients in a telemedicine scenario. Conclu-
sions are presented in Section VII.

II. PRELIMINARIES AND RELATED WORK

A. UPDRS Tasks

The guidelines of the MDS for the evaluation of PD motor
tasks are described in the Part III of the UPDRS document [1].
In this paper, we focus on the items 3.8, 3.9, and 3.10, which
correspond to the LA, Arising from Chair,1 and G tasks. The
choice of these particular tasks was influenced by the need to
keep the BSN as simple as possible, maximizing at the same time
the number of tasks which could be analyzed without chang-
ing the sensors’ placement. The selected tasks are particularly
suitable for the considered unified analysis and clinically rele-
vant for a comprehensive evaluation of the patients’ symptoms,
as they refer to different aspects of PD (for example, LA is
related to bradykinesia, while S2S and G are associated with
posture/deambulation symptoms). We now quickly summarize
the basic characteristics of each of these tasks.

1) LA Task: The LA exercise consists of alternately raising
up and stomping the feet on the ground, as high and as fast as
possible. Ten repetitions per leg must be performed while sitting
on the chair in order to test each leg separately (in the following,
we will distinguish between right LA (RLA) and left LA (LLA)
tasks).2 The significant parameters that have to be measured,
independently for each leg, are the speed, the regularity, and the
amplitude of the movement.

2) S2S Task: In the S2S task, the patient is asked to sit on
a straight-backed chair with armrests. The exercise consists in
crossing the arms across the chest (in order to avoid their use
in the movement) and getting up from the chair. In the case of
failure, the patient can retry to raise up to two more times. If
still unsuccessful, the patient can move forward on the chair to
facilitate the movement, or in case of another failure, he/she can
use the armrests to stand up.

3) G Task: In the G task, the patient is asked to walk, at
his/her preferred speed, away from the examiner for at least 10 m
and in straight line, then to turn around and return to the starting
point. The parameters of interest are those strictly related to the
gait characteristics, such as the stride/step amplitude and speed,
the cadence, the gait cycle time (GCT ), parameters related to the
turning phase, the variability between left and right steps, and
the arm swing. Freezing of gait should be evaluated separately.
The assessment of the upper limbs (e.g., the arm swing) will
not be considered in this paper, as no sensor is placed on the
arms in the designed BSN. An extension of the current approach
including sensing devices on the arms represents an interesting
research direction.

4) UPDRS Evaluation: As mentioned in Section I, the UP-
DRS allows assignment of an integer score to a patient’s motor

1For consistency with our previous work [8], in the following, we denote the
Arising from Chair task as S2S task.

2When not specified, LA refers to the general task, including both RLA and
LLA trials.
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TABLE I
UPDRS MAPPING FOR THE CONSIDERED TASKS

LA task UPDRS Amplitude Hesitations Interruptions Slowing Freezing

0 nearly constant no 0 0 0
1 decrements near the end slight ≥ 1 1,2 0
2 decrements midway mild − 3,4,5 0
3 decrements after first tap moderate − ≥ 6 ≥ 1
4 always minimal or null severe − always −

S2S task UPDRS Failed attempts Use of armrests Slowing Move forward on chair
0 0 failed attempts no no no
1 ≥ 1 failed attempts no yes yes
2 0 failed attempts yes − −
3 ≥ 1 failed attempts yes − −
4 not able to stand up alone

G task UPDRS Independent walking Impairments level
0 yes no impairments
1 yes minor impairments
2 yes substantial impairments
3 no assistance device needed for safe walking
4 no cannot walk at all or only with another person’s assistance

performance in a specific task, ranging from 0, which means
that the patient is able to perform the task normally and with
no impairments, to 4, which means that the patient has major
difficulties in performing the exercise or is not able to perform
it at all. Table I maps the characteristics of each task which the
examiner should consider for the assessment of the patient’s
performance to the UPDRS scores.

B. Related Work

The kinematic analysis of specific motor tasks through differ-
ent motion capture and sensing technologies, such as optoelec-
tronic systems and inertial-based BSN, has been widely studied
for various clinical applications. With regard to PD, the ma-
jority of the existing literature has focused on the quantitative
kinematic characterization of single motor tasks and/or on the
evaluation of patients’ performance in different PD conditions.
In this context, the LA task [7], [11], the S2S task [8], [12], the
G task [10], [13], [14], and tremors [15] have been analyzed.

To the best of our knowledge, only limited attention has been
devoted to investigation of the relationship between different
UPDRS tasks characterized through motion capture technolo-
gies. Stochl et al. [16] investigated the structure of PD symptoms
in terms of the motor symptom evaluations defined in UPDRS
Part III. Five main latent symptoms factors were identified, and
the correlations between the UPDRS scores assigned to the
various tasks were reported. Similarly, in [17], a statistical anal-
ysis of the UPDRS motor scores was performed, using clas-
sical evaluation methods by neurologists and considering PD
patients in both ON (i.e., the intervals during which the med-
ication is effective) and OFF (i.e., the intervals during which
the medication is not effective) conditions, in order to iden-
tify latent relationships between UPDRS tasks and combine the
tasks in “macrogroups” related to similar PD symptoms. Five of
these groups, denoted as “factors,” have been identified (namely,
gait/posture, tremor, rigidity, left extremities bradykinesia,
and right extremities bradykinesia). The correlations 1) between
the UPDRS scores assigned by neurologists to the introduced
“macro-groups” of tasks and 2) between them and an aggregate

Fig. 1. (a) Inertial BSN designed for the evaluation of the three UPDRS tasks
of interest (LA, S2S, G): the subsets of nodes used in each task are marked with
different colors. (b) Shimmer device (IMU) and its reference coordinate system.

UPDRS score are also presented, showing that the macrogroups
can be assessed separately and provide information about dif-
ferent aspects of the disease. From our point of view, carrying
out a comparative analysis of the LA, S2S, and G tasks, using
1) the same BSN for the kinematic characterization of each task
and 2) the same approach for the design of an automatic UPDRS
scoring system, allows analysis of the correlations between the
UPDRS values of single tasks and a total UPDRS score, thus
opening an interesting research direction.

III. EXPERIMENTAL SETUP

A. Hardware

The BSN designed for the unified evaluation of the LA,
S2S, and G tasks is formed by only three IMUs, one on the
chest and one per thigh, attached to the body with Velcro
straps, as shown in Fig. 1(a). Each node is a Shimmer de-
vice (http://www.shimmersensing.com/, [18]), which is a small
(dimensions: 53 mm × 32 mm × 25 mm; weight: 22 g) and low-
power wireless IMU, equipped with a triaxial accelerometer, a
triaxial gyroscope, and a triaxial magnetometer. A Shimmer
node and its reference coordinate system are shown in Fig. 1(b).
The sampling rate is set to 102.4 Hz, which is the closest, in the
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set of the sampling rates supported by the Shimmer platform, to
the sampling frequency (namely, 100 Hz) of the optoelectronic
reference system (Vicon, Oxford, U.K.) used for the validation
of the inertial signals’ accuracy. The acquired data are streamed
wirelessly (via a Bluetooth radio interface) to a personal com-
puter, where signal processing and automatic classification (de-
scribed in details in Section IV) are performed.

The placement of the sensors has been chosen taking into
account two main motivations: 1) the need to analyze the three
tasks without changing the configuration of the nodes in order to
minimize the patients’ stress and simplify the acquisition proce-
dure, allowing sequential execution of the three tasks; and 2) the
higher accuracy and reliability of IMUs in measuring inclina-
tions and accelerations, rather than positions or displacements.
With the current BSN configuration, indeed, all the kinematic
parameters in the LA and S2S tasks are extracted from inclina-
tion and/or angular velocities measured with the nodes on the
thighs and on the chest, respectively; at the opposite, in the G
task, the majority of the features are extracted from acceleration
signals directly measured by the sensor placed on the trunk.

For validation purposes, the data acquired with the inertial
BSN and the extracted kinematic features have been compared
with those measured with the Vicon optoelectronic system. In
particular, in [7], we have first demonstrated the equivalence
between heel’ and thigh’ kinematics. More precisely, the 3-D
orientations of the Shimmer nodes placed on the thighs are esti-
mated, with reference to the Earth frame, through an orientation
estimation filter [19]. For each leg, the orientation component
in the sagittal plane, corresponding to the inclination θ (dimen-
sion: [deg]) of the thigh, is extracted, together with the thigh’s
angular velocity ω (dimension: [deg/s]). These signals are then
compared to those estimated with the optoelectronic system tak-
ing into account the 3-D positions and velocities of reflective
markers placed on the subject’s heels. The results presented
in [7] show a strong correlation (approximately equal to 0.98)
between heels’ optical data and thighs’ inertial data, motivating
the use of θ and ω for the kinematic characterization of the LA
task. The same approach has been applied, in the S2S task, to
determine the accuracy, with respect to the Vicon system, of the
trunk inclination estimated with a Shimmer node and similar ac-
curacy results have been obtained. The validation of kinematic
parameters for the G task is discussed in [9] and [10]. The aver-
age errors are comparable with those obtained in other studies
in the literature, such as [13], [20], [21], and are sufficiently
low to be considered almost negligible for the purpose of this
study—for example, the average errors for the estimations of
some temporal parameters, such as the heel-strike (HS), toe-off
(TO), and GCT , are (mean ± standard deviation) 8.22 ± 17.6,
6.83 ± 26.3, and 8.87 ± 23.7 ms, respectively, whereas for spa-
tial parameters, such as the stride length and the step length, the
average errors are 4.23 ± 4.94 and 3.15 ± 7.34 cm, respectively.

B. Subjects and Acquisition Procedure

The subjects in these studies were 34 PD patients, including
22 males and 12 females with average age equal to 67.4 years
(ages between 31 and 79 years) and standard deviation equal

to 11.6 years. The average Modified Hoehn and Yahr Scale
score for the subjects was 1.6 (standard deviation equal to 0.47,
minimum score equal to 1, maximum score equal to 3) on the
1-to-5 scale (higher scores indicate more severe impairments
and more advanced stages of the disease). The sensing devices
were placed on a patient’s body as shown in Fig. 1(a), trying
to align the x-, y-, and z-axes of the node coordinate reference
system, shown in Fig. 1(b), to the upward–downward, right–left,
and forward–backward directions, respectively. The alignment
of the sensors, with respect to the anatomical structure, is aided
by the developed acquisition software. Before the beginning of
the acquisition procedure, a check is performed on the sensors’
placement, considering both the gravity direction and the 3-D
orientation of the Shimmer nodes in the Earth frame: if the
alignment is within a confidence range (heuristically defined),
the examiner is allowed to proceed in the acquisition procedure;
otherwise, a warning message is shown and the procedure is
stopped until the sensors’ placement is correctly modified by
the examiner.

The data acquisitions were carried out by asking the patient to
execute the LA, S2S, and the G tasks sequentially. In each task,
only the signals recorded by a proper subset of nodes of the BSN
were considered—the subsets of Shimmer devices used for the
evaluation of the single tasks are shown in Fig. 1(a) using dif-
ferent colors. For the LA task acquisitions, only the two devices
placed on the thighs were used, whereas for the S2S task, only
the trunk-mounted node was considered. In the G task, all the
BSN IMUs were used to achieve a complete characterization of
the complex gait movement. Although we studied 34 patients,
a total of 47 trials (94 for the LA task, considering separately
RLA and LLA) per task have been acquired, since some of the
patients performed the tasks in distinct PD conditions, i.e., in
ON/OFF states or at different times corresponding to different
motor fluctuation phases. The motor performance of the same
subject in these situations and, consequently, the recorded kine-
matic patterns and the assessment by the neurologists may vary
consistently. To avoid distortion in the results, we include in our
dataset only the trials by the same patient in which substantial
variations in motor performance have been observed, allowing
us to consider each trial as a single sample for the following
analysis. We remark that a detailed analysis of PD patients’
motor performance, distinguishing between ON and OFF con-
ditions, represents a relevant extension of our work. All the trials
have been assessed independently by three neurologists expert
in movement disorders, using a noninteger scale with intermedi-
ate scores (·.5) to label the trials in which the neurologists were
undecided between consecutive (integer) UPDRS classes. The
consensus score, denoted as UPDRSMean , is defined as the arith-
metic average of the scores assigned by the three neurologists
to each trial, rounded to the nearest (integer or intermediate)
UPDRS value. This methodology has been already used in the
literature to combine the assessments of multiple neurologists
in a single concise score [22], enhancing the robustness of the
evaluation and reducing the distortion caused by the interrater
variability [2]. In Fig. 2, the distributions of UPDRSMean and
of the UPDRS scores assigned by the three neurologists to the
47 trials are shown. It can be observed that there are slight
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Fig. 2. Trials distribution for all the considered tasks.

differences among neurologists, in both the assessment criteria
(for example the neurologist 1 uses more than the other two
the intermediate scores, whereas neurologist 2 tends to assign
higher scores than the other two in the LA task) and the dis-
tribution of the UPDRS scores in the three tasks. In particular,
the latter seems to be a Gaussian-like distribution centered in
correspondence to a dominant UPDRS class, which depends on
both the neurologist and the task. Finally, the distribution of the
UPDRSMean score, as expected, is smoother than the UPDRS
scores of the single neurologists and the scores in the LA, S2S,
and G tasks show Gaussian-like distributions centered in 1.5,
0.5, and 1, respectively. We note that in an “ideal” scenario, all
UPDRS classes should have similar number of patients, i.e., the
UPDRS distribution should be almost uniform.

IV. METHODS

A. Kinematic Features Extraction

The unified approach proposed in this study, which aims,
through a single BSN, to automatically assign UPDRS scores
to the LA, S2S, and G tasks, considers the same data processing
and automatic classification methods presented in the single
tasks analyses proposed in [7]–[10]. In the following, a concise
description about the features’ extraction procedure is provided.
For ease of visualization, in Table II, a summary of the most
relevant features identified for each task is provided. The names
of the parameters considered in the experimental results are
highlighted in bold.

1) LA Task: As anticipated in Section III-A, both the incli-
nation (θ, dimension: [deg]) and the angular velocity (ω, dimen-
sion: [deg/s]) of the thighs in the sagittal plane, measured by the
Shimmer nodes on the thighs, are considered for the kinematic
analysis of the LA task. An illustrative portion of the inclina-
tion signal θ of one thigh, for two consecutive LA repetitions,
denoted as rth and (r + 1)th (r ∈ {1, 2, . . . , 9}), is shown in
Fig. 3(a). Through an automatic segmentation procedure, three
fundamental time epochs, denoted as tS(r), tE(r), and tP(r)
and associated, respectively, with the start, the end, and the
epoch of maximal thigh inclination of the rth LA repetition, are
identified. Starting from these epochs, various parameters can

be straightforwardly calculated. The results obtained in [7] have
shown that, in the time domain, the most relevant features for the
kinematic characterization of the LA task are: the angular am-
plitude Θ (dimension: [deg]), the angular speed of execution Ω
(dimension: [deg/s]), the pause between consecutive executions
P (dimension: [s]), the regularity of execution R (dimension:
[s]), and the repetition frequency F (dimension: [Hz]). In the
frequency domain, upon the computation of the amplitude spec-
tra of the discrete Fourier transforms of θ and ω, denoted as Xθ

and Xω , respectively, the powers of the inclination spectrum
(PXθ

) and the angular velocity spectrum (PXω
) are shown to be

relevant features.
For the rth LA repetition (r ∈ {1, 2, . . . , 10}), the expression

of the most relevant features outlined in the previous paragraph
is shown in the first part of Table II. When not specified, in
the following, we refer to the average values of the features
Θ, Ω, P , and R, obtained by averaging, over all consecutive
repetitions, the values measured in each repetition and denoted,
respectively, as Θmean , Ωmean , Pmean , and Rmean .

2) S2S Task: The S2S task is the simplest one among those
considered in this paper. For this reason, the characterization
of the body movements during the execution of the task can be
easily obtained considering only the inclination signal estimated
through the chest-mounted sensor. As for the thighs’ nodes in
the LA task, the 3-D orientation of the Shimmer device placed
on the trunk is estimated and the inclination of the torso, denoted
as θ (dimension: [deg]), is measured [8]. The typical shape of
θ, during the S2S task, is shown in Fig. 3(b). The following
relevant time labels can be identified with a simple automatic
segmentation procedure: 1) the starting epoch tS of the S2S (i.e.,
when the chest starts bending forward); 2) the epoch of maximal
bending of the chest tP (placed around the middle of the S2S
exercise); and 3) the ending epoch tE of the S2S (i.e., when the
chest returns in the vertical position). Once these time instants
have been identified, the 12 features shown in the central part
of Table II can be calculated. In particular, the features refer
to the duration T (dimension: [s]), the angular amplitude Θ
(dimension: [deg]), and the speed of execution Ω (dimension:
[deg/s]) of the S2S exercise. Moreover, the difference D between
the forward and the backward bending phases is computed for
all the considered variables. In [8], the subset of features, among
the 12 extracted, which has turned out to be the most significant
for the characterization of the S2S task, includes T , TB , TF ,
DT , Θ, and Ω.

3) G Task: The movements involved in the G task are in-
herently more complex than those associated with LA and S2S
tasks, and for this reason, the characterization of gait through
kinematic features is more challenging. In [9] and [10], an in-
depth kinematic analysis of Parkinsonian gait is performed, con-
sidering features in both time and frequency domains. A novel
approach for gait cycle phases segmentation, through a proper
processing of the accelerometric signal of the chest-mounted
inertial node, is presented. Considering the typical patterns in
trunk accelerations shown in Fig. 3(c), the fundamental events,
which identify a complete gait cycle and all the associated
gait phases, namely, the HS (i.e., the instant at which the foot
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TABLE II
SUMMARY OF THE MOST RELEVANT FEATURES CONSIDERED FOR EACH TASK

Task Name Definition Dimension r -value

LA Angular amplitude Θ(r) � Θ A ( r )+ Θ D ( r )
2 [deg] n.s.

Angular speed of execution Ω(r) � Θ A ( r )+ Θ D ( r )
T ( r ) [deg/s] −0.50

Pause of execution P (r) � tS (r + 1) − tE (r) [s] 0.27
Regularity of execution R(r) � tP (r + 1) − tP (r) [s] 0.49
Repetition frequency F � 1 0

t E (1 0 )−t S ( 1 ) [Hz] −0.36

Thigh inclination spectrum power PX θ
� 1

N

∑ N −1
h = 0 (Xθ , h )2 adimensional −0.46

Thigh angular velocity spectrum power PX ω � 1
N

∑ N −1
h = 0 (Xω , h )2 adimensional −0.34

S2S Forwards bending duration TF � tP − tS [s] 0.58
Backwards bending duration TB � tE − tP [s] 0.56
Total duration T � TF + TB = tE − tS [s] 0.62
Forwards/backwards duration difference DT � TF − TB [s] 0.47
Forwards bending amplitude ΘF � θ(tP ) − θ(tS ) [deg] 0.35
Backwards bending amplitude ΘB � θ(tP ) − θ(tE ) [deg] 0.25

Average bending amplitude Θ � Θ F + Θ B
2 [deg] 0.33

Forwards/backwards bending amplitude difference DΘ � ΘF − ΘB [deg] 0.20

Forwards bending speed ΩF � Θ F
T F

[deg/s] −0.33

Backwards bending speed ΩB � Θ B
T B

[deg/s] −0.21

Average bending speed Ω � Θ F + Θ B
T = ΩF

T F
T + ΩB

T B
T [deg/s] −0.32

Forwards/backwards bending speed difference DΩ � ΩF − ΩB [deg/s] −0.14
Gait Gait Cycle Time GC TR / L (k) = H SR / L (k + 1) − H SR / L (k) [s] 0.30

Stance Time STR / L (k) � 100 ×
T O R / L (k )−H S R / L (k )

G C T R / L (k ) % of GCT n.s.

Initial Double Support IDS (k) � 100 × T O L (k )−H S R (k )
G C T (k ) % of GCT 0.29

Terminal Double Support T DS (k) � 100 × T O R (k )−H S L (k )
G C T (k ) % of GCT n.s.

Double Support DS (k) � IDS (k) + T DS (k) % of GCT n.s.
Limp Limp(k) � |IDS (k) − T DS (k)| % of GCT 0.30

Step Length StepLR / L (k) � K 2
√

2�hR / L (k) − hR / L (k)2 % of height −0.59 (mean)

Stride Length SL(k) � StepLR (k) + StepLL (k) % of height −0.60
Step Velocity StepVR (k) � S t e p L R

H S L (k )−H S R (k ) % of height/s −0.59

Thigh Range of Rotation T high RoRR (k) � maxi θ(i) − mini θ(i) i ∈ GC TR (k) [deg] −0.49
Cadence C � 6 0 f

d 1
[steps/min] n.s.

Step Regularity R s t e p � Au nb ia s e d (d1 ) adimensional −0.58

Symmetry S � R s t e p
R s t r id e

adimensional n.s.

Spectrum power for accelerations Pa v e r t / y / z
� 1

N

∑ N −1
k = 0 (Xa v e r t / y / z , k )2 adimensional −0.38 (mean)

Total spectrum power P s u m � Pa v e r t + Pa y + Pa z adimensional −0.43

The names of the parameters taken into account for the experimental results are marked in bold. In the last column, the correlation coefficients between the features and
the neurologist-assigned UPDRS scores are shown (the best for each task is highlighted in bold). Correlation coefficients (r -values) with associated p-values (not shown
here) greater than 0.05 are considered as nonsignificant (n.s.).

touches the ground) and the TO (i.e., the instant at which the
foot leaves the ground), have been identified. Once all the HSs
and the TOs for both legs are known, temporal parameters, such
as gait cycle time (GCT , dimension: [s]), Stance Time (ST , di-
mension: [% of GCT]), double support time (DS, dimension: [%
of GCT]), and Limp (dimension: [% of GCT]), can be calculated
following the approaches of classical gait analysis [13], [23].
Spatial parameters, such as Stride Length/Velocity (SL/SV ,
dimension: [% of patient’s height]/[% of patient’s height/s])
and Step Length/Velocity (StepL/StepV , dimension: [% of pa-
tient’s height]/[% of patient’s height/s]), are estimated modeling
gait as an inverted pendulum and using the vertical displacement
(h) of the trunk and the leg length (�) to compute the forward dis-
tance (D) traveled at each step [20]. Important information about
the mobility of the lower limbs is extracted using the gyroscopes
of the Shimmer devices placed on the thighs. Integrating the an-
gular rate measured by the gyroscopes, the instantaneous incli-
nation of the thighs (θ) can be estimated. The angular amplitude

of a thigh’s flexion/extension movement, denoted as thigh range
of rotation (Thigh RoR, dimension: [deg]), is then computed
considering the maximum and the minimum inclination val-
ues in each gait cycle. Moreover, we calculate and analyze the
unbiased autocorrelation (Aunbiased ) associated with the accel-
eration signals recorded with the trunk-mounted IMU to obtain,
in a simple way, additional information about the regularity
and periodicity of patients’ walking patterns, such as the Step
Regularity (Rstep , adimensional) and the step/stride Symmetry
(S, adimensional) [24]. Finally, similarly to the LA case, in the
frequency domain we compute the spectra of the three compo-
nents of the trunk acceleration, denoted, respectively, as Xav e r t ,
Xaz , and Xay . The power associated with each spectrum is then
calculated and their sum, denoted as Psum (adimensional), is a
relevant kinematic feature.

For ease of visualization and according to the results ob-
tained in [10], in the following, only a reduced set of features
is considered. In particular, the parameters with right and left
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Fig. 3. Typical patterns in (a) the inclination signal θ of one thigh during the LA task (for two consecutive repetitions), (b) the torso inclination signal θ during
the S2S task, and (c) the trunk acceleration signals during the G task. In (a) and (b), the fundamental time events are denoted with red crosses and the intuitive
representations of the most relevant features are also shown. In (c), the circles in linear vertical acceleration avert identify the searching region in the frontal
acceleration az , within which the HS and T O events, denoted, respectively, with triangles and asterisks, are identified. In the mediolateral acceleration ay , HS
points are connected with consecutive T O points by a line whose slope allows to discriminate left leg (blue line, positive slope) from right leg features (red line,
negative slope).

components are replaced with the arithmetic average of the two
values. The reduced set of features for the G task is the fol-
lowing: {GCTmean , STmean , DS, Limp, SL, StepVmean , C,
Rstep , S, Thigh RoRmean , Psum}.

B. Automatic Classification Approach

As mentioned in Section I, a key tool behind this study is
the design and implementation of a unique system for the au-
tomatic UPDRS scoring of the LA, S2S, and G tasks, based
on the assessment of the relevant kinematic features outlined
in Section IV-A. In our previous works [7], [8], [10], although
each task is analyzed singularly, the same approach for data
processing, automatic classification, and performance analysis
is used. In the following, a brief description of the used methods
is presented.

1) Principal Component Analysis: In order to reduce the
features’ dimensionality and redundancy, while retaining most
of the information content of the original data, principal compo-
nent analysis (PCA) is applied on the collections of kinematic
features defined for each task. Before applying PCA, the orig-
inal data are first centered at their means (which are set equal
to 0) and rescaled to have unit standard deviation. For the auto-
matic classification procedure presented in the following, both
original and ”PCA-projected” data will be considered as input.

2) Classification Algorithms and Performance Analysis:
The automatic UPDRS scoring system relies on the use of the
consensus UPDRS score (UPDRSMean ), i.e., on the arithmetic
average of the UPDRS scores assigned by the three neurologists
to each trial. Three well-known classifiers have been considered:
nearest centroid classifiers (NCC), k nearest neighbors (kNN),
and support vector machine (SVM) [25]. The chosen classifica-
tion algorithms have different characteristics in terms of com-
plexity and effectiveness and, thus, represent a good starting
point to evaluate the feasibility of the proposed system. In order

to avoid biasing the classification performance and considering
the amount of data available, the leave-one-out cross-validation
method is chosen. In particular, each point of both the original
and “PCA-projected” dataset is used, in turn, as a new (un-
known) point to be classified, while the remaining samples are
used to train the classifiers. The result of the classification pro-
cedure is an estimated UPDRS value, generally denoted as ûM ,
for every trial of each task. The system performance is evalu-
ated considering the absolute3 classification error eM , defined
as follows:

eM � |ûM − uM |

where uM is the value of UPDRSMean for the considered trial
(uM , ûM ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}).

In [7], [8], and [10], the automatic UPDRS scoring systems
designed for the three tasks of interest have been exhaustively
tested in order to determine the configurations, in terms of fea-
tures combinations and system parameters, which allow us to
achieve the best classification performance. For each task, the
cumulative distribution function (CDF) of the error eM is com-
puted considering the results of the classification procedure ob-
tained using, as inputs for the three classifiers (NCC, kNN, and
SVM): 1) all the possible combinations of kinematic features
with original data; and 2) increasing number of principal com-
ponents (up to the number of features in the original dataset)
when PCA-projected data are considered. Furthermore, when
kNN is used as classification algorithm, values of k between 1
and 10 are used. The area under the curve (AuC) of the CDF
of eM is selected as a representative performance optimization
metric, since maximizing this value corresponds to minimizing

3The absolute value of the classification error is considered because we are
interested in quantifying the absolute deviation between automatically estimated
and neurologist-assigned UPDRS scores.
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Fig. 4. Radar plots of the average normalized features grouped by UPDRS class in the LA, S2S, and G tasks considering the UPDRS scores by neurologist 1
[cases (LA-1), (S2S-1), (G-1)], neurologist 2 [cases (LA-2), (S2S-2), (G-2)], neurologist 3 [cases (LA-3), (S2S-3), (G-3)], and the UPDRSM ean [cases (LA-M),
(S2S-M), (G-M)].

the overall absolute classification error. Among all the CDFs ob-
tained for all considered parameters’ combinations, those which
maximize the AuC are selected to determine the system config-
uration which achieves the best classification performance.

V. RESULTS

A. Kinematic Characterization

As already discussed in [7], [8], and [10], in each task, a strong
relationship can be identified between some of the extracted
kinematic features and the UPDRS score assigned by the neu-
rologists. In Fig. 4, the average values, over all trials belonging
to each UPDRS class (from 0 to 4), of the most relevant features
for the LA, S2S, and G tasks are shown, through radar plots,
considering the UPDRS scores given by the three neurologists

and the UPDRSMean . Each parameter has been normalized and
rescaled in order to assume a value between 0 and 1, where 0
represents the worst case and 1 the best case—best and worst
are feature-specific. As expected, it can be observed that, be-
yond the interneurologist variability, in each task, the overall
motor performance of the patients, in terms of its associated
kinematic parameters, tend to worsen for increasing UPDRS
scores. The values of the parameters corresponding to the UP-
DRS class 0, indeed, achieve the best performance in almost all
the considered features and in every task, whereas the values
belonging to higher UPDRS classes (from 2.5 to 3.5) tend to lie
in the region of the plot near the origin, which is thus associ-
ated with the worst performance. In order to show how much
every single feature is related to the UPDRS score, we compute
the Pearson’s correlation coefficient (denoted also as r-value)
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between the kinematic parameters and the UPDRSMean values
of each task. In the last column of Table II, the r-values for
all the most relevant features are shown, highlighting in bold
those which have the highest correlation with the UPDRSMean
score of the considered task. We note that correlations with
the corresponding p-value4 higher than 0.05 are considered as
nonsignificant (n.s.). Furthermore, the sign of the correlation
coefficients makes it possible to discern if the value of the con-
sidered feature increases (positive sign) or decreases (negative
sign) for increasing UPDRS score.

For the LA task, the average values per UPDRS class is
obtained considering both RLA and LLA trials. Looking at
Fig. 4 (LA-1), (LA-2), (LA-3), and (LA-M), it can be observed
that the decreasing trend for increasing UPDRS score is evident
in all the considered features. Values belonging to the extremes
UPDRS classes (e.g., UPDRS scores equal to 0 or 3/3.5) are
clearly separated from the others, while values associated with
the intermediate UPDRS classes (e.g., UPDRS scores equal to
1, 1.5, or 2) tend to overlap, in some cases, in the same region of
the plot. This behavior is consistent with clinical evaluations of
PD patients, when distinguishing between intermediate levels
of impairments may be difficult. Considering the correlations
between LA features and UPDRS score, the parameter which
has the highest (absolute) r-value is Ωmean .

Similarly to the LA case, in the S2S task, the performance
degradation for increasing UPDRS score is evident, as shown in
Fig. 4 (S2S-1), (S2S-2), (S2S-3), and (S2S-M). The parameters
for which this trend is clearer are those related to the duration of
the S2S single rising, namely, T , TF , and TB . As expected, these
parameters achieve the highest correlation values with respect
to the UPDRS score and are those that better characterize the
S2S task.

In the G task, the trends of the features are more difficult to
interpret due to the higher complexity of the body movements
involved in this exercise. Considering the temporal parameters,
such as GCT , ST , DS, and Limp, the performance decreases
for increasing UPDRS score. Patients with gait impairments, in-
deed, tend to walk more slowly than normally walking subjects,
increasing the duration of GCT and the permanence in the DS
phase. This normally corresponds to lower values of C, since
the number of steps, which can be performed by a patient in a
minute reduces. Nevertheless, in Fig. 4 (G-1), (G-2), (G-3), and
(G-M), it can be observed that the “best” performance in some of
the temporal features is achieved by the average values associ-
ated with UPDRS class 3. This is due to the fact that PD patients
who present festinating gait, i.e., a gait pattern alteration typical
of Parkinsonians, characterized by a quickening and shortening
of normal strides, perform short steps with a very high cadence,
thus leading to values in temporal parameters and cadence that
may be interpreted as “good” even for high UPDRS scores. Spa-
tial parameters, flexion/extension excursions of the thighs, and
step regularity show similar behaviors, with a clear decreasing
trend for increasing UPDRS values. This result is consistent

4We recall that the p-value represents the probability that the observed dif-
ferences, in the sample data which are being tested, are due to random sampling
errors and not to true differences between populations [26].

TABLE III
COMBINATION OF PARAMETERS CORRESPONDING TO THE BEST PERFORMANCE

OF THE AUTOMATIC UPDRS SCORING SYSTEM FOR EACH TASK

Task Classifier Set of features

LA kNN (k = 3) {Ωm e a n , F }
S2S kNN (k = 3) T

G kNN (k = 6) {DS , R s t e p , T high RoRm e a n }

with clinical observations of Parkinsonian walking, in which
patients with increasing gait impairments perform shorter steps,
with reduced velocity and regularity, revealing, in general, a
more limited movement range in lower limbs [27]. This obser-
vation is also confirmed by the good correlation values (absolute
values approximately equal to 0.6) between kinematic parame-
ters, such as SL, StepVmean , Rstep , and Thigh RoRmean , and
the UPDRSMean score of the G task. The S parameter main-
tains a low variability across all UPDRS values, except for the
subjects with UPDRS score equal to 3: this seems to be more
related to the single subject walking characteristics than to the
entire scoring cluster. Finally, the feature Psum , which is rep-
resentative of the overall “power” associated with the patient’s
movements during gait, clearly decreases monotonically from
UPDRS 0 to UPDRS 3, showing also a moderate correlation
(r-value equal to −0.43) with the UPDRS score.

B. Automatic Detection

As anticipated in Section IV-B2, an exhaustive testing of
the automatic UPDRS scoring system for each task has been
carried out in previous papers [7], [8], [10] in order to find
the parametric configuration which allows to achieve, for each
task, the best classification performance, i.e., which maximizes
the AuC of the CDF of the error eM . In Table III, the optimal
system configuration, including the best classification algorithm
and the best combination of features, is shown for each task. The
observed results show that in all tasks the best classifier is kNN,
with k set to 3 (LA and S2S) or 6 (G). Furthermore, it can be
observed that the number of features associated with the best
performance increases for increasing complexity of the task
movement patterns.

In Fig. 5(a), the CDFs corresponding to the optimized para-
metric configurations of the automatic UPDRS scoring system
in each task are shown. The accuracy of the automatic system
(corresponding to CDFs’ values at e = 0) ranges from approxi-
mately 43% in the LA and S2S tasks to 62% in the G task. The
percentage of trials classified with e ≤ 0.5 is over 81% in all
the considered tasks (LA: 83%; S2S: 81%; and G: 94%) while
more than 94% of the samples are classified with e ≤ 1 (LA:
97%; S2S: 94%; and G: 98%). Moreover, it can be observed
that the classification error is never greater than 1.5.

To better characterize the classification performance with
more details, in Tables IV–VI, the confusion matrices asso-
ciated with the automatic scoring procedures of the LA, S2S,
and G tasks are shown, respectively. It is easy to observe that
the automatic system tends, in all cases, to bias the estimated
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Fig. 5. CDFs of (a) the automatic classification error eM for the best perfor-
mance achieved in each task and (b) the (absolute) difference d in the UPDRS
scoring between neurologist 1 and 2.

TABLE IV
CONFUSION MATRIX FOR THE LA TASK AUTOMATIC UPDRS

SCORING PROCEDURE

[%] 0 0.5 1 1.5 2 2.5 3 3.5

0 0 50 50 0 0 0 0 0
0.5 8 54 23 15 0 0 0 0
1 0 23 18 53 6 0 0 0
1.5 0 5 16 65 11 3 0 0
2 0 17 0 58 25 0 0 0
2.5 0 0 0 50 10 40 0 0
3 0 0 0 50 0 50 0 0
3.5 0 0 0 0 0 100 0 0

TABLE V
CONFUSION MATRIX FOR THE S2S TASK AUTOMATIC UPDRS SCORING

PROCEDURE

[%] 0 0.5 1 1.5 2 2.5 3 3.5

0 100 0 0 0 0 0 0 0
0.5 47 31 1 1 0 0 0 0
1 40 40 20 0 0 0 0 0
1.5 34 0 22 22 22 0 0 0
2 34 0 0 66 0 0 0 0
2.5 - - - - - - - -
3 - - - - 100 0 0 0
3.5 - - - - - - - -

TABLE VI
CONFUSION MATRIX FOR THE G TASK AUTOMATIC UPDRS SCORING

PROCEDURE

[%] 0 0.5 1 1.5 2 2.5 3 3.5

0 0 0 100 0 0 0 0 0
0.5 0 45 55 0 0 0 0 0
1 0 0 78 22 0 0 0 0
1.5 0 6 25 69 0 0 0 0
2 0 0 0 100 0 0 0 0
2.5 - - - - - - - -
3 0 0 0 100 0 0 0 0
3.5 - - - - - - - -

UPDRS values around a dominant class, in accordance to the
Gaussian-like distribution of the UPDRSMean score observed
in Section III-B. The UPDRS classes with a small number of
samples are almost “ignored” by the classifier and the samples
associated with them are labeled with a UPDRS value nearer to
the dominant class, thus determining a general underestimation
of actual UPDRS score. This behavior is a clear consequence of
the non-homogeneity of the UPDRS evaluations of the various
neurologists. From the presented confusion matrices, other per-
class performance indexes, such as the precision, the sensitivity,
and the specificity, can be calculated—they are not shown here
due to lack of space. We only remark that the average values
(across all the UPDRS classes) of these indexes are equal to (pre-
cision, sensitivity, specificity) 34.55%, 25.17%, and 84.52% in
the LA task, 28.00%, 25.63%, and 77.51% in the S2S task, and
66.48%, 31.83%, and 88.03% in the G task.

Finally, in order to evaluate the operational correctness of
our automatic scoring system, we compare the achieved perfor-
mance with the inter-rater variability of the neurologists in the
UPDRS task assessment. In Fig. 5(b), the CDFs of the (absolute)
difference d between the UPDRS scores assigned by neurolo-
gists 1 and 2 in the three tasks are shown. The agreement in the
evaluations ranges from 33% in the G task to 52% in the S2S
task, whereas the difference in the UPDRS scores between the
two neurologists is lower than or equal to 1 in approximately
90% of the trials (100% for the G task). Similar results have been
obtained from the comparison of the evaluations by neurologists
1 and 3 and by neurologists 2 and 3—the corresponding CDFs
are not shown here for lack of space. Comparing Fig. 5(a) and
(b), it is possible to observe very similar trends in the CDFs
of the estimation error eM and the difference of neurologists’
evaluations d. It can thus be concluded that the variability in
the UPDRS scoring between the automatic system and the neu-
rologists seems to be comparable with the inter-rater variability
between clinicians. In other words, the proposed automatic clas-
sification system is “accurate” enough to mimic the evaluation
performance of medical personnel.

Obviously, a larger set of patients, a more uniform distribu-
tion of the patients in all the UPDRS classes, and additional
evaluations by more neurologists would make the proposed sys-
tem performance analysis more meaningful from a statistical
perspective. However, this goes beyond the scope of the paper,
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Fig. 6. Comparison between UPDRS values assigned to each trial for different pairs of UPDRS tasks considering: in the upper row [(a)–(f)], the UPDRSM ean
scores; in the lower row [(g)–(l)], the UPDRS values estimated through the automatic scoring system. Each point corresponds to a “cluster” of trials labeled with
the same pair of UPDRS values and its size is proportional to the number of trials belonging to the same cluster. (a) RLA versus LLA. (b) S2S versus RLA.
(c) S2S versus LLA. (d) G versus RLA. (e) G versus LLA. (f) G versus S2S. (g) RLA versus LLA auto. (h) S2S versus RLA auto. (i) S2S versus LLA auto.
(j) G versus RLA auto. (k) G versus LLA auto. (l) G versus S2S auto.

which focuses on proposing a novel approach, rather than an
exhaustive medical investigation.

C. Correlations

In Section V-A, we have investigated the correlations between
the most relevant kinematic features in each task and the UPDRS
scores assigned by the neurologists. Since we are investigating
the feasibility of a single system able to automatically assess dif-
ferent motor tasks of Parkinsonians and to automatically assign
UPDRS scores to patients’ trials, we now focus on the analysis
of the correlations between the UPDRS evaluation carried out by
doctors and the one performed by our automatic UPDRS scor-
ing system. Looking at Fig. 2, the differences in the distribution
of the UPDRS values in the three tasks, performed by the same
group of patients, can be easily distinguished in the (single) UP-
DRS scores assigned by the neurologists and the UPDRSMean
score. As expected, this means that the performance achieved
by patients in the three tasks and, consequently, the UPDRS
evaluations by doctors, may vary significantly from one task
to another. In Fig. 6, a comparison between the UPDRSMean
scores [cases from (a) to (f)] and the UPDRS values assigned
by the automatic system [cases from (g) to (l)] is shown consid-
ering pairs of tasks.5 Each trial is labeled with a pair of UPDRS
values, corresponding to the UPDRS scores assigned to it in the
two considered tasks. In each subplot, the “clusters” of trials
labeled with the same pair of UPDRS scores and, thus, overlap-
ping on the same portion of the plane, are shown as black points,
whose size is proportional to the number of trials belonging to
the cluster. Moreover, the linear regression line, i.e., the best-
fitting straight line obtained with the least squares method, is
also shown. For all the considered pairs of tasks, an increasing

5For the LA task, comparisons with both RLA and LLA UPDRS scores are
shown separately.

trend in UPDRS scores for both tasks can be observed, although
for each UPDRS value assigned to one task, several UPDRS
values can be assigned to the other task.

For some pairs of tasks, such as those shown in Fig. 6(a)
and (d)–(f), the linear relationship between the UPDRS scores
is evident, and consequently, the regression line lies near the
diagonal. In these cases, the values assigned in both tasks, in fact,
are likely to be similar, indicating both comparable difficulties
experimented by patients in the two tasks and a uniform metric
used by the neurologists to assess them. In other cases, especially
those including the S2S task, it can be observed that, while in
one task (either LA or G), the trials are labeled with increasing
UPDRS scores, in the S2S task, the patient is still able to achieve
a good performance, and consequently, the trials are labeled with
a UPDRS equal to 0 or 0.5. This leads to an accumulation of
points near the 0 and 0.5 UPDRS classes for the S2S task, which
also influences the slope of the linear regression line, making
it “flatter.” This behavior is even more visible considering the
automatically estimated UPDRS scores [cases from (g) to (l)].
It can been observed that the linear relationship between tasks
is always weaker than in the neurologist-assessed cases. This is
due to the fact that the automatic scoring system, as anticipated
in Section V-B, tends to slightly underestimate the values of
the UPDRS scores with respect to those assigned by doctors,
increasing the concentration of the scores around the dominant
UPDRS class of each task.

To reinforce the considerations made observing the pairs of
tasks in Fig. 6, we now analyze numerically the correlation
between the considered tasks. We also introduce an aggregate
UPDRS score, denoted as UPDRSTotal , given by the sum of
the UPDRSMean scores assigned to the RLA, LLA, S2S, and
G tasks. The summation of the UPDRS scores assigned to differ-
ent combinations of tasks [13], [17], [28], is a common practice
used in the literature to predict the overall functional capabilities
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TABLE VII
CORRELATIONS BETWEEN UPDRSM ean SCORES

Total RLA LLA S2S G

Total 1.00
RLA 0.82 1.00
LLA 0.87 0.75 1.00
S2S 0.76 0.37 0.46 1.00
G 0.82 0.51 0.60 0.66 1.00

TABLE VIII
CORRELATIONS BETWEEN UPDRS SCORES ASSIGNED BY THE AUTOMATIC

UPDRS SCORING SYSTEM

Total RLA LLA S2S G

Total 1.00
RLA 0.77 1.00
LLA 0.74 0.63 1.00
S2S 0.58 n.s. n.s. 1.00
G 0.54 0.29 n.s. n.s. 1.00

of PD patients. From our viewpoint, UPDRSTotal is a concise
parameter representing the overall level of motor impairments
of a patient in the considered tasks.

In Table VII, the correlations between the UPDRSMean scores
in the various tasks and between them and UPDRSTotal are
shown. As in Section V-A, the Pearson’s correlation coefficient
(i.e., the r-value) is used, considering as significant only the
parameters with associated p-value ≤ 0.05. It can be observed
that the correlation between the UPDRS scores of each task and
the aggregate score is high (from 0.76 to 0.87), indicating that
UPDRSTotal significantly represents, in a concise way, the mo-
tor performance level measured by each task. The correlations
between pairs of tasks, instead, range from 0.75 (between RLA
and LLA, which are likely to be strongly correlated since they
refer to the same exercise) to 0.37 between RLA and S2S—this
is representative of the poor correlation between those tasks.
The latter result is expected because, from a medical view-
point, each UPDRS task aims to assess a specific PD symptom
and the “performance” achieved by patients may vary consis-
tently from one exercise to another [17], [29]. However, in some
cases, such as in the comparison between S2S and G UPDRS
scores, the r-value is still relevant because both tasks refer to
the same “macrogroup” of PD symptoms (in this case to the
“Gait/Posture” group) and may share some characteristics [17].

In the same way, in Table VIII, the correlation values (ob-
tained by pairwise comparisons of the UPDRS scores estimated
with the automatic UPDRS scoring system in each task, and
the associated UPDRSTotal) are presented. The obtained results
still show relatively high r-values (although slightly lower the
those of the neurologist-assessed cases) between tasks and the
UPDRSTotal score. Also, the correlation between RLA and LLA
remains high. For all the other pairs of tasks, instead, the cor-
relations become nonsignificant. This is due to the fact that, as
observed in Fig. 6(h)–(l), the automatically estimated UPDRS
scores are often underestimated and tend to overlap in corre-
spondence to the dominant UPDRS class of each task, making

TABLE IX
CORRELATIONS BETWEEN UPDRSM ean SCORES AND AUTOMATICALLY

ESTIMATED UPDRS SCORES

Total RLA LLA S2S G

0.79 0.74 0.54 0.55 0.60

Fig. 7. Bar plots representing the values of UPDRSTotal for all the trials
considering (a) the associated UPDRSM ean scores and (b) the UPDRS values
assigned by the automatic scoring system. Contributes by each task are shown
with different colors.

the linear dependence between the UPDRS values in the pairs
of tasks weaker.

For completeness, Table IX shows the correlations between
the neurologist-assigned and the automatically assigned UP-
DRS scores. In UPDRSTotal and RLA cases, the correlation is
high (0.79 and 0.74, respectively), while in the LLA, S2S, and
G tasks, lower values are observed (0.54, 0.55, and 0.60, respec-
tively), indicating a higher sensitivity to classification errors.

Finally, in Fig. 7, the UPDRSTotal values, calculated consid-
ering both (a) the UPDRSMean and (b) the trials’ scoring by the
automatic system, are shown. The trials are ordered in ascend-
ing order to highlight the data trend for increasing values of
UPDRSTotal . The contributions of the UPDRS scores assigned
to the single tasks, for each trial, are shown with different col-
ors. The (red) exponential curves, obtained by minimum mean
square error fitting, represent smoothed versions of the aggregate
scores’ trends. First of all, it can be noticed that, as mentioned
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TABLE X
REDUCTIONS IN THE AUC OF THE CDF OF eM COMPARING THE VARIOUS

PARAMETRIC CONFIGURATIONS WITH THE OPTIMAL ONE

Method

Number of features
or principal comp.

kNN kNN-PCA SVM SVM-PCA

LA
1 −2.79% −5.20% −3.76% −10.99%
2 Best LA −5.01% −5.31% −11.57%
3 −0.29% −7.23% −4.82% −12.72%
4 −1.25% −5.49% −5.59% −14.27%
5 −1.15% −4.53% −6.07% −14.94%

S2S
1 Best S2S −0.19% −2.92% −3.50%
2 −0.77% −2.92% −4.28% −4.48%
3 −0.97% −1.94% −2.92% −3.31%
4 −1.55% −1.55% −3.11% −5.84%
5 −1.36% −1.55% −4.67% −3.70%

G
1 −1.11% −4.46% −6.69% −8.36%
2 −0.37% −4.08% −5.20% −7.06%
3 Best G −4.83% −4.27% −9.47%
4 −0.19% −3.71% −3.71% −7.80%
5 −0.37% −4.27% −4.08% −8.00%

above, the automatic classification system tends to assign UP-
DRS scores in accordance to the dominant UPDRS class of each
task: for the G task, indeed, the majority of the scores is equal
to 1; for the S2S case, it is equal to 0; and for the LA task,
most of the trials are labeled with UPDRS scores equal to 1.5.
This behavior leads to generally lower values of UPDRSTotal
and to a more reduced variability in the aggregate score for the
automatic system, which is also emphasized by a lower slope
of exponential fitting curve in Fig. 7(b). Another important ob-
servation regards the contribution given by the S2S scores to
UPDRSTotal: it can be observed that it is almost negligible (be-
tween 0 and 0.5 in 90% of the trials) for aggregate scores lower
than 5, especially when the automatic system is used. These ex-
perimental observations confirm the effectiveness of the LA and
G tasks in representing the progression of motor impairments
in PD patients and also highlight the “nonchallenging” nature
of the S2S task for patients with mild symptoms. Nevertheless,
the UPDRS score assigned to the S2S task becomes very im-
portant to distinguish between Parkinsonians with moderate and
severe motor complications, when the UPDRSTotal is used as
evaluation metric.

VI. DISCUSSION

A. On the Performance of the Proposed Automatic
Classification System

The results obtained in Section V-A indicate clearly that, in
each task, some of the extracted kinematic features are strongly
related to the UPDRS scores. The parameters that have turned
out to be the most significant are the angular speed of execution
(Ω) for the LA task, the total duration (T ) for the S2S task, and
the stride length (SL) for the G task.

Regarding the automatic UPDRS scoring system, the results
presented in Section V-B have highlighted that the best classi-
fication performance is achieved using kNN as the classifier on

the selected kinematic features, using an increasing number of
features and increasing values of k for increasing complexity of
the tasks. The accuracy of the system ranges from 43% (in the
LA and S2S tasks) to 62% (in the G task), but the classifica-
tion error is lower than or equal to 1 in more than 94% of the
cases. The comparison between the evaluation error of the au-
tomatic system and the interrater variability of the neurologists
has shown similar performance trends, allowing us to consider
the accuracy of the proposed UPDRS scoring system accept-
able. Nevertheless, the automatic system tends to underestimate
the actual UPDRS scores and to concentrate the predicted UP-
DRS values in correspondence to dominant UPDRS classes.
This is not an intrinsic limitation of the proposed approach. In
fact, it could be overcome by considering a statistically more
significant dataset (i.e., a larger set of patients, with a more ho-
mogeneous distribution across all UPDRS classes). In addition,
increasing the number of neurologists involved in the evaluation
could reduce the bias in the assessment of UPDRS motor tasks.

In Section V-C, the comparative analysis of the correlations
suggests that the motor performance of PD patients may vary
consistently between different tasks, and thus, the associated
correlations may range from low (0.37, poor correlation) to
high (0.75, good correlation) values. The correlation between
UPDRS scores in distinct tasks becomes weaker (almost always
negligible) when the automatic system is considered. This is
another consequence of the fact that the automatic system tends
to bias the evaluation around the dominant UPDRS classes.
However, this result complies with findings in the medical liter-
ature [17], according to which the correlation between different
tasks is likely to be poor or moderate because each task has been
defined with the aim to evaluate a specific aspect or symptom
of the PD.

Finally, our results have shown a good correlation between
UPDRSTotal and all the UPDRS scores of all the tasks (slightly
lower correlations for the automatically assessed tasks). This
concise index can provide neurologists useful information about
the overall condition and the functional capabilities of patients,
integrating the evaluations made considering the single UPDRS
scores in each task. The contribution of the S2S task in the
aggregate score, for example, seems to be significant to distin-
guish patients with slight and mild symptoms from those who
manifest moderate or severe impairments. This observation can
be related to the characteristics of the movement typical of the
S2S task, which involves the simultaneous activation of several
control mechanisms (visual, posture, and balance) and worsens
with the progress of the disease. A further investigation on the
role of the S2S task goes beyond the scope of this work.

B. Application to Telerehabilitation

The characteristics of the designed system make it suitable for
real applications in the e-health scenario, such as telemedicine
systems for remote monitoring of PD. The objective recording
of motor fluctuations in a home environment throughout the
day, unlike a time-limited and “randomly timed” clinical evalu-
ation in an out-patient environment, could provide more reliable
information to neurologists and allow a more accurate assess-
ment and management of the symptoms. These goals could be
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Fig. 8. CDFs associated with different system configurations in the (a) LA, (b) S2S, and (c) G tasks. The best CDF is represented with a solid black line.

achieved, for example, implementing a software which guides
patients in performing different activities, such as the UPDRS
tasks for the evaluation of the PD symptoms or rehabilitation
exercises in the comfort of their own home and perhaps several
times per day. The information about the patient’s performance,
acquired by the BSN, could be evaluated automatically or sent
to the neurologist for further analysis and should be supported
by a concurrent video acquisitions which clinicians can check
to ensure that the exercises are performed correctly. With this
expedient, the supervision of a movement disorder specialist
would not be required, although the assistance of a relative or a
nurse could be useful to check that each task is executed safely.
A tool with these functionalities may bring several advantages
1) to patients, who would feel more comfortable and motivated
to do their exercises in a familiar environment and would save
time and money by avoiding to go to an ambulatory for each
visit, and 2) to clinicians and doctors, who could assist a larger
number of subjects and rely on more accurate and up-to-date
clinical pictures.

Since the e-health systems market is quite fragmented and
poorly standardized, the best strategy for a practical implemen-
tation of the proposed PD monitoring application could be to
integrate it into an existing e-health platform [30], [31], exploit-
ing the APIs provided by the platform. The integration could be
done, for example, at the gateway level (i.e., the level at which
the data recorded by the sensing devices are collected, analyzed,
and then forwarded through the web to the cloud-based core of
the e-health platform), by adding a proper software component
for the analysis of the data recorded by the IMU-based BSN. The
processed data could then be managed according to the platform
requirements, in the same way as the other data collected by the
platform.

C. Efficient Implementation

In the previous sections, we have designed and tested our
system in order to investigate its feasibility and performance,
without considering constraints in terms of computational power
or time consumption. In a real application scenario, as the
one discussed in Section VI-B, the system would be subject
to several limitations. An efficient design and implementation
would be thus required in order to reduce the complexity and,
consequently, the required computational resources, while still

retaining the ability to achieve good (although not optimal) per-
formance. To this end, we now evaluate and discuss the differ-
ences in performance between the optimal system configuration
and other “suboptimal,” but simpler, alternatives.

In Table X, the performance reduction (in percentage), ob-
tained by comparing the AuC of the CDF of the error eM asso-
ciated with the best parametric configuration with the AuCs of
“suboptimal” alternatives, are shown. The best configurations
obtained for the three tasks, previously shown in Table III, are
denoted in Table X as Best LA (AuC equal to 92.29%), Best
S2S (AuC equal to 90.96%), and Best G (AuC equal to 95.39%)
and highlighted in bold. Moreover, in Fig. 8, the CDFs associ-
ated with the kNN algorithm applied to an increasing number of
features (from 1 to 4) of the original data and the best configura-
tions obtained using 1) kNN and PCA, 2) SVM on the original
dataset, and 3) SVM on the “PCA-projected” data, are shown
to provide a visual counterpart of the data presented in Table X.
As shown in Section V-B, it can be observed that the best clas-
sification algorithm is the kNN in all the considered tasks. This
kind of classifier does not require an explicit training phase, as
it keeps all the dataset points (true neurologist-based scores) to
take decisions in the “online” phase. This so-called lazy learn-
ing approach, however, implies high memory consumption and
computational power to check all the training set elements for
each classification round. On the other hand, the SVM algorithm
achieves a performance similar to (actually, slightly worse than)
the one of the kNN method but with a more efficient learning
procedure. In fact, SVM, after a more complex training phase,
builds a compact classification model which can be used to sim-
ply identify the class of the test data. The relative reduction (in
percentage), considering the best configuration in the SVM case
for all the three tasks, is very limited, ranging from 2.92% (S2S
task) to 3.76% (LA task).

Another possible strategy to lower the complexity of the auto-
matic classification procedure is to reduce the dimensionality of
the features dataset used as input for the classifiers. Looking at
Table X, it can be observed that the performance reduction, con-
sidering only one or two features (original data) for the kNN
algorithm, is almost always below 2.80%. In the SVM case
as well, the performance degradation, with respect to the best
SVM case, using only one feature is minimal. Dimensionality
reduction in the presence of PCA tends to worsen the overall
performance with both kNN and SVM methods. From these
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considerations, it can be concluded that, although the best clas-
sification performance is achieved by the kNN classifier, the
SVM classifier, applied to features of the original dataset, could
be a more attractive choice for real-world applications, because
of 1) higher efficiency (in terms of computational resources
consumption) and 2) minimal classification accuracy reduction
with respect to kNN.

VII. CONCLUSION

We have proposed an innovative approach for kinematic char-
acterization of the LA, S2S, and G tasks through the same BSN
with three nodes, together with automatic UPDRS assessment
of the trials carried out by PD patients. Building on this uni-
fied approach, we investigated the intertask correlations and the
correlation, per task, between the proposed automatic scoring
system and the neurologists’ scoring. The main findings of our
analysis can be summarized as follows.

1) Different UPDRS tasks aims to assess distinct aspects
of the disease and show poor or moderate correlations
between each other, especially with the automatic classi-
fication system.

2) On the basis of the scores given by three expert neurol-
ogists, our results show that the performance of the pro-
posed automatic classification system compares favorably
with typical interrater variability.

3) The aggregate UPDRS score (UPDRSTotal) represents a
good concise indicator of overall level of patient’s motor
impairments.

4) The UPDRS scores associated with the LA and G tasks are
effective in representing the progression of motor impair-
ments in PD patients and contribute to the UPDRSTotal
score proportionally to the level of difficulty experienced
by the patient. The S2S task, instead, appears to be “non-
challenging” for patients with light or mild symptoms, but
its contribution in the aggregate UPDRS score becomes
important in identification of the subjects with most severe
impairments.

The integration of the proposed system in a real cloud-based
e-health platform for the development of a telemedicine appli-
cation for continuous monitoring of PD patients has then been
discussed, with focus on a possible system architecture and pos-
sible strategies for an efficient implementation of the proposed
functionalities.

The analyses and findings discussed in this paper can be
further investigated to overcome their current limitations. In
particular, the proposed automatic UPDRS scoring system can
be improved by considering a larger and, thus, statistically more
relevant dataset, together with clinical evaluations of additional
neurologists. Moreover, a motor performance evaluation of PD
patients in UPDRS tasks considering separately ON and OFF
states represents an interesting research direction.
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Evaluaciòn Neurologica Para Niños y Adolecentes”,
Monterrey, Mexico, from 2002 to 2003, and with the
Neurology Department, “Hospital Virgen del Rocio,”
Sevilla, Spain, in 2003. He is currently as an Assistant
with the Department of Neurology, “San Giuseppe”

Hospital, Clinical Research Institute “Istituto Auxologico Italiano,” Piancav-
allo, Verbania, Italy. His research interests include neurophysiology, movement
analysis in virtual reality environments, and applied medical informatics.

Giovanni Albani received the Degree in medicine
and surgery from the University of Pavia, Pavia,
Italy, in 1992, and completed the School of Neu-
rophysiopathology, Neurological National Institute
“Casimiro Mondino,” Pavia, Italy, in 1997.

He has been a Visiting Researcher with the
Hospital Clinico (1990) and Bellvitge, Barcelona,
Spain (1992), and Neurologische Clinic University
of Zurich, “Paul Sherrer Institute” Nuclear Medicine
Centre Villigen, Switzerland, and “Balgrist” Swiss
Paraplegic Zentrum, Zurich, Switzerland (from 1995

to 1997). After being Chief of Service of Neurophysiology in Clinical Hospital
“Beato Matteo,” Vigevano, Italy (1998–2005). He is currently an Assistant with
the Department of Neurology, “San Giuseppe” Hospital, Clinical Research In-
stitute “Istituto Auxologico Italiano,” Piancavallo, Verbania, Italy. His research
interests include movement disorders, movement analysis, neurophysiology,
and virtual reality.

Alessandro Mauro received the Medical Doctor degree from the faculty of
medicine and surgery, University of Torino, Turin, Italy, in 1978 and special-
ized in Neurology in 1982. He is currently a Full Professor of neurology with
the Department of Neurosciences, Medical School, University of Torino, Turin,
Italy, since 2007. Since 2000, he has been the Medical Director with the Uni-
versity Unit of Neurology and Neurorehabilitation, and with the Laboratory of
Neuropathology and Clinical Neurobiology, San Giuseppe Hospital—Istituto
Auxologico Italiano—IRCCS, Piancavallo, Oggebbio (VB), Italy. Since 2010,
he has been the Medical Director with the Centre of Sleep Medicine of the same
institution. His research interests include clinical neurology, neurogenetics and
molecular neuropathology of neurodegenerative diseases, neurorehabilitation,
and sleep disorders.

Prof. Mauro is an active Member of National and International Scientific
Societies, including the Italian Association of Neuropathology and Clinical
Neurobiology (AINPeNC) of which he had been the President since 2011 (cur-
rent past-president and a Member of the Board of Governors).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


