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On MAP Symbol Detection for ISI Channels
Using the Ungerboeck Observation Model

Giulio Colavolpe and Alan Barbieri

Abstract—1In this letter, the well-known problem of a trans-
mission over an additive white Gaussian noise channel affected
by known intersymbol interference is considered. We show that
the maximum a posteriori (MAP) symbol detection strategy,
usually implemented by using the Forney observation model,
can be equivalently implemented based on the samples at the
output of a filter matched to the received pulse, i.e., based on
the Ungerboeck observation model. Although interesting from
a conceptual viewpoint, the derived algorithm has a practical
relevance in turbo equalization schemes for partial response
signalling, where the implementation of a whitening filter can
be avoided.

Index Terms— Factor graphs (FG), intersymbol interference
(ISI), sum-product algorithm (SPA).

I. INTRODUCTION

HEN the maximum a posteriori (MAP) sequence de-

tection strategy is considered for transmissions over
known intersymbol interference (ISI) channels, two equivalent
approaches for linear modulations can be adopted. The first
one is the so-called Ungerboeck approach [1]. In this case, the
branch metrics of the Viterbi algorithm (VA) implementing
this strategy are based on the samples at the output of a
filter matched to the received pulse. The second approach is
the Forney approach [2] and it is based on the output of a
whitened matched filter (WMF). Although the relevant VA
branch metrics are different, the number of trellis states is the
same for both equivalent approaches.

When the MAP symbol detection strategy is adopted, as
an example to perform turbo equalization [3]-[5], these two
observation models do not seem to be equivalent. All the well-
known materialization of the MAP symbol detection strategy,
such as for example the BCJR algorithm [6] (see also [7],
[8]) have been obtained by using a probabilistic derivation
based on the chain rule and the properties of a Markov source
observed through a discrete memoryless channel. Hence, this
derivation cannot be directly extended to the case of the
Ungerboeck observation model. In this letter, we solve this
problem by using a properly defined factor graph (FG) and
the sum-product algorithm (SPA) [9].

II. PRELIMINARIES

In this section, we briefly describe the FGs and the SPA,
and summarize the results on MAP sequence detection for ISI
channels.
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A. Factor Graphs and the Sum-Product Algorithm

A FG is a bipartite graph which expresses the way a
complicated joint probability mass function (pmf) or a joint
probability density function (pdf) of many variables factors
into the product of local functions (not necessarily pmfs or
pdfs) [9]. Let V = {v1,...,vn} denote a set of variables and
F (V) a multivariate function. Let V7, ..., V,, denote subsets
of V. We say that F'(V') admits a factorization with supports
Vi,...,Vip, if F(V) can be written as the product of the
functions {F; : j = 1,...,m}, where F; has the variables
in V; as arguments. The FG representing the factorization
F =], Fy is a bipartite graph G = {V, F, £}, where nodes
in V (variable nodes) are associated with the variables v; € V,
nodes in F (factor nodes) are associated with the functions F;,
and there exists an edge e € £ joining v; and F} if and only
if v; € V; (i.e., if v; is an argument of F}).

Let F(V) be a pmf. Then, if the FG corresponding to the
factorization of F has no cycles,' the marginal pmfs can be
computed exactly in a finite number of steps by the SPA [9].
The SPA is defined by the computation rules at variable and
at factor nodes, and by a suitable node activation schedule.
Denoting by i, ., (v;) a message sent from the variable
node v; to the factor node Fj, by f1r; ., (v;) a message in the
opposite direction, and by A; the set of functions F}; having v;
as argument, the message computations performed at variable
and factor nodes are, respectively [9]

:U/vi—>Fj(vi) = H N’H—Wi(vi) ey
HeA;\{F;}
e @)=Y [FweVih) T morw)
~{v5} weV;\{vi}
2

where, following the notation of [9], we indicate by > {0}
the summary operator, i.e., a sum over all variables excluding
v;. In the absence of cycles in the graph, the computation
usually starts at the leaves of the graph and proceeds until
two messages have been passed over every edge, one in each
direction.

B. MAP Sequence Detection: Ungerboeck and Forney Ap-
proaches

The Ungerboeck approach for MAP sequence detection [1]
is based on the samples {x} at the output of a filter matched
to the received pulse p(¢). The sample at time k7', can be

'A cycle is a closed path in the graph.
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expressed as
L

Th= Y Geak—o+ 3
=L

where L is a suitable integer parameter, a = {ay} is the se-
quence of M-ary transmitted symbols, assumed independent,
it is

ge = p(t) @ p* (—t)t=er

and the noise samples {n;} have autocorrelation R,(m) =
2Nogm, having denoted by Ny the one-sided noise power
spectral density. By representing the received signal onto an
orthonormal basis and denoting by r its vector representation,
as shown in [1], it is possible to express?

p(rla) o [] Grlar, ax-1,. .. ax-1) “)
k
where
Grlag,ax—1,...,ap_r)
1 1 L
— — R * - 2 o * _ )
eXP{NO € [ Tray Q\Gk\ 9o ;akak egz]}
()

For notational convenience, we omitted the dependence of
G}, on zy. Notice that the functions Gy (ag, ak—1,...,ax—1)
are not pdfs (nor proportional to pdfs). The MAP sequence
detection, based on the following decision rule

a = argmax P(ar)
= argmax p(r|a)P(a) = argmax[ln p(r|a) + In P(a)]

— argmng[ln Gilak,ak—1,...,a5—1) +1n P(ay))
k

L
* 1 *
= argmaaXZRe Tray — §\ak|290 - Zakakzge]
k (=1
+NoIn P(ay) (6)

can be implemented by using the VA working on a trellis
whose state is defined as o, = (ag—1, ..., ar—r,) and by using
the branch metrics

)\k(ak,ak) = Re

L
* 1 *
Tk — §|ak|290 - ZakakZW]
=1
+Noln P(ay). @)

The number of trellis states is S = MZL. Hence, the integer
parameter L represents the channel memory.

The Forney approach [2] is based on the output {y;} of a
WMF which can be expressed as

L
Uk = Y fear—o + wy (®)

£=0

%In this letter, we use extensively the proportionality relationship f o< g,
indicating that f = ag for some real constant a. In fact, a real constant is
irrelevant in the maximization to be performed to implement MAP sequence
detection whereas on the other hand, the SPA is defined up to scaling its
messages by positive factors, independent of the variables represented in the
graph.

where {f,}l, is the equivalent discrete-time white noise
channel impulse response® and now the noise samples {wy,}
represent a discrete-time white Gaussian noise process. Hence,
it is [2]
p(yla) = [ [ p(yxla) ©)
k

where

1 a ’
p(ykla) = p(yxla, ox) ox exp “oNg |V ;%fzakfe
(10)
Since the sequence {yj} represents a sufficient statistic [2],
the MAP sequence detection strategy can be equivalently
expressed as

a = argmax P(aly)

= argmax p(y|a)P(a) = argmax[ln p(y|a) + In P(a)]
a a

= argmax E
® k

L 2

vk — Y _ feax—s| + 2NoIn P(ax)
=0

an

and can be implemented by means of the VA working on the
same trellis previously defined, with branch metrics

L 2

Me(ak,or) = |ye = Y foak—e| +2NoIn P(ay).
£=0

(12)

These two approaches for MAP sequence detection are
exactly equivalent in terms of performance (since they are
two alternative formulation of the same strategy and no
approximations are involved), and trellis complexity. The only
difference is in the expression of the VA branch metrics. For an
in deep analysis of the computational advantages of the branch
metrics (7), see the relevant discussion in [1]. In addition, the
Ungerboeck approach does not require the implementation of
the whitening filter necessary to obtain the sufficient statistics

(8).

III. MAP SYMBOL DETECTION BASED ON THE
UNGERBOECK APPROACH

The MAP symbol detection strategy is based on the max-
imization of the a posteriori probabilities (APPs) of the
transmitted symbols given the received signal (or a sufficient
statistics):

ay, = argmax P(ag|r) = argmax P(ag|y). (13)
a ak

All the well-known materialization of this strategy (e.g.,
see [6]-[8]) are based on the Forney observation model. In
fact, they exploit the property that the sample y; depends on
symbols ay,ai—1,...,ar—r only and that Gaussian noise is
white. This property does not hold for samples z;, and, in fact,
as previously mentioned, the factorization (4) does not involve
pdfs. Hence, the probabilistic derivation usually employed to
derive MAP symbol detection algorithms [6]-[8] cannot be
extended to the Ungerboeck observation model.

3The coefficients {f;} can be derived from coefficients {g,} by means of
a spectral factorization procedure.
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Factor graph corresponding to eqn. (14).

Fig. 1.

A MAP symbol detection algorithm for the Ungerboeck
observation model can, however, be obtained by using the
FG/SPA framework. We construct the FG corresponding to
the joint APP of the transmitted symbols and the trellis
states given the received signal (the same used for MAP
sequence detection) and let the SPA compute the marginal
APPs P(ay|r) necessary to implement MAP symbol detection.
To obtain this result, we use the property that a FG represents
the factorization of a pmf as the product of local functions
that are not necessarily pmfs or pdfs [9].

The joint APP of the transmitted symbols and the trellis
states o = {0} given the received signal can be expressed
as

P(a,alr) o« p(r|a)P(ola)P(a)

= H Gk(ak, ak)Tk(ak, Ok, Uk+1)P(ak) (14)
k

where the function Ty (ag,ok,0k+1) is the trellis indicator
function equal to 1 if ay, ok, and o1 satisfy the trellis
definition and to zero otherwise [9]. In fact, since a and o
are in a one-to-one correspondence, the probability P(o|a) is
equal to 1 if all the trellis constraints are verified and to zero
otherwise.

The Wiberg-type graph [9], [10] corresponding to the joint
pmf in (14) is sketched in Fig. 1, where the hidden variables
{0k} have been explicitly represented. With reference to the
messages in the figure, by applying the updating rules of the
SPA, messages a(oy,) and B(oy) can be recursively computed
by means of the following forward and backward recursions:

a(orr) = Y alok)Tu(ak, ok, 0ki1)Gr(ar, ox) Plax)
~{okt1}
(15)
Blo) = Zﬁ(gk+1)Tk(akaUk70k+1)Gk(akaUk)P(ak)
~{or}
(16)

whose initial conditions can be easily derived. Finally, the
marginal symbol APPs can be computed by means of the
following completion

Plag|r) =

P(ay)) (o) B(ok1)Te(ak, ok, 0k 11)Gr(ar, ox).
~{ar}
(7
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Since the employed FG is cycle-free, the marginal APPs
computed by the SPA are exact. Therefore, the derived algo-
rithm is an alternative optimal implementation of the MAP
symbol detection strategy. As such, the performance is the
same that can be obtained, for example, by using the BCJR
algorithm based on the Forney model, and for this reason,
no simulation results are reported here. The structure of the
algorithm is also the same. In fact, we have a forward and a
backward recursion and a final completion, all working on
the same trellis of the original BCJR algorithm. The only
difference is that the term G (ag, o) in (15), (16), and (17),
is replaced, in the classical BCJR algorithm, by p(yx|a, o)
given in (10) [6], [9]. Hence the difference is in the expression
of the branch metrics only, as for MAP sequence detection.
As a consequence, for a complexity comparison between the
proposed algorithm and the classical BCJR algorithm based
on the Forney model, the same considerations mentioned in
the previous section still hold.

IV. CONCLUSIONS

In this letter, a forward-backward algorithm which imple-
ments optimal MAP symbol detection has been derived for
ISI channels and the Ungerboeck observation model. The
algorithm is similar in structure to the well-known BCJR
algorithm. As for MAP sequence detection, the Ungerboeck
and Forney observation models are exactly equivalent for
MAP symbol detection also.
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