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On the Application of Factor Graphs and the
Sum–Product Algorithm to ISI Channels

Giulio Colavolpe and Gianpietro Germi

Abstract—In this paper, based on the application of the
sum–product (SP) algorithm to factor graphs (FGs) representing
the joint a posteriori probability (APP) of the transmitted symbols,
we propose new iterative soft-input soft-output (SISO) detection
schemes for intersymbol interference (ISI) channels. We have ver-
ified by computer simulations that the SP algorithm converges to a
good approximation of the exact marginal APPs of the transmitted
symbols if the FG has girth at least 6. For ISI channels whose
corresponding FG has girth 4, the application of a stretching
technique allows us to obtain an equivalent girth-6 graph.

For sparse ISI channels, the proposed algorithms have advan-
tages in terms of complexity over optimal detection schemes based
on the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm. They also
allow a parallel implementation of the receiver and the possibility
of a more efficient complexity reduction. The application to joint
detection and decoding of low-density parity-check (LDPC) codes
is also considered and results are shown for some partial-response
magnetic channels. Also in these cases, we show that the proposed
algorithms have a limited performance loss with respect to that can
be obtained when the optimal “serial” BCJR algorithm is used for
detection. Therefore, for their parallel implementation, they rep-
resent a favorable alternative to the modified “parallel” BCJR al-
gorithm proposed in the literature for the application to magnetic
channels.

Index Terms—Factor graphs, intersymbol interference (ISI)
channels, iterative detection, low-density parity-check (LDPC)
codes, partial-response channels, sum–product (SP) algorithm.

I. INTRODUCTION

I N recent years, the use of factor graphs (FGs) to rep-
resent complicated global functions of many variables

and the marginalization of these functions by means of the
sum–product (SP) algorithm have attracted the attention of
many researchers in the communications area [1]. Originally
devised to describe the decoding algorithm for low-density
parity-check (LDPC) codes [2]–[5], this framework has been
extended to other probabilistic models [1], [6], [7]. It can be
used not only to reinterpret existing results, but also to derive
new detection/decoding strategies [8]–[10], or to devise new
applications for existing algorithms [11].

In this paper, we consider the application of this frame-
work to detection over a known intersymbol interference (ISI)
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channel. By representing on an FG the joint a posteriori prob-
ability (APP) mass function of the transmitted symbols and
applying to this graph the SP algorithm, we derive a simple
soft-input soft-output (SISO) detection algorithm that can be
used for turbo equalization [12]. The same approach and the
resulting detection algorithm is also considered in [13]. How-
ever, from the observation that in general the FG describing
the channel has cycles,1 the authors of [13] conclude that the
derived algorithm is suboptimal and therefore they discard
this approach. On the contrary, we have verified by extensive
computer simulations that when the girth of the graph is at least

, the performance is practically optimal. In addition, in the
case of graphs of girth , we apply the SP algorithm to a new
FG obtained by transforming the original one. The resulting
new algorithm has a negligible performance loss with respect
to optimal detection.

The proposed algorithms have a complexity which depends
on the number of nonzero channel interferers only. As a conse-
quence, with respect to the Bahl–Cocke–Jelinek–Raviv (BCJR)
algorithm [14], whose complexity depends on the channel
memory, the proposed algorithms are more suited for sparse
ISI channels, i.e., channels characterized by a large memory but
a small number of interferers, as may occur in high-frequency
transmissions due to multipath [15]. For these channels, other
algorithms have been proposed based on different approaches,
to obtain the same goal [15], [16].

Another advantage over the BCJR algorithm consists of the
intrinsic parallel structure of the SP algorithm with flooding
schedule [17], allowing very-high-speed detection. This aspect
is very important when an LDPC code is used and turbo equal-
ization is performed. In fact, if detection is performed by using
the proposed algorithms, an overall graph taking into account
both the code and the channel model can be built, allowing com-
bined detection and decoding in a fully parallel manner without
an increase in complexity with respect to separate detection and
decoding. On the contrary, when the BCJR algorithm is used
for detection, combined detection and decoding is not possible
and the serial structure of the BCJR algorithm prevents from the
possibility of a parallel implementation of the receiver.

In the technical literature on magnetic recording, for appli-
cations with LDPC codes, mainly the BCJR algorithm is con-
sidered for detection [18]–[22]. In order to overcome the above
mentioned limitations, several schemes have been proposed in
which the BCJR is run only once or one time each iterations
of the LDPC decoder [20]–[22], although it has been shown that
the best schedule is obtained for [13]. To allow parallel

1A cycle is a closed path in the graph and its length is defined as the corre-
sponding number of path edges. The length of the smallest cycle is the girth of
the graph.
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joint detection and decoding, in [13] a version of the BCJR al-
gorithm with parallel schedule has been proposed. As already
mentioned, the proposed detection schemes represent an alter-
native solution to these problems.

Finally, with respect to the BCJR algorithm, the complexity
of these novel detection algorithms can be reduced more effi-
ciently. In fact, we are able to truncate the interfering symbols
with lowest weight regardless of their position. On the contrary,
when the BCJR algorithm is used, we are constrained by the
trellis structure to a truncation of the farthest interfering sym-
bols [23]. Similar considerations hold for other trellis-based re-
duced-state soft-output schemes [24].

The paper is structured as follows. In the next section, we
will describe the proposed algorithms based on FGs and the SP
algorithm, discussing their convergence to the performance of
the BCJR algorithm as a function of the graph girth. The imple-
mentation complexity is also addressed. In Section III, we show
how to modify an original girth- graph to obtain an equiva-
lent girth- graph over which the SP algorithm gives very good
results. A performance analysis based on the average mutual in-
formation (AMI) [25]–[27] is presented in Section IV. Finally,
numerical results are shown in Section V and conclusions are
drawn in Section VI.

II. FACTOR GRAPH

In the considered transmission system, a sequence of -ary
code symbols is obtained from the encoding of a
sequence of information bits and a proper mapping on a mul-
tilevel constellation.2 We will assume that the a priori distribu-
tion of the transmitted codewords is uniform and denote by
the code indicator function, equal to if is a valid codeword
and to zero otherwise. The code sequence is transmitted over
an ISI channel which also introduces additive white Gaussian
noise (AWGN). At the output of a whitened matched filter, the
received signal at discrete time can be expressed as [28]

(1)

in which are complex independent Gaussian random vari-
ables with mean zero and variance per component, is
the channel memory, and represents the equiva-
lent discrete-time channel impulse response, assumed perfectly
known to the receiver.

The joint APP distribution of the transmitted symbols may be
expressed as

(2)

where denotes proportionality, and

(3)

For an ISI channel with and , the FG corre-
sponding to the global function given in (2) is shown in Fig. 1.
Factor nodes, associated with functions , are represented by

2An interleaver can be also used to permute the code symbols before trans-
mission.

Fig. 1. Factor graph for an ISI channel with L = 4 and f = 0.

small boxes whereas variable nodes, associated with variables
are represented by circles. In general, the code constraint

function can be also represented by means of an FG. This graph
is a portion of the overall graph and is connected with that rep-
resenting the channel behavior.

The application of the SP algorithm to this graph allows the
exact (in the absence of cycles) or approximate computation of
the marginal APPs necessary to implement max-
imum a posteriori probability (MAP) symbol detection. When
the graph representing the ISI channel has cycles, as in general
occurs, the application of the SP algorithm to this graph leads to
an iterative detection process. The exchange of messages, rep-
resenting the marginal APP mass functions of symbols and
hence assuming values, fulfills the following rules. Denoting
by the message sent from a variable node to a func-
tion node , where is the set of variables argument of ,
by the message in the opposite direction, and by
the set of neighbors of a given node , the message computations
performed at variable and factor nodes are, respectively, [1]

(4)

(5)

where is a summary operator, i.e., a sum over all vari-
ables of excluding . It may be observed that the mes-
sage sent to an edge does not depend on the message previously
received on the same edge, i.e., only extrinsic information is
exchanged.

The messages in (4) and (5) may be also computed in the
logarithmic domain. Defining and

, the message computations performed
at variable and factor nodes become

(6)

(7)

The implementation of this latter rule does not require multi-
plications but only additions and the evaluation of a nonlinear
function. In fact, by using the Jacobian logarithm [29], [30], it
is well known that, if and are real numbers

(8)
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and is a nonlinear function whose evaluation
can be performed by means of a lookup table. In our case, the
evaluation of can be done recursively
[30].

A message-passing schedule in an FG is the specification
of the order in which messages are updated. In general, the
so-called flooding schedule is adopted [17]: in each iteration,
all variable nodes and subsequently all factor nodes, pass new
messages to their neighbors. As it can be easily understood,
this schedule is well suited for a fully parallel implementation
of the detector. Other schedules may be adopted, serial or
mixed serial–parallel, according to the specific implementation
requirements.

Since we are interested in focusing on the performance of the
detection scheme, let us consider for the moment the case of
absence of coding. Hence, symbols can be assumed to be in-
dependent and identically distributed and in the graph of Fig. 1,
the lower part representing the code constraints is not present.
The case of coding will be considered in detail in Section IV
and in the numerical results.

As already mentioned, the graph representing an ISI channel
may have cycles. Let us introduce another parameter which is
relevant for the ISI channel. This parameter is the number of
nonzero interferers. When , the channel is called sparse.
Three possible cases can be distinguished.

a) If there is only one interferer , the graph is cycle
free.3 In a cycle-free graph, the SP algorithm computes
the marginal probability for each variable exactly, inde-
pendently of the used schedule [31]. The adoption of the
flooding schedule instead of a more natural serial schedule
starting from leaf vertices and with a natural termination
[1] has the advantage of allowing parallel detection at the
expense of an increase in complexity due to the need for
an iterative processing.

b) If the differences between the indexes of the nonzero
channel interferers are all different, the graph has girth .

c) If the previous conditions are not verified, the graph has
girth .

In the cases b) and c), the SP algorithm is approximate. How-
ever, as verified by means of extensive computer simulations,
not shown for the sake of space limitation, if the girth of the
graph is and the channel is minimum- or maximum-phase,
after a few iterations, the performance of the algorithm always
converges to that of the BCJR algorithm. For mixed-phase
channels, we verified that the convergence is obtained when
there is only a dominant interferer. Nevertheless, a whitened
matched filter producing a minimum-phase channel is usually
employed and, on the other hand, a mixed-phase channel can
always be converted into an equivalent minimum- or max-
imum-phase channel by means of a linear filter. For graphs with
girth , in general, the proposed algorithm does not converge.
However, as shown in the next section, the original girth-
graph may be transformed into an equivalent girth- graph on
which the SP algorithm converges. In addition, we will see

3In this case, if L > 1 = L , the original graph is composed by L indepen-
dent subgraphs [16] on which L independent instances of the algorithm have to
be run.

that the presence of a powerful channel code often helps the
convergence even in the presence of cycles of length in the
part of the graph describing the channel behavior.

Since the most demanding computation is due to the sum-
mary operations performed at factor nodes (compare the up-
dating rules (6) and (7)), we may define a cost per coded symbol

of the considered algorithms as related to the above men-
tioned summary operations. Hence, we may say that for the
proposed algorithm , where is
the number of iterations performed. In fact, for the computa-
tion of the values of a message sent on one of the
edges coming out from a factor node, a summary operation (see
(7)) involving terms is needed. Note that the same unit
can be used to measure the complexity of the BCJR algorithm.
In fact, it is well known [1] that this algorithm can be viewed
as the application of the SP algorithm to the cycle-free Wiberg
graph [6] of the channel. Hence, functions associated with factor
nodes are of the same form and the complexity comparison
is fair. For the BCJR algorithm the cost per coded symbol is

. In fact, for the forward (backward) recur-
sion, the computation of the values of the propagating mes-
sage requires a summary operation involving terms, whereas
the computation of the values of the marginal APP of the

th symbol requires a summary operation involving terms.
As may be observed comparing and , the proposed
algorithm is a valid alternative to the BCJR for sparse ISI chan-
nels or when parallel detection is preferred.

The described algorithm is similar to the so-called bit-based
message passing developed in [13] for partial-response chan-
nels. However, the authors of [13] observed that the graph has
cycles and therefore opted for the state-based message passing
which is the SP algorithm with a parallel schedule applied to the
cycle-free Wiberg graph [6] of the channel, that is a BCJR al-
gorithm with parallel schedule. This algorithm, which will be
denoted in the following as p-BCJR, has a cost

.
The complexity of the proposed algorithm may be reduced

following a technique similar to that described in [23], [24]
for BCJR algorithms or to reduced-state sequence detection
(RSSD) used for maximum-likelihood sequence detection
[32]–[34]. In fact, by choosing an integer , the updating
rule (7) at factor nodes modeling the channel can be simplified
as follows: the summary is performed over the interfering
symbols with strongest weights regardless of their position,
substituting the remaining interfering symbols with a decision
made on the basis of the messages on the graph.4 In this way,
the cost becomes . Alternatively,
the same complexity may be obtained by using a different
strategy in which the symbols with highest reliabilities
are hard-quantized. Compared with the Viterbi or the BCJR
algorithm, the complexity of graph-based detection algorithms
can be reduced more efficiently since we have no constraints
imposed by the trellis structure.

III. MODIFIED GRAPH

In [1], an FG transformation, called stretching, is introduced
to obtain a cycle-free graph. Denoting by the set of vari-

4A partial representation by using set partitioning can be also adopted.
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Fig. 2. Part of the FG in Fig. 1 after stretching.

able nodes that can be reached from node through a path of
length , we can replace any node with a node repre-
senting the pair . In this way, it is possible for an edge (or a
variable node) to become redundant. Hence, it can be removed.

Our goal is to remove a minimum number of edges so that the
girth of the transformed graph becomes instead of and the
complexity of the resulting SP algorithm remains the same. As
a consequence, we adopt the following stretching rule.

• Given an edge connecting a variable node to a factor
node , in order to preserve the information lost due to cut-
ting this edge, we choose an arbitrary path con-
necting and and not involving and stretch the vari-
able node to all variable nodes .

Obviously, for a given girth- graph, there are different choices
of edges such that their removal can lead to a girth- graph.
However, we verified that the application of the SP algorithm
to the resulting girth- graphs gives a similar performance, al-
though the minimum required number of iterations can be dif-
ferent, depending on the weight of the interfering symbol whose
corresponding edge has been removed.

An example of girth- graph, obtained by transforming the
girth- graph in Fig. 1, is shown in Fig. 2 (considering the rele-
vant part describing only the channel behavior). In order to re-
move the edge connecting the variable node to factor node

, we chose the path connecting to
and not involving the above mentioned edge, and stretched
to all variable nodes belonging to this path, i.e., to . The SP
algorithm applied to the transformed graph has a cost

where is the number of edges removed per factor node. Hence,
the complexity remains of the same order of magnitude.5

A further application of the described stretching rule to ob-
tain a cycle-free graph leads to a graph similar to the Wiberg
graph of the channel—the SP algorithm with flooding schedule
applied to this graph becomes the state-based message passing
described in [13]. We do not further pursue this approach since
it gives an unnecessary increase in complexity.

IV. ANALYSIS THROUGH AVERAGE MUTUAL INFORMATION

In [20]–[22], the performance of LDPC codes over binary ISI
channels is analyzed by computing the noise tolerance threshold
using density evolution [35]. Particular attention is devoted to
partial response channels with the aim of designing good LDPC
codes for the magnetic channel. Different schedules are consid-

5We are neglecting the increase in computational complexity at variable nodes
related to the need of a marginalization of the messages associated to the pair
of symbols, since this computation is lower than that associated to the factor
nodes.

ered in which the number of BCJR steps can be decreased to
reduce the overall complexity. A different approach is used in
[25]–[27], in which, through the AMI and the so-called extrinsic
information transfer (EXIT) charts, an analysis of iterative de-
coding schemes, including turbo equalization, is described with
focus on the convergence behavior. In the case of turbo equal-
ization, the AMI transfer characteristics of the detector for dif-
ferent values of the signal-to-noise ratio and that of the decoder
are employed to predict the potential performance improvement
through iterative detection/decoding for different channel codes.
In particular, in [27], the authors describe a method that can also
be used to compute EXIT charts and threshold values in a turbo
equalization scheme when the code is an LDPC code and the
BCJR algorithm is adopted for detection. In this case, the EXIT
curve corresponding to the set of the LDPC check nodes (the
so-called check-node decoder (CND)) has to be used jointly
with the EXIT curves of the combination of the set of vari-
able nodes (the variable-node decoder (VND)) and the BCJR
detector [27].

In this paper, we are first of all interested in the performance
of the proposed detection schemes without taking into account
the effect of a particular channel code. The term of compar-
ison is represented by the performance of the BCJR algorithm
and our aim is to find a computationally nonintensive method
to predict if the proposed schemes can reach this limit and the
number of necessary iterations. For this reason, we are inter-
ested in the AMI, computed by Monte Carlo simulation, at the
detector output as a function of the signal-to-noise ratio, in the
absence of input AMI since there is no a priori knowledge pro-
vided to the detector by the channel decoder as in a turbo equal-
ization scheme. By using this tool, we further confirmed the
above mentioned property that if the girth of the graph is and
the channel is minimum- or maximum-phase, after a few iter-
ations, the algorithm always converges to the performance of
the BCJR algorithm. In addition, when a graph transformation
through stretching is necessary to ensure convergence, we are
able to determine the best choice of edges to be removed.

In the presence of an LDPC code, the method described in
[27] can be used to compute EXIT charts and threshold values
when the serial BCJR algorithm is used for detection. These
values obviously represent a benchmark to assess the perfor-
mance of the proposed detection algorithms. For these latter
schemes, the computation of the EXIT curves is more difficult.
In fact, since these algorithms are iterative, the corresponding
EXIT curves change with iteration. Let us consider the exchange
of extrinsic information in Fig. 3. The EXIT curve of the outer
CND can be easily computed as described in [27]. In fact, as-
suming that all check nodes have degree ,6 the CND EXIT
curve, i.e., the AMI at the output of the CND as a function of
the AMI at its input, is

(9)
where the function is [27]

(10)

6A more general irregular check node degree distribution can be taken into
account as described in [27]
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Fig. 3. Exchange of extrinsic information.

Considering now the combination of the inner ISI detector
(ISID) and the VND, since the proposed ISID is iterative
and the block ISID + VND retains messages that are used
on successive iterations, the corresponding EXIT curve de-
pends not only on the signal-to-noise ratio , being
the received signal energy per information bit and the
one-sided noise power spectral density, but also on the number

of iterations performed. Hence this EXIT curve, that
must be computed by Monte Carlo simulations, is a function

(the dependence on
the variable node degree distribution is omitted for simplicity).
In the exchange of extrinsic information, the AMI evolves as
follows: at the first iteration, the ISID + VND increases the
AMI to . After the CND,
the mutual information becomes . At
the second iteration, these values will be updated to

and ,
and so on. In this way, it is possible to compute the decoding
trajectory whose convergence toward high values of the AMI
guarantees low bit-error rate (BER) values. Note that with
the aim of finding the threshold values, it is sufficient to
consider, along with the CND EXIT curve, only the curve

(in practice, values
of are sufficient). In fact, if the tunnel between
this curve and the CND EXIT curve is open, sooner or later the
AMI will go to one despite the presence of a “bottleneck” for
low values of —the ISI detector will perform “self-iterations”
until a tunnel in the EXIT diagram will be opened. In other
words, if the channel noise is slightly below the noise threshold,
and the number of ISID iterations is small, then it is possible
that the decoding progress will become stuck. However, if is
increased, then the bottleneck opens up, and AMI can continue
to improve. The results of this analysis will be shown in the
next section.

V. NUMERICAL RESULTS

In this section, the performance of the proposed detection
schemes is assessed by computer simulations in terms of BER
versus . We also provide some examples of the above
mentioned analysis through AMI and EXIT charts. For each
considered channel, the performance of the BCJR algorithm
is given as a benchmark. Although improper, since BCJR and
p-BCJR algorithms are also instances of the SP algorithm, in
the following figures the curves corresponding to the proposed
algorithms are labeled “SP.”

In Fig. 4, we consider a sparse ISI channel characterized by
and

( ) whose corresponding FG has girth . In fact, the set
of differences between the indexes of the channel interferers is

Fig. 4. Performance for a sparse channel.

and hence they are all different (see condition b)). Un-
coded binary phase-shift keying (BPSK) and 8-PSK modula-
tions are considered. It can be observed that the performance of
the SP algorithm applied to the original graph converges in five
iterations to the optimal performance of the BCJR for both mod-
ulation formats. In addition, the dramatic performance improve-
ment from the first and the third iterations can be noted. Similar
considerations also hold for multiamplitude modulation formats
such as quadrature amplitude modulation (QAM) schemes.

In Fig. 5, the effect of the application of the complexity reduc-
tion techniques to the BCJR and the proposed SP algorithm is
analyzed. The considered girth- minimum-phase channel has

and coefficients

Also in this case, an uncoded BPSK modulation is adopted. A
reduced-complexity 16-state BCJR algorithm may be obtained
only by defining a reduced state as
and computing the branch metrics by recovering the symbol

in the survivor history [23], [24]. Hence, the only pos-
sibility we have is the truncation, in the trellis definition, of the
farthest symbol. On the contrary, in the case of the proposed SP
algorithm we are not constrained by the trellis definition and
therefore we may truncate the interfering symbol with lower
weight, i.e., symbol . In the computation of the messages
at factor nodes, this symbol can be substituted with a decision
made on the basis of the messages on the graph. The advantage
of about 1 dB with respect to the reduced-complexity BCJR is
highlighted by Fig. 5.

We now consider the so-called magnetic channel, i.e.,
an ISI channel with , , and

An uncoded binary pulse amplitude modulation (PAM) with
symbols is considered. The corresponding graph,
shown in the upper part of Fig. 1, has girth . In this case, the
SP algorithm, if directly applied to this graph, does not converge
to the performance of the BCJR, as shown in Fig. 6, where a loss
of about 1 dB is observed, even for a large number of iterations.
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Fig. 5. Performance in the case of complexity reduction.

Fig. 6. Performance of the SP algorithm on a modified graph.

Therefore, a graph transformation is necessary. By using the de-
scribed stretching technique, we obtain the graph in Fig. 2. On
this graph, the SP algorithm converges in about 10 iterations
to the optimal performance. In Fig. 6, the performance of the
p-BCJR algorithm is also shown. We may observe that, although
for a sufficiently large number of iterations this algorithm has
an optimal performance, at least in the considered BER range,
for five and ten iterations it performs worse than the SP algo-
rithm and exhibits an error floor. This floor has been already ob-
served in [13], and a precoder has been introduced to overcome
this problem. Its presence is due to the structure of the FGs. In
fact, in the graphs of Figs. 1 and 2, the message related to a
variable node rapidly propagates to other nodes, whereas in the
Wiberg graph this propagation, in the case of parallel schedule,
is slower.

The behavior of the BER curves for the considered algorithms
is related to that of the AMI at the detector output as a function
of the signal-to-noise ratio (see Fig. 7). We are considering an
uncoded transmission and, therefore, we are interested in the

Fig. 7. Average mutual information at the detector output in the case of
I = 0.

Fig. 8. BER in the case of application to LDPC codes. The E PR4 magnetic
channel is considered.

case of absence of a priori knowledge on the information sym-
bols, i.e., . The fact that the p-BCJR for five iterations
performs worse than the SP algorithm, on the original and the
modified graph for the same number of iterations, is verified in
terms of , along with the convergence, for 20 iterations, of
the p-BCJR and the SP algorithm on the modified graph to the
performance of the BCJR.

We now consider the case of application to combined detec-
tion and decoding in the presence of a LDPC code. Due to the
structure of a LDPC code, an interleaver is not necessary. Two
magnetic channels are considered, namely the channel
in Fig. 8, and the EPR4 channel in Fig. 9. This latter channel is
characterized by , , and

The modulation format is the previously mentioned binary
PAM. Two LDPC codes are considered, namely, a regular
code of rate and codeword length and an irregular



824 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 5, MAY 2005

TABLE I
THRESHOLDS FOR THE CONSIDERED SYSTEMS

Fig. 9. BER in the case of application to LDPC codes. The EPR4 magnetic
channel is considered.

code of rate and codeword length .7 In the case
of the SP algorithm on the original or the modified graph, a
maximum number of 150 iterations is allowed. When detection
is performed by means of the BCJR algorithm, a BCJR step is
executed each iteration of the LDPC decoder (for a maximum
number of allowed iterations of 150). This choice has been
shown to be optimal in [13]. Figs. 8 and 9, demonstrate that in
the case of a powerful channel code, the proposed SP algorithm
has a BER performance very close to the optimal performance
even on the original girth- graph. For the rate- LDPC
code, the SP algorithm run over the original graph exhibits a
performance loss of about 0.5 dB in the case of the E PR4
channel and 0.3 dB in the case of the EPR4 channel, whereas
this loss is reduced to about 0.15 and 0.05 dB, respectively,
for the SP algorithm working on the modified graph. Hence,
side information provided in the iterative detection/decoding
process by the decoder of a powerful code helps the detector
convergence even in the presence of cycles of length in the
part of the graph describing the ISI channel.

These results are confirmed by the threshold values, com-
puted for the codes with the above mentioned degree distribu-
tions, by means of the described analysis based on EXIT charts,
and shown in Table I: when the code with rate is used, it is
not necessary to adopt graph transformations, whereas when the
code with rate is adopted, the SP algorithm on the modi-
fied graph has a negligible performance loss with respect to the
BCJR algorithm.

Finally, in Fig. 10, the EXIT charts and the decoding trajec-
tories for the rate- code, the E PR4 channel, and

7For this code, the variable and check degree distributions, defined as in [5],
are �(x) = x and �(x) = 0:33x + 0:67x , respectively.

Fig. 10. EXIT charts with iterative decoding trajectories for the LDPC code
with rate 0:5 and the E PR 4 channel.

3.5 dB is shown. The SP algorithm on the original girth- graph
is considered. The CND EXIT curve (dotted line) and the ISID
+ VND curves (solid lines) for iterations are shown
(for the EXIT curves practically coincide). As already
mentioned, although for there is a bottleneck, the itera-
tive process converges since the tunnel is “open” for .

VI. CONCLUSION

In this paper, simple detection schemes for ISI channels have
been proposed. These algorithms have been derived from the
application of the SP algorithm to an FG representing the joint
a posteriori distribution of the transmitted symbols or to a mod-
ified girth- graph. The complexity of the proposed algorithms
depends on the number of nonzero channel interferers only and
therefore they are useful in the case of sparse channels. The per-
formance of the proposed algorithms converges to that of the
BCJR algorithm when the FG has girth or a powerful channel
code is used. If this is not the case, the described simple graph
transformation guarantees the performance convergence of the
SP algorithm. Hence, it has been shown that in some cases, the
application of the proposed schemes can be favorable with re-
spect to the BCJR algorithm.
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