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Abstract

In this paper, we consider possible solutions for noncoherent decoding of concatenated codes
with spectrally efficient modulations. Two main classes of schemes are considered. A first
class is obtained by concatenating parallel coding schemes with differential encoding. A
second class considers serially concatenated coding structures and possible schemes derived
from turbo trellis coded modulation (T-TCM), which do not employ differential encoding.
In the first case, at the receiver side we consider separate detection and decoding, while in
the second case we consider joint detection and decoding. The major problem connected
with such an iterative decoding procedure is that taking into account an augmented channel
memory leads to an intolerable trellis size, and hence to an impractical decoding complexity.
Reduced-complexity techniques suited to iterative decoding become fundamental, and we
consider a recently proposed state-reduction technique. This way, the performance of a
coherent receiver is approached, by keeping the number of receiver states fixed.

This paper was presented in part at the 2nd International Symposium on Turbo Codes & Related Topics,
Brest, France, September 2000, and the International Conference on Communications (ICC’01), Helsinki,
Finland, June 2001.
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1 Introduction

Since their appearance, concatenated codes with iterative decoding [1, 2] have stimulated
a great research interest because of their performance close to the Shannon limit. Due to
the growing data flow in future communication systems, where concatenated codes could
be used, it will be more and more important to achieve high bit-rate transmissions, i.e.,
merging large coding gains with spectral efficient modulations. Hence, a very promising
research area is related to the combination of concatenated codes and iterative decoding [1, 2]

with modulation schemes which allow bandwidth efficiency, such as trellis coded modulation

(TCM) [3].

Possible combinations of concatenated codes and spectrally efficient modulations have
been considered in the literature. They are usually referred to as turbo trellis coded mod-
ulation (T-TCM) schemes. The first scheme in the literature appeared in [4], where the
output bits of a turbo code are mapped, after puncturing, to a phase shift keying (PSK)
or quadrature amplitude modulation (QAM) constellation. Another example of “pragmatic
approach” to spectrally efficient modulations for turbo coded systems has been proposed
in [5]. In [6] an “ad-hoc” approach has been considered, by using Ungerboeck codes [3] as
component codes and puncturing the modulated symbols. In [7] possible schemes to jointly
optimize the parallel concatenated code and the mapping are proposed. In [8] a T-TCM
scheme identical to that proposed in [6] is described and a suitable application of soft-output
Viterbi algorithm (SOVA) to multilevel modulation is considered. The versatility of T-TCM

schemes, besides the performance, is the main concern in [9].

All the proposed schemes [4]-[9] consider transmission over an additive white Gaussian
noise (AWGN) channel. It becomes a difficult task to extend the proposed structures to chan-
nels having memory. Bandpass transmission channels can be modeled as noncoherent in the
sense that the transmitted signal undergoes an unknown phase rotation. This static phase

rotation is responsible for an unlimited memory, at least in principle. Recently, noncoherent
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iterative decoding schemes for concatenated codes have been proposed based on suboptimal
soft-output decoding algorithms suited for noncoherent channels [10]. The interest in nonco-
herent decoding algorithms to be used in iterative processing arises because phase-tracking
schemes may deliver an unreliable phase estimate or require use of pilot symbols to avoid
tracking losses for very low values of signal-to-noise ratio typical of concatenated coding
schemes. Furthermore, noncoherent schemes exhibit inherent robustness to phase and fre-
quency instabilities such as those caused by phase noise and uncompensated time-varying
frequency offsets in local oscillators and Doppler shifts in wireless channels. These problems
become more critical with an increased constellation size, as in the schemes considered in
this paper. Moreover, since there is no inherent performance degradation in noncoherent
decoding, provided the channel phase is sufficiently stable [11], an extension of the schemes
proposed in [10], where binary phase shift keying (BPSK) was considered, to structures with

an increased spectral efficiency, is challenging and of interest.

In this paper, we propose possible solutions for noncoherent decoding of concatenated
codes with spectrally efficient modulations. We consider two main classes of schemes. A
first class is obtained by concatenating parallel coding schemes (turbo codes) with a differ-
ential code. In this case, at the receiver side we consider separate detection and decoding:
a noncoherent differential detector is followed by a coherent turbo decoder. A second class
is obtained by considering serially concatenated coding structures [2, 12] and parallelly con-
catenated coding schemes derived from the structures proposed in [7]. At the receiver side
we consider joint detection and decoding for the component decoders which directly receive
the channel outputs (the inner decoder for serially concatenated codes and both component
decoders for parallel schemes). The basic noncoherent decoder uses the noncoherent soft-
output algorithm proposed in [10], where a parameter N is related to the assumed phase
memory. In order to achieve satisfactory decoding performance, N must be sufficiently large.
Nonetheless, since the memory and computational requirements grow exponentially with

N, it becomes essential to apply reduced-state techniques, such as those recently proposed
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in [13].

In Section 2, we extend the considered soft-output noncoherent decoding algorithm to
M-ary modulations. In Section 3, we describe a suitable state reduction technique. In
Section 4, we consider spectrally efficient schemes which employ separate detection and
decoding at the receiver side, whereas in Section 5 we propose schemes which employ joint
detection and decoding at the receiver side. Numerical results are presented in Section 6

and conclusions are drawn in Section 7.

2 Noncoherent Soft-Output Decoding

In this section, we extend the noncoherent soft-output algorithm proposed for binary mod-
ulations in [10] to M-ary modulations. The algorithm will be described in the special case
of trellis coded modulation [3], where each information symbol is related to more than one
bit and the output symbol is mapped to a multilevel complex symbol. For the formulation,
we consider the case of a recursive trellis code [3, 14]. Generalizations to other codes, in

particular differential encoding, are straightforward.

We assume that a sequence of independent M —ary information symbols {a;} undergoes

trellis encoding. Each information symbol a; corresponds to a group of m = log, M bits,

ile., ap = (a,(gl), s a,(gm)). These information bits are coded into m, output bits, through a
recursive encoding rule. The M,—ary output symbol (cg), . c,(cm")), where m, = log M,,

is then mapped to a complex symbol ¢, belonging to the considered constellation. For
systematic binary Ungerboeck codes of rate n/(n+1) [3], M = 2" and M, = 2"*'. However,
considering puncturing of the systematic output bits [7], M, may be less than 2"*'. The
sampled output {z;} of a filter matched to the transmitted pulse is a sufficient statistic for
noncoherent decoding [15]. Each sample may be expressed as xj, = cxe’® + ny,, where {n;}

are samples of a zero mean complex-valued white Gaussian noise process and 6 is a random
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variable uniformly distributed in (—, 7]. We denote by xI = {z;}_, the entire sequence of
received samples or observations, where K is the transmission length. Similarly, we denote
by alf = {a;}<, and c& = {¢,}X, the entire sequence of information and code symbols,
respectively. We now extend the algorithm introduced in [10], relative to the case of a
recursive systematic code (RSC), to a TCM code. Note that in this case we must substitute

a single information bit with an M-ary information symbol a; carrying log, M bits.

Denoting by u; an encoder state, the decoder state, which takes partially into account

the channel memory, may be expressed as

Sk = (Gk—1, k-2, -+ -, Gk N41, [ N+1) (1)

where NN is an integer. To account for the possible presence of parallel transitions, it is
convenient to identify a trellis branch e, by its beginning state Sy and driving information
symbol a;. In fact, two states Sy and Si,; could be connected by parallel transitions driven
by different information symbols. We showed in [10] that a good approximation of the a
posteriori probability (APP) of symbol a; can be determined on the basis of the considered
observations x{*. Denoting this value by P{ay|x{ '}, it may be written as

Plagx{'} =~ P{ax} (Z) Vi (ew) o (ex) B (ex) P{S™ (ex) } (2)

ex:a(er)=ay,

in which a(ex) denotes the information symbol driving transition e; and

wler) = p(xb_yi lex)

| Nl ) , 1 vt
(s
(st

- ‘Xk N+1 ek) (4)

P\ Xp41 ‘Xk N+176k) (5)

(673 (ek) é

Brley) =

*

where [-]* is the conjugate operator and o denotes proportionality. The sum in (2) is ex-
tended over all transitions of epoch k driven by information symbol a;. The probability

density function 7i(e), relative to a particular trellis transition, depends on the coding
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structure. P{a;} and P{S~(ex)} denote the a priori probabilities of information symbol ay
and state S~ (eg), respectively, where S~ (e;) denotes the beginning state of transition e;. In
the following we will consider the expression of probabilities and probability density func-
tions in the natural or logarithmic domain depending on the specific case, with the implicit

assumption that the two formulations are equivalent.

The performance of iterative decoding at low bit error rate (BER) can be improved con-
sidering bit-interleaving [16]. Hence, equation (2) has to be modified in order to provide
the a posteriori probabilities of single bits. Assuming that the information bits are inde-
pendent within each symbol, we can consider P{a} = P{a\"}--- P{a\™} = Hzlp{a,(f)}.
In the case of an iterative decoding process, where P{ag)} are derived from input extrinsic
information, this assumption is just an approximation. Equation (2) may be extended as
follows

Pl =~ Pl X wlean(en) Bl IS (e} IIPL}  (6)
ex:a(ey)D=al’ I#i

where a(e;)® denotes the i-th bit of the information symbol driving transition e.

Similarly to the well-known algorithm by Bahl, Cocke, Jelinek, and Raviv (BCJR), the
probability density functions ay(ex) and fi(ex) can be approximately computed by means of
forward and backward recursions [10]. For this reason, we refer to the considered noncoherent
soft-output algorithm as noncoherent BCJR-type algorithm. Denoting by S*(ex) the final

state of transition e, we may write

o (er) | +(Z)_ L )wk(ek1,6k)ak1(6k1)P{a(€k1)} (7)
Br(ex) = > Orr1(€ks ery1) Brri (enr1) Plalersr)} (8)

er4+1:ST(er)=S"(er+1)

where

Urlep—1,ex) = p(Tp-n ‘X]]szJrlaek—laek)

!This assumption is motivated by the presence of bit interleaving.
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)

N *
D im0 Th—iCh

1
{ 25N ]” + |CkN|2} Io (
x exp{ —

202 IO (ﬁ Z;v:BI xk_jcz_j‘)
Or(er—1,ex) = plag ‘Xzi}vaekflaek)
lkl? + [enl? ) To (2 [0 zaich )
oXexp | =T —— - (10)
7 Io (52 [0 a-scicy )

and a (ej,_) denotes the information symbol “lost” in the transition e;_y, i.e., the oldest infor-
mation symbol in the initial state S~ (ej_;). The couple (S*(ex_1),a(ex_1)) uniquely identi-
fies S~ (ep_1). With the present definition of state Sy, and for a recursive code, @ (ex_1) = ap_y.
In (7), the sum is extended over all the transitions of epoch k£ — 1 that end in the initial state
of branch e;. The sum in (8), relative to the trellis section at epoch k+1, may be interpreted
similarly. Proper boundary conditions have to be considered in order to correctly initialize

the forward and backward recursions.

3 Reduced-State Algorithm

Assuming that there are (, possible encoder states, the decoder states are (; = (.M
For example, if (, = 16, M = 4 and N = 5, then (4 = 4096. In order to make non-
coherent decoding with spectrally efficient modulations practical, a complexity reduction
suitable to the proposed soft-output decoding algorithm is needed. We consider a recently
proposed method which is an extension of reduced-state sequence detection (RSSD) [17]-
[19] to BCJR-type algorithms [13]. The basic idea is reducing the number of states and
building a “survivor map” during the forward recursion (run first) to be used in the back-
ward recursion and in the calculation of a posteriori probabilities. By defining a reduced
state as s = (agp_1,-.- - .- y Qk—Q+1, Mk—0+1), With @ < N, a transition ¢ in the reduced-
state trellis is associated with the symbols (cx_g41,...,cx). We showed in [13] that a sur-
vivor may be associated with each transition ¢, in the reduced-state trellis. We may de-

fine by E,(Cllm(ek) the sequence of [ transitions reaching epoch & — m along the survivor
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of transition €L, i.e., (ék—m—l—l—la Ceey ék—m) = (ﬂk—m—l—Q—I—Qa &k—m—l—Q—l—Qa ey &k—m—Q—l—l) =
(Ch—m—t1-Q+2,- -+ Ch—m—@+1). The transitions é,_;, encoder state [ix_,_;_¢g12, information
symbols a;_; and code symbols ¢;_; in E,(Clzm(ek) are those associated with the path history

of transition €;. Hence, the probability density function 7, may be correctly computed,

making use of the built survivor map, as

- - 1 !
N-Q N-Q
(BT D (), e) = p (X ya [ ’(ew,ek)wp{‘ﬁi [Ixm~|2+|ckz-|2]}
=0
e =LY o o] Y )
20% =, - - *\ o2 '

In the reduced state trellis, in analogy with equation (2), we wish to approximate the a

Q-1 N-1

* A%
D ThiChoi T D Tl
1=0 j=Q

posteriori probability as

Plaglxf} ~ 3 (BN (er), en))cuen) Brler) P{s™ (ex) } (12)

ep:a(ey)=ay

where the two quantities a and S, in the reduced-state case, are defined as follows

anler) = p(xb N |xbyar ) (13)

Beler) = p (%t [%E worrer) - (14)

(1>

For a recursive code we use the following approximation for the a priori probability of state

sk [10): P{sp} ~ 197" P{as_;}.

If Q < N, then ay(€x), as defined in (13) for the reduced-state case, is different from oy (ey)
as defined in (4) for the full-state case. Similarly, Si(ex) # Bk (ex). However, recursions for
the computation of a and S may be found in the reduced-state case as well. The survivor
map is built during the forward recursion and employed in the backward recursion and to
evaluate vy in (11). Referring to the original formulation proposed in [10], the extension of the
previously introduced general recursions (7) and (8) to (13) and (14) is not immediate. We
now show the mathematical derivation which leads to the forward recursion in the reduced-
state trellis. More precisely, assuming the survivor map is known up to epoch k£ —1, we show

how to extend it to epoch k.
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The detailed mathematical derivation of the forward recursion in [10] for the full-state
case cannot be applied in this case. In fact, considering in the reduced-state case the same

approach followed in [10], we should compute «y as follows

agler) = p(xl N‘Xk N+17€k)

_ k—N—-1 |k k
= ZP( ‘Xk—Naak*QaGk)p(xka ‘Xk—N-l—laak*Qaek)

Ak —Q

: P{aka ‘6k7X£—N+1} . (15)

Assuming @@ < N—1 (state reduction), a_¢q depends on xf_ ;. Hence P {ak,Q ‘ek, X§_ N1 }
# P {ax_q}, making it impossible to evaluate this probability. Another approach has to be

considered. More precisely, we may express ay as follows

p (xF lex)
p (ko ler)
ap o P (X'f |ax—q, Gk) Playqler}
p (ko ler)
Diap_o P (le_N_l ‘Xﬁi}\n Tk, Ok—Qs Gk) p (Xﬁ_N lak—q, ek) Plax_olex}

— . (16
b (< v ler) (16)

op(er) = p(xl N‘Xk N+176k)

Since P{ax_g|er} = P{ak—g}, observing that e,_; is uniquely determined by (ax—_q, €x) and

using as in [10] the approximation

k—N—1]| k-1 - k—N—1]| k-1
p (Xl ‘Xk:—Nvl‘kaak—Qvek) ~p (X1 ‘Xk—Naek—l) (17)

we obtain the following approximate forward recursion in the reduced-state trellis

Yo P (le ‘Xk N €k— 1) D (xﬁ,N |ar—q, €k) Plak—qlex}
p (Xk—N+1 |€k)

Day_ o Xk—1 () p(xk  lak- Qaek)P{ak Q)

(X —N+1 |€k)

ag(€r) =~

where ay_1(€x_1) = p (x’f_N_1 ‘x’,j:}v, Gk_1) in agreement with (13).

The problem in the computation of (18) is the evaluation of the two probability den-

sity functions p (X]]sz lak—q, ek) and p (x’,ijH |ek) In fact, since () < N, each of the two
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probability density functions should be correctly computed by averaging over previous in-
formation symbols. Since at epoch k the survivor of each transition ¢, ; is known and since
(ak—q, €x) = (€x—1, €x), we replace p(x§_y |lak—qg, €x) = p(x§_y |éx—1, € ) with the probability

density function p(xf ‘EIEJX;Q)(ek_l), €x_1, €k ), obtaining the following modified recursion

Yo k-1 (€r—1)P(XE_ ‘EgQ_Q)(Gk—ﬂ, ek—1, k) Plar—q}
p (XllszJrl |5k)

ak(ek) = (19)

We now express the forward recursion (19) in the logarithmic domain as follows

Oék(ék) é In (6773 (Gk)

= ln{ Z exp [dkfl(ﬁkfl) +1Inp(x;_y ‘El(c]ir;Q)(kal)a €k 1, €k)

Ak —Q

+In Plag o]} — I p(x_y i1 lex) (20)

and using the “max-log” approximation [26] we obtain

dk(ek) ~ max{ak 1(ek 1)+lnp(xk N‘Ek ZQ)(ek,l),ek,l,ek)—|—lnP{ak,Q}}

akQ

~np(x o ). (21)

The choice of the survivor associated with €, may be based on this max operation,
which can be correctly carried out since the quantities ay_i(ex—1) and In P{ax_q} are known
and Inp(x¥ ‘E,(C]X;Q)(ek_l), €k—1, € ) can be computed. The term Inp(x}_y_; |€x) does not
affect the max operation and, as a consequence, the survivor selection, but it affects the
exact value of ay(e;). We denote by €7 the previous transition of the survivor of transition
€r- Equivalently, the symbol a;*¢ may be considered. Once the transition €% has been
associated with e, we replace In p(x}_y_; | ) with the following probability density function

in the logarithmic domain

1 &2
IWMMMﬂWWWM%N_TZWM”Wﬂ
=0

1 = 2 ~ 2
+53 [z + e 4?] +InTo

Zxk iCh; + Z Tp— ]ck =

2
20 icoo1

i=Q-1

) (22)
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where the expression x ~ y denotes that x and y are monotonically related quantities. The

resulting forward recursion finally assumes the following form
_ N—-Q
anler) = an () + Inp(xf_y | BT (D), et er)

1)/ _max max max
—Inp(xj_ N+1‘Ek 2Dy, e 17€k)+lnp{a o)

e N2+ G
o (e 4 PENEONE g

202
—In Ig (

The obtained forward recursion in the reduced-state trellis exhibits some analogy with the

+Z$k96k]
J=Q-1

|

Zxk iChi T Z Tp—jCrj ) +1nP{am“‘”} (23)

j=Q-1

corresponding forward recursion in the full-state trellis [10]. This indirectly confirms the
validity of the proposed intuitive approximations. The backward recursion can be similarly
obtained with the further simplification that the survivor map is now already available
because previously determined during the forward recursion. More precisely, remarking that

(€x, ax) uniquely identifies €1, the backward recursion may be written as follows

Br(er) = max{Ber(enpn) +mp(ef Ty [T () €, enin) +In Plags}}
N—
—Inp(xf_y i1 |ET D (er), k)
k+1 mazx

) o
= B (D) + np(xf ey [BLY D ler), e, €707 ) + In P{af

N-Q
—Inp(f iy B D er), )

2 mazx |xk+1|2 + |Ck+1|2 1 e * al Ak
~ Bk-i—l (ek-i-l) + 902 +In Ig ? Z Th41—-iChy1—4 + Z l‘k-l'l—jck-i-l—j
1=0 j=Q-1

1 Q-2 i N—-1 .
— In Ig (; Z Tp41—-iChy1—4 + Z $k+1_jck+1_j + In P{ak a:z:} (24)
i=1 j=Q-1

A problem connected with trellis coded modulations (especially when the code is recursive
and M > 2) is the initialization of the recursion in the reduced-state trellis. Even if this
aspect may be neglected when considering continuous transmissions, it is very important
in packet transmissions, since interleaving operates on the entire packet, and hence it is

not allowed to discard the first decoded symbols. The survivor map is built during the
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forward recursion, but the survivors should be already available at the very first steps of this
recursion. Hence, an initial transient period for the forward recursion may be considered,
where a fictitious phase memory parameter is increased by 1 at each step to reach the final
value N as detailed in Appendix A. A valid alternative is considering a sequence of N pilot
symbols at the beginning of the transmission, in order to correctly initialize the forward
recursion. The transmission efficiency is not appreciably reduced as the overhead is less

than 1% with the packet lengths considered in the numerical results.

4 Separate Detection and Decoding

The first considered class of spectrally efficient schemes uses coding structures based on the
concatenation of a T-TCM block followed by an inner differential encoder. At the receiver
side, a noncoherent differential detector computes a posteriori bit probabilities which are
passed to the following coherent turbo decoder as logarithmic likelihood ratios. The intro-
duction of the inner differential encoding allows to obtain noncoherently non-catastrophic

coding schemes [15, 20].

The scheme proposed in [4] is basically a systematic turbo code of rate 1/3 followed by a
puncturer and a mapper. An immediate extension of this scheme to noncoherent decoding
is shown in Fig. 1, where a sequence of independent bits {u;} undergoes systematic turbo
encoding. The code bits {b;} at the output of the turbo encoder are punctured according to
some puncturing pattern [7]. The systematic and code bits, after being serialized, are inter-
leaved. After interleaving they are grouped into m = log, M bits and mapped into M —ary
complex symbols, undergoing differential encoding. In all block diagrams describing the pro-
posed schemes, we associate solid lines with binary symbols and dashed lines with complex
symbols. Furthermore, for notational consistency with Section 2, we use the symbols a; and
¢, to denote the input and output symbols, respectively, of the component encoders which

are noncoherently decoded according to the described algorithm. Note that the symbols ay
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are rendered independent by the interleaver, as required by the algorithm in Section 2.

A similar scheme derived from one of the structures proposed in [7] is shown in Fig. 2.
This scheme is basically composed of two parallelly concatenated Ungerboeck codes, and
puncturing on information bits is considered before mapping. In this figure, we consider a

sequence of couples of information bits (u,gl), u,(f)). Both encoders receive this sequence and

generate two sequences of coded bits (b,(gl), b,(f)), but the systematic bits are punctured sym-
metrically in the two codes, as shown in Fig. 2. We simply consider differential encoding after
mapping. Strictly speaking, symbols a; are not independent as assumed in the derivation
of the noncoherent decoding algorithm. However, we observed by simulation that breaking
this dependence by means of an interleaver (both bit-wise before mapping or symbol-wise
after mapping) does not yield substantial performance improvement. This behavior may be

related to the implicit puncturing considered in the outer turbo code, which, in a certain

sense, decorrelates the bits carried by a modulated symbol.

5 Joint Detection and Decoding

In this case, we consider coding structures which do not employ differential encoding. The
proposed schemes perform noticeably well in the case of ideal coherent decoding, i.e., assum-

ing perfectly known phase at the receiver side.

Serially concatenated codes [2] have been proven to have remarkable performance (even
better than that of turbo codes) with very simple component codes. However, this perfor-
mance is obtained at the expense of the spectral efficiency of the code. For example, with
rate 1/2 inner and outer convolutional codes, the overall rate is 1/4. In order to increase the
efficiency of the serial code, we consider an inner Ungerboeck code, as shown in Fig. 3. A
similar structure was also considered in [12], where an outer Reed-Solomon code and an inner

Ungerboeck code were used. Various combinations of serial codes are considered, where the
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outer convolutional code is a simple non-recursive code [2, 28], whereas the inner Ungerboeck
code may be a recursive systematic code [14] or a non-recursive one [15]. It is worth noting
that interleaving is bit-wise. In fact, the coded bits generated by the outer encoder are seri-
alized and then interleaved. Fig. 3 refers to the case of an outer rate 1/2 code and inner rate
2/3 code. After interleaving, the bits feed the inner encoder in groups of two. The receiver is
based on an inner noncoherent decoder of the inner Ungerboeck code, which gives a posteri-
ori probabilities of the systematic bits of each modulated symbol (bits a,(;) and a,(f) in Fig. 3)
by using the proposed reduced-state noncoherent algorithm. These soft-outputs are passed,
as logarithmic likelihood ratios, to the outer coherent decoder, which acts as a soft-input
soft-output module [21]. Obviously, the overall serial code is noncoherently non-catastrophic

depending on the characteristics of the inner Ungerboeck code. Hence, particular care has

to be taken in choosing this code as a noncoherently non-catastrophic code [15, 20].

Besides serially concatenated coding structures, it is interesting to explore the possibil-
ity of deriving parallelly concatenated coding structures suitable to combined noncoherent
detection and decoding. The scheme proposed in [6], employing PSK as modulation format
at the output of each encoder, cannot be used when considering a noncoherent decoding
strategy. In fact, because of puncturing, the proposed BCJR-type noncoherent decoding
algorithm fails, since the metrics (9) and (10) reduce to 1 every other time epoch. Hence,
every other transition in the decoder trellis the forward and backward recursions cannot be
correctly extended. This problem obviously affects the reduced-state version of the algorithm
described in Section 3 as well. On the contrary, the scheme proposed in [7] may be directly
employed for transmissions over noncoherent channels, provided that the punctured com-
ponent Ungerboeck codes are noncoherently non-catastrophic. With respect to the scheme
proposed in [7], the only proposed modification consists of considering a single bit interleaver
between the two Ungerboeck codes, instead of considering a different bit interleaver for each
bit stream, as shown in Fig. 2. The input bit streams are serialized in a single bit stream

before being interleaved. The interleaved bit stream is then parallelized and undergoes trellis
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encoding. We noticed that using a single interleaver instead of separate interleavers for each
bit stream improves the performance, at least at high signal-to-noise ratios [16]. This is
intuitively related to the fact that low reliability values associated with the couple of bits
embedded in the same symbol may be better spread over the whole bit sequence. Hence, the
receiver has a structure similar to that of a turbo decoder, where each component decoder
uses the reduced-state noncoherent soft-output decoding algorithm previously introduced.
This scheme may be considered as a direct extension to spectrally efficient modulations of

the noncoherent schemes proposed in [10] for binary modulations.

In Fig. 4, we consider, for simplicity, the case of a turbo trellis encoder where each
of the component Ungerboeck encoders receives a sequence of couples of information bits
(a,gl), a,(f)) and generates a parity bit (c,(f) in the upper encoder and d,‘f) in the lower encoder).
Puncturing may be considered on one of the two information bits (symmetrically in the two

encoders): in the upper encoder the systematic bit c,(cl) = ag) is transmitted, whereas in the

lower encoder the bit d,(cl) = a/?

i 18 transmitted.? As shown in Fig. 4, after interleaving the

(2)

two original bit streams have to be separated in order to consider proper puncturing on a; ”.
This is possible if the single interleaver is odd-odd, i.e., if it maps the bits stored in odd
positions (bits {ag)}) in odd positions, so that they can be recovered after interleaving. In
this case, the single odd-odd interleaver is equivalent to two separate interleavers. A QPSK

symbol is generated at the output of each component encoder. The spectral efficiency in this

case is 1 bit per channel use.

Although the above scheme with QPSK has remarkable performance with coherent de-
coding, i.e., with an AWGN channel, we observed that the performance noticeably degrades
when considering noncoherent decoding, because of the catastrophicity of the code. This
motivates the following modification. The spectral efficiency remains the same by elimi-

nating puncturing, hence transmitting an 8-PSK symbol at the output of each component

2The time instant of the second encoded bit is denoted by i because of the presence of interleaving.
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encoder. In this case, both systematic bits at the input of each encoder are mapped to the
corresponding generated complex symbol (in Fig. 4 we indicate by dotted lines the supple-
mentary connections which must be considered). This means adding redundancy, at the cost
of decreasing the robustness of the modulation constellation. In the coherent case, the per-
formance worsens, whereas in the noncoherent case it improves. Combining modulation and
coding when dealing with a noncoherent channel cannot be carried out as in the case of an
AWGN channel, because the noncoherent catastrophicity must be taken into account. More-
over, based on an exhaustive search using different constellation mappings, we noticed that
the receiver performance in the noncoherent case does not seem to be appreciably influenced

by the particular mapping rule (Gray, reordered, etc. [7]).

The last considered parallel scheme deserves some remarks about its noncoherent catas-
trophicity. By reducing the modulation constellation from 8-PSK to QPSK, the code prop-
erties, in terms of modulated output symbols, may change. Hence, a code may not be simul-
taneously noncoherently non-catastrophic with and without puncturing. An open problem,
currently under study, is the design of a good code for such a trasmitter structure when
considering puncturing and QPSK. An important aspect to be considered is the rotational
invariance of the component codes, taking into account puncturing and mapping. The meth-
ods proposed in [22]-[24] may be considered. A relevant analysis concerning the rotational

invariance of T-TCM schemes is addressed in [25].

6 Numerical Results

The performance of the receivers considered in Section 4 and Section 5 is assessed by means
of computer simulations in terms of BER versus E,/Ny, Ej, being the received signal energy
per information bit and Ny the monolateral noise power spectral density. All the BCJR-type
algorithms (noncoherent and coherent) considered in the proposed schemes apply the max-

log approximation [26]. The generated extrinsic information is weighted by a coefficient as
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described in [27]. The value of this coefficient, obtained by trial and error, is about 0.3 in

all schemes.

In Fig. 5 the performance in the case of the code shown in Fig. 1 is presented. The code
is that proposed in [4], with internal random 32 x 32 interleaver. The component RSC codes
have generators G; = 37 and G5 = 21.3 The turbo code has rate 1/2: every 2 information bits
(m = 2) two code bits (m—m = 2) are retained, with the puncturing pattern considered in [4].
After random bit interleaving, groups of m = 4 bits are mapped into a 16-QAM symbol. It
is important to observe that the particular chosen mapping (Gray, reordered, natural, etc.)
does not seem to noticeably influence the performance of the noncoherent system. This may
be due to the presence of bit interleaving followed by differential encoding. The spectral
efficiency of this system is 2 bits per channel use. The inner noncoherent differential detector
at the receiver side applies the reduced-state noncoherent decoding algorithm proposed in
Section 2 by reducing the number of states to 16. The phase parameter N is set equal to 4
or 6. For comparison, we also show the performance of the equivalent coherent system (i.e.,
considering differential encoding after the turbo code). In all cases the iterations are carried
out in the outer coherent turbo decoder, and the numbers of considered iterations are 1, 3
and 5. Tt is evident that there is a slight improvement in the performance of the noncoherent
system by increasing N from 4 to 6, and the loss, with respect to the noncoherent decoding,

is about 1 dB at BER below 10~ *.

In Fig. 6 we show the performance in the case of noncoherent decoding of the code
proposed in Fig. 2. The component 16-state recursive Ungerboeck codes of the turbo code
have generators hg = 23, hy = 16 and hy = 27 [7], and there are two different 32 x 32 random
bit-interleavers. We consider a 16-QAM modulation format. The system has an efficiency

of 2 bits per channel use. As for the previous scheme, in this case also we consider the inner

3In the case of binary codes, for example RSC codes, we refer to the generators of the code as {G;},
following the octal notation in [1, 28]. When referring to Ungerboeck codes, we indicate the generators of

the code as {h;}, following the octal notation in [7].
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noncoherent detector with the number of states reduced to 16 and phase parameter N equal
to 4 or 6, respectively. For comparison, we also show the performance of the equivalent
coherent system. The numbers of iterations are 1, 3 and 6 in all cases. The performance loss

of the noncoherent system with N = 6 with respect to the coherent system is about 1 dB.

In Fig. 7, the performance in the case of the serial scheme shown in Fig. 3 is presented.
The outer code is a non-recursive non-systematic convolutional code, with generators G; =7
and Gy = 5 and rate 1/2. The inner Ungerboeck code is recursive and systematic, with
generators hy = 23, hy = 16 and hy = 27 [7]. The inner interleaver is a 32 x 32 pseudorandom
bit-interleaver. The bits at the output of the inner code are mapped to an 8-PSK symbol,
considering reordered mapping [7]. The spectral efficiency of this system is 1 bit per channel
use. The inner noncoherent decoder at the receiver side applies the reduced-state noncoherent
decoding algorithm proposed in Section 2. Various complexity reduction levels, denoted by
the couple (N, Q), are considered. The phase parameter N ranges from 4 to 16, while @ is
kept fixed to 2 (64 states). For comparison, we also show the performance of the equivalent
coherent system, i.e., assuming perfect knowledge of the channel phase at the receiver side.
In all cases, the number of considered iterations is 10. As one can see, for increasing values
of the phase parameter N the performance of the noncoherent scheme approaches that of

the coherent scheme. For N = 16 the performance loss at a BER of 10~? is around 1 dB.

In Fig. 8, we consider again a coding structure as given in Fig. 3, with the same inner
Ungerboeck code of Fig. 7 but considering an outer non-recursive non-systematic convolu-
tional code, with generators G; = 15 and G5 = 13 and rate 1/2. Hence, we replaced an outer
8-state code with a 16-state code. As in the previous case, the noncoherent inner decoder is
identified by the couple (N, Q). The phase parameter N ranges from 4 to 16, and @ = 2.
The numbers of considered iterations for both the coherent and noncoherent systems are
10. For N = 16 the performance loss of the noncoherent scheme with respect to that of the

coherent scheme is only 0.5 dB at a BER of 10~*.
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In Fig. 9, we consider a serial structure as in Fig. 3 given by an outer rate 1/3 non-
recursive code with 16 states and generators G = 17, Gy = 06 and G3 = 15 [28] and an
inner rate 3/4 non-recursive code with 8 states and generators G; = 040, G5 = 402, G5 = 240
and G4 = 100 [15]. The inner random interleaver is bit-wise, with length 1536. The spectral
efficiency is 2 bits per channel and we consider a 16-QAM modulation format at the output
of the inner code. The inner noncoherent decoder at the receiver side applies the reduced-
state noncoherent decoding algorithm proposed in Section 2.* Various complexity reduction
levels, denoted by the couple (N, @), are considered. The numbers of iterations are 1, 5 and

10 in all cases, and a comparison with the equivalent coherent system is made.

In Fig. 10, we show the performance in the case of noncoherent decoding of the code
proposed in Fig. 4. The component 16-state recursive Ungerboeck codes of the proposed
scheme have generators hy = 23, hy = 16 and hy = 27 [7] and there is a single 64 x
64 pseudorandom bit-interleaver [1]. At the output of each component encoder both the
systematic bits are retained and mapped, together with the parity bit, to an 8-PSK symbol.
Reordered mapping is considered in this case as well. The system efficiency is 1 bit per
channel use. The two component noncoherent decoders have a number of states reduced to
64 and phase parameter N equal to 4 and 6, respectively. For comparison, we also show
the performance of the equivalent coherent system. The numbers of iterations are 1, 3 and
6 in all cases. Considering N = 6 and 6 decoding iterations, the performance loss of the

noncoherent scheme with respect to the coherent scheme is about 1.5 dB.

We now compare the performance of the considered schemes under the same spectral
efficiency. In fact, schemes with spectral efficiency of both 1 and 2 bits per channel use have
been analyzed. As it appears from Figures 5, 6, and 9, for schemes with spectral efficiency

of 2 bits per channel use, the coherent receivers show a BER of 10~* at a signal to noise

4The derivation carried out in Section 2 in the case of a recursive code may be easily extended observing
that in this case a(ek,l) = (a,(gl_)Q, a§€2_)3, agl). Hence, in this case the symbol a(ek,l) is not an information

symbol, but it is composed by bits coming from information symbols relative to different time instants.



Ferrari, Colavolpe, Raheli  Noncoherent iterative decoding of spectrally efficient... 20

ratio between 5 and 6 dB. The correspoding noncoherent schemes exhibit a performance
degradation of about 1 dB. As shown in Figures 7, 8, and 10, for schemes with spectral
efficiency of 1 bit per channel use, the performance of coherent receivers is between 3 and
4 dB, whereas the noncoherent schemes exhibit a performance loss of less than 1 dB. As
one can see, the performance of each scheme is strictly related to its spectral efficiency and
is roughly independent of the specific detection strategy (separate or joint). Taking into
consideration the performance/complexity trade-off, it turns out that the simple schemes

with separate detection and decoding may offer a good solution.

7 Conclusions

In this paper, we presented possible solutions for noncoherent decoding of concatenated
codes with spectrally efficient modulations. We proposed a soft-output noncoherent decoding
algorithm and showed that in the case of high order constellations it is essential to apply
complexity reduction techniques in order to obtain implementable systems. A state-reduction

technique suited to BCJR-type algorithms was successfully applied.

We considered a first class of schemes given by the concatenation of a parallel concate-
nated scheme with a differential encoder, and a second class constituted by serially concate-
nated schemes and a parallelly concatenated coding structure without differential encoding.
In the first case we considered separate detection and decoding, and in the second case we
considered joint detection and decoding. We demonstrated the performance for various val-
ues of phase memory parameter N, number of trellis states and length of transmitted bit
packets. In all cases, the performance of the noncoherent scheme approaches that of the

equivalent coherent scheme for increasing value of the parameter N.

The described separate and joint decoding schemes offer different levels of performance

and complexity. The schemes based on separate detection and decoding have a low complex-
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ity, since the inner noncoherent detector accounts for differential encoding only. In particular,
these schemes show a lower complexity with respect to the schemes where joint detection and
decoding of trellis codes is considered. In terms of the performance/complexity trade-off, it
turns out that the simple schemes with separate detection and decoding may offer a good

solution in many situations.

Appendix A

In this appendix we show how the considered soft-output noncoherent algorithm presented in
Section 3 has to be modified in the initial transient period, i.e., for £ < N. The superscript
()" is used in the following to denote the value of previously introduced quantities during

this initial transient period.

For k < (O, we may write®

Plaglxi'} = Plax} > (k) B(el) P{s" ()} (25)

el a(el )=ap
where €, = sj ., = (ar,...,ax), s" (¢,) = (a1,...,a,_1) and
A
M) = p(xf \ L)
-1 ) ) 1 k—1
= exp{ Z {|1‘k—z| + |Ck—z'| ]}Ig (; Z xk_ic}';fi ) . (26)
=0 i=0

The probability density function 8! may be computed by means of a simplified backward

recursion:
A
o) 2 o (e )
Ve (51)
Z e (€rs1) %P{akﬂ} (27)
k1 Vi ()

As it can be noticed from the derivation above, for k € {1,Q — 1} the probability density

function «ay does not appear in the a posteriori probability (25) (exactly computed without

5For simplicity ,we consider the formulation relative to the a posteriori symbol probability. The extension

for a posteriori bit probability is straightforward.
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approximations) and survivors are not needed. In fact, according to the definition of ay, a

correct initialization at epoch @ (in the logarithmic domain) for the forward recursion is

0 if sg such that py =0
0g = ’ 1 (28)
—oo if sg such that py # 0.

Hence, for k € {Q +1,..., N}, the forward recursion may be written as

aler) = anai(eger) + Inp(xf [ ELS2 (), e, )
—Inp(x; ‘Ekk @- 1)(6’,?0‘{’) el e ) + In P{am‘”} (29)

and the a posteriori symbol probability is obtained as follows:
K (k—Q) 2
Plaglxi'y = > (B (), en))an(er) Beler) IT Plar-i} - (30)
er:a(e)=ap i—=1
The backward recursion is easily extended in a similar fashion, based on the survivor map
built during the forward recursion. More precisely, the backward recursion may be approxi-

mated as follows:

Bk(ek) ~ max {Bk—l—l(ek—l—l) + lnp k+1 ‘Ekk—i—l Q)(Ek), €Lk, 6k+1) + 111 P{ak+1}}

—In p(x7 ‘Ekkﬂ Q)(ek),ek), (31)

where (ag, €) uniquely identifies €.

For £ > N the general formulation previously introduced holds.
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Figure 1: Berrou-type turbo code followed by differential encoding on the modulated sym-
bols.
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Figure 2: Benedetto-type turbo code followed by differential encoding on the modulated
symbols.
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Figure 3: Serial concatenated code constituted by an outer convolutional code and an inner
Ungerboeck code.
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Figure 4: Benedetto et al. turbo trellis coded scheme with 8-PSK modulation. Puncturing

may be embedded in the component Ungerboeck codes to consider QPSK modulation.
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Figure 5: Performance of the system proposed in Fig. 1. The considered numbers of iterations
are 1, 3 and 5 in all cases.
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Figure 6: Performance of the system proposed in Fig. 2. The considered numbers of iterations
are 1, 3 and 6 in all cases.
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Figure 7: Performance of the system proposed in Fig. 3. The outer code has 8 states and
the number of iterations is 10 in all cases.
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Figure 8: Performance of the system proposed in Fig. 3. The outer code has 16 states and
the number of iterations is 10 in all cases.
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Figure 9: Performance of the system proposed in Fig. 3. The modulation format is 16-QAM
and the number of iterations is 1, 5 and 10 in all cases.
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Figure 10: Performance of the system proposed in Fig. 4. The modulation format is 8-PSK
and the number of iterations is 1, 3 and 6 in all cases.



