
Clinical Neurophysiology 125 (2014) 1533–1540
Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier .com/locate /c l inph
Real-time automated detection of clonic seizures in newborns q
http://dx.doi.org/10.1016/j.clinph.2013.12.119
1388-2457/� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

q GM Kouamou Ntonfo completed the statistical analysis.
⇑ Corresponding author. Address: Child Neuropsychiatric Unit, Neuroscience

Department, University of Parma, Via Gramsci, 14 – 43126 Parma, Italy. Tel.: +39
0521 703741; fax: +39 0521 704708.

E-mail address: carlotta.spagnoli@gmail.com (C. Spagnoli).
Francesco Pisani a, Carlotta Spagnoli a,⇑, Elena Pavlidis a, Carlotta Facini a, Guy Mathurin Kouamou Ntonfo b,
Gianluigi Ferrari b, Riccardo Raheli b

a Child Neuropsychiatric Unit, Neuroscience Department, University of Parma, Italy
b Department of Information Engineering, University of Parma, Italy
See Editorial, pages 1501–1503
a r t i c l e i n f o h i g h l i g h t s
Article history:
Available online 14 February 2014

Keywords:
Neonatal seizures
Automated detection
Newborns
Seizures
� In an attempt to overcome challenges in neonatal seizure recognition, automated detection systems
have been developed.

� Here we describe a new algorithm for real-time, low-cost clonic neonatal seizures detection based on
differential average luminance signal analysis.

� Encouraging sensitivity, specificity and discriminatory power suggest its wider use as a screening tool.

a b s t r a c t

Objective: The aim of this study is to apply a real-time algorithm for clonic neonatal seizures detection,
based on a low complexity image processing approach extracting the differential average luminance from
videotaped body movements.
Methods: 23 video-EEGs from 12 patients containing 78 electrographically confirmed neonatal seizures
of clonic type were reviewed and all movements were divided into noise, random movements, clonic sei-
zures or other seizure types. Six video-EEGs from 5 newborns without seizures were also reviewed. Vid-
eos were then separately analyzed using either single, double or triple windows (these latter with 50%
overlap) each of a 10 s duration.
Results: With a decision threshold set at 0.5, we obtained a sensitivity of 71% (corresponding specificity:
69%) with double-window processing for clonic seizures diagnosis. The discriminatory power, indicated
by the Area Under the Curve (AUC), is higher with two interlaced windows (AUC = 0.796) than with single
(AUC = 0.788) or triple-window (AUC = 0.728). Among subjects without neonatal seizures, our algorithm
showed a specificity of 91% with double-window processing.
Conclusions: Our algorithm reliably detects neonatal clonic seizures and differentiates them from either
noise, random movements and other seizure types.
Significance: It could represent a low-cost, low complexity, real-time automated screening tool for clonic
neonatal seizures.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Seizures are the most common symptom of acute neurological
disease in newborns (Volpe, 2001). The incidence rate, as reported
in population-based studies, corresponds to 2.6 per 1000 live births,
increasing to 11.1‰ for preterm neonates and to 13.5‰ for infants
with a birth weight lower than 2500 g (Ronen et al., 1999). Therefore,
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this may represent a common neurological sign in the neonatal
intensive care unit (NICU) and, furthermore, could carry an increased
risk of long-term morbidity (Mizrahi and Clancy, 2000).

Thus, neonatal seizures have to be promptly and accurately
recognized in order to establish timely treatments. Although
the traditional method of diagnosis is based on Video-
ElectroEncephaloGraphic (v-EEG) monitoring, EEG interpretation
is a time-consuming technique requiring specialised skills, not
always readily available in the neonatal intensive care setting (Nton-
fo et al., 2012). Therefore, automatic and real-time diagnostic equip-
ment able to reliably recognize neonatal seizures would be of
significant value (Kilbride et al., 2009; Shah et al., 2012; Alegre and
Urrestarazu, 2011). Automatic detection of seizures by analysing
EEG abnormalities has been considered (Deburchgraeve et al.,
2008; Cherian et al., 2011). Alternatively, the movements of the new-
born’s body could be acquired through a video camera and the corre-
sponding video signal properly processed, with the aim to detect the
newborn’s ‘‘unusual’’ movements (Ntonfo et al., 2012). The acquisi-
tion of the motion strength (through image processing techniques)
has been proposed as an expedient to detect the presence of neonatal
seizures (Kilbride et al., 2009). To achieve this objective, clonic
seizures were detected by analysing relevant motion trajectory fea-
tures for gesture recognition (Karayiannis et al., 2006a,b,c).

In this paper, we rely on the low complexity image processing-
based approach to the detection of clonic neonatal seizures
proposed in (Ntonfo et al., 2012). This method consists of the
extraction of an average differential luminance signal from
acquired videos, where the average is carried out over all pixels
of the difference between consecutive frames. Therefore, as
periodic body movements lead to periodic average luminance
signals, seizure detection reduces to periodicity detection. This
low-complexity algorithm naturally leads to the implementation
of low-cost camera-based diagnostic apparels to assist clinical
practice (Kouamou et al., 2011, Ntonfo et al., 2012).

The aim of this study is to apply in a clinical setting a new real-
time algorithm (Ntonfo et al., 2012) for clonic neonatal seizures
detection, based on a low complexity image processing approach
extracting the differential average luminance from videotaped
body movements.

2. Methods

This study was conducted on video-EEG recordings collected in
the neonatal seizures database elaborated by the Child Neuropsy-
chiatry Unit of the Neuroscience Department at Parma University.
This database collects all neonatal seizures of newborns consecu-
tively admitted to the NICU of Parma University-Hospital between
June 2001 and August 2012. In our Unit all newborns at high risk of
seizures, on the basis of predisposing factors (such as birth asphyx-
ia, sepsis, meningitis, metabolic disorders, malformations, intra-
ventricular hemorrhage, or periventricular leukomalacia or
cranial ultrasounds) or presenting clinical signs suggestive of sei-
zures, routinely receive serial video-EEGs during the neonatal
period.

During data collection, neonatal seizures were defined accord-
ing to Volpe’s classification, modified by Lombroso, as subtle, clo-
nic, tonic, and myoclonic and had to be associated with EEG
changes. Polygraphic v-EEGs were obtained at the bedside in the
NICU. Depending on the infants’ head size, 21 or 10 cerebral elec-
trodes were applied according to the 10–20 International System,
and electrocardiogram, lateral eye movements, chin electromyog-
raphy activity, and abdominal respiration were the other physio-
logic variables most frequently monitored, with a technician
present throughout the recording. The recordings continued until
a complete cycle of wakefulness, quiet and active sleep were ob-
tained or, when the state changes were not clearly distinguishable,
for at least 60 min. EEG ictal discharges were selected according to
the following criteria: (1) clear beginning and end, (2) lasting more
than 10 s, and (3) evolution in frequency and morphology. All
behavioural changes and specific clinical correlates were noted.
Clinical seizures without v-EEG correlates were not considered.
Clonic seizures were selected through v-EEG analysis, by expert
medical personnel. Each video recording has the following charac-
teristics: (a) video sample frequency: 25 frames/s; (b) video resolu-
tion: 320 � 240 pixels.

We initially identified 58 patients having experienced neonatal
seizures and being monitored with at least one v-EEG. As 44 of
them had more than one v-EEG, the total number of reviewed v-
EEGs was 208, with a mean number of v-EEGs/patient of 3586
(range: 1–16). Eighty-three v-EEGs had to be rejected as non-ictal
(seizures had been detected in previous EEGs, either with or with-
out concomitant video monitoring) and five EEGs had no video
(either partly damaged, or having the patient almost completely
covered or hidden from the camera), whereas 24 v-EEG recordings
belonging to 18 patients had to be excluded due to the presence of
only electrographic seizures.

Whenever more than one seizure type was present, only for the
aims of this study, we classified the video according to the most
prevalent seizure type observed.

For the purposes of the present study, according to the semeio-
logical classification (Lombroso, 1996) of neonatal seizures, we se-
lected for further evaluation only videos containing clonic seizures
as the single predominant seizure type, due to previous observa-
tions (Karayiannis, 2005a, 2006a, b, c) where they seemed to be
the seizure type with the most clearly identifiable motor pattern.
This allowed us to finally identify 23 videos from 12 patients con-
taining 78 seizures of clonic type, for a total video length of
18:03:48 (mean video duration 00:47:07, range 00:02:42–
01:06:40), total seizure duration of 00:46:56 (mean seizure dura-
tion of 00:00:36, range 00:00:04–00.03:18) suitable for further
analysis carried out by means of the video signal processing algo-
rithm already published (Ntonfo et al., 2012). In particular, the ap-
proach proposed (Ntonfo et al., 2012) is the core processing
algorithm of a software tool which takes a video at its input and
analyses it offline. The 23 videos were entirely reviewed and move-
ments were labelled as either:

� clonic;
� other seizure types;
� noise (whenever changes in the room lightning, staff manoeu-

vres/movements in front of the camera or around the baby dis-
turbed the recording), in order to exclude these latter from
analysis.

From visual inspection 502 noise events for a total length of
04:44:08 (mean 00:00:34, range 00:00:01–00:33:32) and 668 mo-
tor events representing either neonatal seizures of non-clonic type
or other active body movements for an overall duration of
04:15:22 (having rounded up 7 myoclonic events lasting less than
1 s each, mean duration 00:00:23, range 00:00:01–00:07:28) were
also recognised. Of these latter, 201 represented clinical seizures of
non-clonic type, corresponding to a total duration of 02:18:20, and
a mean duration of 00:00:41 (ranging from a minimum of 00:00:10
by definition and maximum duration of 00:07:13). The remaining
467 motor events represented either random movements or brief
ictal events, for example myoclonic jerks, of less than 10 s duration,
for an overall length of 01:57:02, mean duration 00:00:15, range
from 00:00:01 to 00:07:28.

The whole videos were subsequently analysed using the afore-
mentioned image processing algorithm to check for sensitivity (de-
fined as the ratio between true positives and the sum of true
positives and false negatives) (Karayiannis et al., 2005b) and spec-
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ificity (defined as the ratio between true negatives and the sum of
true negatives and false positives) (Kouamou et al., 2011), in cor-
rectly classifying clonic seizures with respect to spontaneous
movements or other seizure types.

As described previously (Ntonfo et al., 2012), the proposed vi-
deo processing algorithm has various operational conditions,
depending on how consecutive frames are processed. In particular,
it can operate considering: (i) the use of disjoint consecutive frame
windows, where each window lasts 10 s (this operational condi-
tion is denoted as ‘‘single window’’): (ii) the use of two interlaced
windows, with 50% overlapping between consecutive windows;
(iii) the use of three consecutive interlaced windows (with 50%
overlap between consecutive pairs). For the three above-men-
tioned cases, specificity and sensitivity of the periodicity detection
algorithm (Ntonfo et al., 2012) characterized by a ‘‘decision thresh-
old’’ (a parameter between 0 and 1) which allows to discriminate
the potential presence of a clonic event. The use of successive
interlaced windows increases the reliability of seizure detection,
as single seizures could manifest across disjoint windows and,
therefore, could be missed if single windows were analysed in a
disjoint fashion. In fact, even if we assume that a clonic seizure oc-
curs when periodicity is detected across multiple (overlapped)
windows, the movements of the body part affected by seizures
might change across consecutive overlapping windows, making
the estimated values of the movement period vary on a per-win-
dow basis (Fig. 1).

In order to quantify motion, we consider a generic video signal
composed of a sequence of frames sampled with period T, where a
frame at discrete time i is an array of matrices of M � N pixels
containing red, green, and blue (RGB) values. The corresponding
grey-scale matrix is the luminance of the considered frame. As
Fig. 1. On the left: Single window-based processing with partial window overlap. (a) Fir
based processing, with groups of three interlaced windows. (a) First group. (b) Second g
an illustrative example of a grey-scale frame sequence, a few video
frames relative to the recording of a newborn affected by clonic
seizures, which manifest themselves as movements of the legs,
are shown in Fig. 2, first line. The grey-scale frames have then to
be properly filtered so that the output frame sequence is represen-
tative of the moving parts of the infant body. In this study, we use a
simple differential filtering method: an output frame is given by
the difference of two consecutive frames.

The resulting output video signal, (Fig. 2, second line), is still a
grey-scale video signal in which the movement parts are high-
lighted. As one can see, each pixel has a luminance value that var-
ies in a grey scale, typically with 256 (0–255) grey levels.
Considering all M � N pixels, a relatively long monitoring time
would generate a huge quantity of data to process. In order to limit
complexity, we move from a large range of 256 possible values of
luminance for a pixel to a binary scale. To this end, it is very impor-
tant to choose the quantization threshold value above which the
brightness of a pixel will be mapped into a ‘‘1’’ (which corresponds
to the maximum luminance value of 255). An appropriate choice of
the quantization threshold minimizes the conversion error and
contributes also to the reduction of the effects of other spurious
readings that occur even in the absence of movement. The result-
ing sequence after binary-scale conversion is shown in Fig. 2, third
line. After conversion to the binary scale, there may still be many
pixels that are highlighted (converted to ‘‘1’’ in the binary scale)
even if they do not correspond to moving body parts. Therefore,
they act as noise for the detection of the body movements. In order
to reduce the remaining nuisance, we use one of the fundamental
operations in morphological image processing: erosion. In erosion,
every object pixel that is touching a background pixel, for example
the object border, is changed into a background pixel. This opera-
st window. (b) Second window. (c) Third window. On the right: Multiple window-
roup. (c) Third group.



Fig. 2. Stepwise image processing approach. First line: grey-scale conversion. Second line: difference filtering. Third line: binary conversion. Fourth line: erosion.
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tion is helpful to eliminate irrelevant details from the image and is
based on a kernel, such as a square of m �m pixels. After erosion,
some noisy (i.e., bright and isolated) pixels may still exist but their
number is negligible with respect to the number of pixels of the
moving parts. The degree of erosion can be adjusted by choosing
the value of m or the number of times the frame is processed. Obvi-
ously, erosion leads to the loss of a part of the signal which is, how-
ever, negligible. The resulting image sequence, after the sequence
in Fig. 2 (third line) undergoes a single erosion process with
m = 3 (Fig. 2, fourth line).

Thus we define the average luminance signal or average motion
signal as the function whose value at time i is given by the number
of highlighted pixels in the corresponding frame. At this point, the
key idea of the proposed approach to neonatal seizure detection re-
sides in the observation that, in the presence of clonic seizures, the
characteristic periodicity of body movements appears in the aver-
age motion signal. Therefore, the problem of clonic seizure detec-
tion reduces to the detection of the presence of periodicity in the
motion signal.

In Fig. 3a, the average motion signal, extracted from a video
of a newborn affected by a neonatal seizure, is shown. A periodic
pattern clearly emerges. For comparison, in Fig. 3a, the EEG and
the electromyographic (EMG) signals corresponding to the same
seizure occurrence are shown. In the latter subfigure, a periodic
pattern appears as well. To make the correspondence clearer, in
Fig. 3b, we also directly compare the Fp2-C4 (EEG) signal with
the average motion signal. This illustrative example suggests
that the proposed approach exhibits a good agreement with
the predictions based on the EEG/EMG analysis. Further details
have been described in a previous publication (Ntonfo et al.,
2012).
The same process as above was also applied to video-EEGs of
neonates not affected by neonatal seizures, used as controls. The
selection was based on the following inclusion criteria: absence
of both electroclinical and electrographic seizures (during the
recording as well as anamnestically), normal background EEG,
absence of pathological movements on video-EEG. The polygraphic
video-EEGs were performed because one newborns presented
perinatal asphyxia, one was reported as having episodes of apnoea,
one was a preterm newborns of 31 weeks of gestational age and
the last two were irritable with startle and tremor. Videos were re-
viewed and noise (as described above) and movements were noted
by medical personnel. We considered 6 videos from 5 neonates,
corresponding to a total duration of 04:34:29 (mean: 00:45:45,
minimum 00:30:51, maximum 00:58:46), during which a total of
426 movements were recorded for a total duration of 01:19:02
(mean duration 00:00:11, range 00:00:01–00:02:22), whereas 99
noise events (mean duration 00:00:08, range 00:00:01–00:00:49)
for an overall duration of 00:14:00 were also noted.
2.1. Statistical analysis

The performance of the proposed detection system is analysed
considering a binary classification test, i.e., classifying the results
into two groups: presence of clonic seizures in the video of the
newborn (positive) and presence of random movements (nega-
tive). Therefore, the following situations may occur: clonic seizure
correctly diagnosed (True Positive, TP); random movement cor-
rectly diagnosed (True Negative, TN); random movement incor-
rectly diagnosed as seizure (False Positive, FP); and clonic seizure
incorrectly diagnosed as random movement (False Negative, FN).



Fig. 3. Motion signal and corresponding EEG and EMG signals. Average motion signal, extracted from a video of a newborn affected by a neonatal seizure (a). In (b), the EEG
and the electromyographic (EMG) signals corresponding to the same seizure occurrence are shown. To make the correspondence clearer, in Fig. 3(a), we also directly compare
Fp2-C4 (EEG) signal with the average motion signal. This illustrative example suggests that the proposed approach exhibits a good agreement with the predictions based on
the EEG/EMG analysis.
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Receiver operating characteristic (ROC) curves were con-
structed to measure the performance of our system in detecting
clonic seizures.

Statistical analysis was performed using the Statistical Package
for the Social Sciences (Version 17.0.1. Chicago, IL: SPSS Inc.; 2008).
3. Results

The considered approach, outlined above, has been tuned in
order to guarantee good sensitivity and specificity values. The
ROC curves obtained are shown below (Fig. 4): they express the
varying ratio between TPs (sensitivity) and false alarms (1-speci-
ficity) for single, double or triple window, respectively. In partic-
ular, an optimized value of the decision threshold has been
determined by means of ROC curves, more specifically, the best
value of the decision threshold has been selected as the one
which minimizes the distance between the corresponding (1-
specificity, sensitivity) point and the optimum point (0,1) on the
ROC curve. With the considered set of videos (with frame rate
equal to 25 frame/s) and video processing algorithm’s window
length (set to 10’’), the best value of the decision threshold is
0.5. It can be observed that with all three considered algorithms
the discriminatory power, indicated by the Area Under the Curve
(AUC) parameter, is always higher than 0.7 (see Table 1a–c and
Fig. 4). Furthermore, the best accuracy is achieved with two
interlaced windows (AUC = 0.796), whereas the accuracy with
the single-window (AUC = 0.788) and triple-window (AUC = 0.728)
algorithms is lower.

In detail, our algorithm performance in discriminating between
clonic events, noise or other body movements (being either differ-
ent ictal phenomena or spontaneous movements) shows a maxi-
mum sensitivity of 86% with single-window processing
(corresponding specificity: 63%), a sensitivity of 71% (correspond-
ing specificity: 69%) with double-window processing and finally
a sensitivity of 48% (corresponding specificity: 78%) with triple-
window processing (Table 1a–c).

As long as videos from seizure-free newborns are concerned,
having set the threshold at 0.5 as above, the specificity of our algo-
rithm reaches 76% with a single-window approach, 91% with a



Fig. 4. ROC curves. Legend: AUC: Area under the curve.

Table 1
Results for the clonic seizures group.

a
Single-window, with decision threshold set to 0.5
TP = 70 FP = 624
TN = 1085 FN = 11
SE = 86% SP = 63%

b
Double-window, with decision threshold set to 0.5
TP = 35 FP = 265
TN = 601 FN = 14
SE = 71% SP = 69%

c
Triple-window, with decision threshold set to 0.5
TP = 19 FP = 103
TN = 377 FN = 20
SE = 48% SP = 78%

TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Table 2
Results from the control group.

a
Single-window, with decision threshold set to 0.5
TP = 0 FP = 177
TN = 590 FN = 0
SE = N.A. SP = 76%

b
Double-window, with decision threshold set to 0.5
TP = 0 FP = 41
TN = 431 FN = 0
SE = N.A. SP = 91%

c
Triple-window, with decision threshold set to 0.5
TP = 0 FP = 7
TN = 311 FN = 0
SE = N.A. SP = 97%

N.A.: not available. TP: true positive; TN: true negative; FP: false positive; FN: false
negative.
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double-window approach and 97% with a triple window approach
(Table 2a–c).
4. Discussion

Automatic detection systems have been developed to overcome
limitations in neonatal seizure identification mainly linked to the
difficulties in clinical recognition and the need for highly specia-
lised expertise to correctly interpret v-EEG. Alternative strategies
already used in clinical practice, for example amplitude-integrated
EEG, have proven very useful but unable to completely substitute
conventional v-EEG, due to various drawbacks, such as the use of
a limited set of electrodes, the presence of a time-compressed trace
(carrying a non-negligible risk of missing brief seizures), the pres-
ence of false positives due to artefacts and the need for formal
training for correct use and interpretation, thus requiring resources
which are not always available (Shah et al., 2012).
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Essentially, two different kinds of answers to this relevant clin-
ical problem have arisen from research: one based on the develop-
ment of algorithms combining different types of biological signals,
like electrocardiogram, respiration, reduced EEG channels (Faul
et al., 2005; Greene et al., 2007) and one based on motion analysis
(Karayiannis et al., 2006a, b, c). The two types of monitoring
systems have different, possibly complementary, advantages and
limitations.

We are presenting a new method for real-time, video record-
ing-based clonic seizures recognition, analysing luminance
changes determined by motion patterns. The proposed approach
was tested on 23 v-EEGs recorded on 12 patients and containing
a total of 78 clonic seizures and 668 motor events characterized
either by seizures of non-clonic type or spontaneous body move-
ments, with three different approaches, namely with one window
or two/three interlaced (with 50% overlap) windows. In all cases,
each window is 10 s long. From the results shown in Table 1, it
can be stated that the proposed approach with single window
processing guarantees the highest performance for the detection
of pathological events, showing the highest sensitivity, 86%. This
result is due to the fact that single window processing analyses
the periodicity over a short interval (i.e., a 10 s window), so
that even short clonic events can be detected. Unfortunately,
with single-window processing isolated almost-periodic random
movements may be labelled as pathologic, thus reducing specific-
ity, which equals 63%. On the contrary, the use of interlaced
windows excludes clonic events which are too short to cover
the duration of three successive overlapping windows, thus
reducing the sensitivity (which lowers to 48%), but also prevents
isolated almost-periodic movements to be labelled as seizures,
thus increasing the specificity to 78%. From these results, it can
also be observed that the type of processing (single or multiple
window-based) has a strong impact on the sensitivity, whereas
the specificity tends to be less affected.

AUC results are very encouraging, as they show that the perfor-
mance of our algorithm in classifying motor events in neonates is
accurate and worth testing in a wider population of newborns to
confirm the present data. It could also be experimentally tested on-
line together with v-EEG monitoring.

Furthermore, our algorithm performance in subjects without
neonatal seizures shows positive results, with a specificity ranging
from 76% when using a single-window to 97% when using a triple-
window approach (Table 2), confirming that this method reliably
classifies motor and environmental phenomena other than clonic
seizures.

We think that this new automatic detection system shows
many advantages: (i) it has a low cost, as it is based on the use
of a video camera, thus encouraging a more widespread monitor-
ing of high risk newborns in different clinical settings; (ii) it is
non-invasive, as no electrodes need to be attached to the patient,
thus allowing long-term monitoring and causing minimal interfer-
ence with intensive care procedures or devices. Furthermore, one
of the most relevant differences from previously described video-
processing techniques, usually requiring long monitoring periods,
is the short latency of the decision, giving the opportunity of a
real-time non-EEG dependent diagnosis, with immediately avail-
able and readily interpretable information, even by non-experi-
enced personnel, as the program will simply alert staff of the
high probability of an on-going seizure.

One of the limitations of this study is the recognition of clinical
events only, so that electrographic seizures with no clinical corre-
late would be missed, especially in the case of administration of
therapies suppressing movements (curare) or favouring electro-
clinical uncoupling (barbiturates, benzodiazepines). Therefore,
the proposed approach is mainly conceived for early identification
of high-risk newborns allowing an immediate low-cost prelimin-
ary diagnosis based on clinical aspects of neonatal seizures. It is
not intended to completely replace EEG, which is still the gold-
standard technique for the diagnosis of neonatal seizures. In other
words, an automatic video camera-based system could be used to
permanently monitor every patient in the neonatal care unit,
whereas EEG would be required for a definitive diagnosis only
when the system indicates, with high probability, the potential
presence of seizures, encouraging a rational use of resources.

In the future, it could be either used independently from EEG or
integrated into more complex automated detection systems,
jointly processing EKG, Continuous Functional Monitoring (CFM),
respiration and saturation signals, in order to detect both clinical
and subclinical seizures, especially in some subsets of patients, like
paralysed newborns.

For the time being this system has only been tested with clonic
seizures, as they show the highest rhythmicity. It must be
acknowledged that this seizure type represented 38.8% of all the
seizures occurring in the analysed videos. Nevertheless, our algo-
rithm has proven to correctly identify 71% of the clonic events in
our cohort, confirming its potential role as an integrative tool in
neonatal care monitoring. Moreover, in the future, its sensitivity
and specificity in subtle or myoclonic seizures could be tested,
potentially increasing the spectrum of applicability of our
algorithm.

If this strategy was to be confirmed as valuable, the vast major-
ity of electroclinical neonatal seizures in both term and preterm
neonates would be covered (Scher, 1993), significantly increasing
correct recognition of potential acute neurological disease in new-
borns. We would also like to highlight that this program has been
conceived as a screening tool to alert clinical staff and correctly se-
lect patients to be monitored and timely treated.

Clonic seizures present as repetitive, rhythmic jerking of muscle
groups in the face, limbs, or trunk, with slow rate of repetition, usu-
ally at 1–4 Hz (Mizrahi and Kellaway, 1987). When compared to
non-epileptic repetitive abnormal movements, like clonus or tre-
mor, they are consistently slower and more rhythmic (Mizrahi,
2012). This means that periodicity characteristics are available for
correct differential diagnosis between clonic seizures and similar
pathological movements by our motion analysis algorithm. It could
be argued that clonic jerking is one of the most readily recognisable
seizure types in the newborn, and in fact it is reported that a per-
centage as high as 70% of neonatal seizures recognised by trained
nurse staff show a clonic pattern (Murray et al., 2008). Nevertheless,
the same study demonstrated that only 65% of all neonatal seizures
were identifiable on clinical grounds only, probably due to their
brief duration and focal location, thus rendering under-diagnosis
quite likely in the busy intensive care unit setting, as recognition
by nursing/medical staff would require the presence of dedicated
one-to-one staff on a 24 h basis. Furthermore, staff recognition skills
can vary significantly among different institutions.

Clonic seizures recognition also carries important implications
for etiologic diagnosis, as they are frequently associated with local-
ised brain injury, mostly of vascular origin, e.g. stroke (Selton et al.,
2003).

An even more relevant data outlined in the aforementioned
article (Murray et al., 2008) is that electroclinical seizures corre-
spond to only 18.8% of the total seizure burden. This means that
continuous monitoring, which is a very expensive and time-
consuming technique, should be used to correctly assess these
infants. We therefore think that the key point is to correctly select
infants for further conventional monitoring, and this is when this
motion analysis technique would be most beneficial.

The observed results are very encouraging and suggest that this
approach could lead to the implementation of low-cost camera-
based devices to assist neonatal medical personnel for early diag-
nosis of neonatal seizures.
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