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40 Years with the Ungerboeck Model: A Look at Its Potentialities

I
t has been about 40 years since 
Gottfried Ungerboeck published his 
paper [1] on an alternative maxi-
mum-likelihood (ML) detector for 
intersymbol interference (ISI) chan-

nels. The ISI model used by Ungerboeck 
is commonly referred to as the Unger-
boeck model. Ungerboeck’s ML detector 
has equivalent performance compared 
to Forney’s detector, which was pub-
lished two years earlier in [2], but 
received lesser considerations. Perhaps 
the best example of this is the fact that a 
BCJR algorithm [3] operating on the 
Ungerboeck model was derived as late as 
2005 [4]. However, the Ungerboeck 
model has many strong aspects and has 
therefore been rediscovered over the last 
few decades.

Scope
In this lecture note, we give a number of 
illuminating examples where the Unger-
boeck model is essential. We hope that 
this column will lead to increased aware-
ness and use of the Ungerboeck model 
among the signal processing community.

Relevance
Essentially all communication systems are 
modeled by a discrete-time model. The 
white-noise model is the predominant 
choice of model today. When low-com-
plexity algorithms are used, the choice of 
model plays a role. In some cases, superior 
performance and/or lower complexity can 
be achieved by the very same algorithm, 
but where the white noise model has been 
replaced by another model. Awareness of 
models other than the white-noise model 

is of great value to engineers and research-
ers, especially to those working in the bor-
derline of signal processing and wireless 
communications.

Prerequisites
This lecture note assumes basic knowl-
edge of signal space descriptions of 
communication systems, about Viterbi- 
and Bahl-Cooke-Jelinek-Raviv (BCJR)-
type algorithms for communication 
channels with memory, and about factor 
graphs (FGs) and the sum-product algo-
rithm (SPA).

Summary of Detection  
Theory Results
In the following, we will denote by ( )p $  
[respectively, ( )]P $  the probability density 
function (pdf) [respectively, the probability 
mass function (pmf)] of a continuous 
(respectively, discrete) random variable. In 
addition ( )R $  and ( )I $  denote the real 
and imaginary part of a complex number 
whereas ( ) *$  and ( ) T$  stand for transpose 
conjugate and transpose, respectively. Let 

[ , , ]x x x0 1 g=  be a sequence of modula-
tion symbols drawn from a discrete alpha-
bet |.  These symbols are transmitted over 
a communication channel via a modula-
tion format. Let z  be an arbitrary suffi-
cient statistic properly extracted from the 
received signal. Maximum a posteriori 
(MAP) sequence and symbol detection 
strategies are based on the following deci-
sion rules: 
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respectively. They minimize the sequence 
and symbol error probability, respectively. 
In case of communication systems with 
finite memory, they can be implemented 
through the Viterbi [5] and the BCJR algo-
rithm [3], respectively.

Without loss of generality, in the fol-
lowing we will often assume that modula-
tion symbols xk" , are independent and 
uniformly distributed (i.u.d.). As a conse-
quence, all a priori probabilities can be 
safely discarded from the aforementioned 
MAP strategies and they become perfectly 
equivalent to the corresponding ML strat-
egies [6].

Detection on Intersymbol 
Interference Channels
The continuous-time ISI channel may be 
described, assuming the use of a linear 
modulation, by means of the following 
complex baseband equation: 

	 ( ) ( ),y t x t kT w tqk
k

= - +^ h/ � (3)

where ( )tq  is the received pulse, ( )w t  is 
complex white Gaussian noise with two-
sided spectral density ,N0  and T  is the 
symbol time.

In 1972, Forney showed that ML detec-
tion of x  can be carried out by an applica-
tion of the Viterbi algorithm (VA) [2]. 
Forney first applied a matched filter and 
sampling operation to the signal ( )y t   
to form the discrete-time model 

( ) ( ) .y y t t kT tq d*
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yk  can be expressed as 
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where ( ) ( ) .g t t T tq q d* ,= -
3
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#  The 

variable L  specifies the memory of the 
system and is the smallest value such 
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that , | | .g L0 , 2=,  The noise in the 
model (4) is not white, but is correlated 
according to [ ] .n n N gE *

k k 0= ,+ ,  To 
obtain white noise, Forney filtered the var-
iables yk  with a whitening filter { },fk  
which yields 

	 .r f y h x wk k k k
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In the model (5), the zero-mean noise var-
iables { }wk  are uncorrelated with variance 

.N0  The channel impulse response is 
causal and is related to { }g,  as 

,g h h*
k kk

L
0

=, ,+=
/  i.e., [ , , ]g g gL Lf= -  

is the autocorrelation sequence of 
[ , , ] .h h hL0 f=  Both samples { }yk  and 

{ }rk  represent a sufficient statistic and can 
thus be employed for detection. Through-
out this lecture note, the three letters 
( , , )y g n  imply that we are discussing the 
model (4), while we are discussing (5) if 
we use ( , , ) .r h w

Forney next observed that each sam-
ple rk  only depends on the current chan-
nel input xk  and the L  most recent 
channel inputs , , .x xk k L1 f- -  There-
fore, the signal can be described by 
means of a trellis where each state is 
defined as ( , , ) .x xk k k L1 fv = - -  Thus, 
the number of states is | | L| .  As an 
example, when { , }0 1| =  and ,L 2=  a 
section of the corresponding trellis 
between the discrete-time instants k  
and k 1+  is shown in Figure 1. In this 
figure, trellis transitions driven by sym-
bol x 0k =  are denoted by using dashed 
lines, whereas solid lines correspond to 
transitions driven by .x 1k =

Due to the fact that samples rk  are 
conditionally independent, the conditional 
probability density function ( | )r xp  
required for the implementation of the 

strategy (1) can be expressed in a recursive 
factorization of the form 
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Based on (6) it is straightforward to set 
up the VA. In fact, under the assumption 
of i.u.d. modulation symbols and taking 
into account that the logarithm is a mono-
tonic function, the strategy (1) can be 
expressed as 
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is the so-called branch metric of the VA.
In turbo equalization applications [7], 

one may resort to the MAP symbol detec-
tion strategy. In this case, it is sufficient to 
replace the VA with the BCJR algorithm, 
possibly implemented in the logarithmic 
domain [8]. It will make use of the same 
branch metric .kn

However, a demodulator may just as 
well take as starting point the model (4) 
as already shown by Ungerboeck in 1974 
in [1]. The model is commonly referred 
to as the Ungerboeck model, while the 
white-noise model (5) is referred to as 
the Forney model—a nomenclature we 
will follow. The noise variables { }nk  are 
still Gaussian, but are colored. However, 
the noise color is irrelevant since the 
critical issue for the application of a 

VA-type-detector is that the conditional 
pdf ( | )r xp  has a recursive factorization 
that can be expressed in terms of the sig-
nal .y  This is indeed the case as can be 
seen by expanding (6) (see [1] for further 
details). See (9) in the box at the bottom 
of the page, where ( ) ,N

k1 0
1c r= -%  

2c =  ( / ),exp r N1
2

0c -  and where we 
used y h r*k k

L
0

= , ,, +=
/  in the last equal-

ity. Note that 2c  is independent of xk" , 
and can be neglected. Again, under the 
assumption of i.u.d. modulation symbols, 
the strategy (1) can be expressed as 
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where this time the branch metric is 
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Again, we see that only the L  most recent 
channel inputs , ,x xk k L1 f- -  are needed 
at each time epoch .k  Ungerboeck’s and 

k k + 1

σk
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(0, 1)

(1, 1)

[FIG1]  An example of a trellis section.
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Forney’s ML sequence detectors involve 
different computations, but they traverse 
the very same trellis, and their final out-
puts are identical. Two strong aspects of 
the Ungerboeck model are that no squar-
ing operations are needed and that no 
whitening is needed.

It is interesting to note that while the 
BCJR already became available for the 
Forney model by 1974 with [3], the story 
differs remarkably for the Ungerboeck 
model. An equivalent algorithm to the 
BCJR that operates on the Ungerboeck 
model and employs the same branch 
metric (11) was demonstrated as late as 
2005 in [4]. As a consequence, turbo 
equalization based on Ungerboeck’s model 
was not available before 2005. The Unger-
boeck model has a number of strengths 
and has been rediscovered several times 
during the recent past. Before we turn our 
attention to three short examples that illu-
minate its strengths, we first extend it into 
a model for general linear channels.

Detection on General  
Linear Channels
Let us write (5) as a matrix equation, 

	 .r Hx w= + � (12)

In the ISI case, the matrix H  is a Toeplitz 
matrix that represents the convolutional 
operator. However, (12) can also represent 
any other linear channel, such as multiple-
input, multiple-output (MIMO), intercarrier 
interference (ICI), MIMO-ISI etc. Irrespective 
of from where the model (12) came, the cor-
responding conditional pdf has expression 

	 .expr x
r Hx

p N1
0

2

c= -
-

^ eh o � (13)

One can reach a tree structure, suitable for 
demodulation, by a QL factorization H QL=  
of the channel, which makes the model (12) 
“causal” in the vector index. This gives 

	 ,r Q r Lx w*= = +u u

which enables a recursive factorization, 
similar to (6), 
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A tree search procedure can now be 
reached. In the case of a channel with 
finite memory, i.e., , ,L k L0,k , 2= -,  
the VA or the BCJR can be applied since 
the tree collapses into a trellis with X L  
states. Hence, we refer to (12) as the For-
ney model for a linear channel.

To avoid computation of a QL factori-
zation of the channel matrix, [9] proposed 
to first multiply the vector r  with a 
matched filter ,y H r Gx n*= = +  where 

,G H H*=  and n  is colored Gaussian 
noise with covariance matrix .GN0  How-
ever, in view of (4), this is nothing but an 
extension of the Ungerboeck model for ISI 
into a formulation for a general linear 
channel. Next, [9] proceeds with the deri-
vation of a recursive factorization, suitable 
for a tree search, and finally obtains 
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where, again, 2c  is irrelevant for decision. 
This we recognize as the extension of 
Ungerboeck’s (9) into a formulation for 
general linear channels.

Problem Statement
Is the choice of model relevant? Is there 
any example of practical systems where the 
Ungerboeck model is more convenient? We 
now give a few examples of systems where 
the Ungerboeck model can offer superior 
performance and/or lower complexity.

Solution

Channel Shortening Detection
Since the VA is often of prohibitive com-
plexity, Falconer and Magee [10] proposed 
in 1973 to make use of the following 
reduced-complexity scheme: 1) filter the 
signal (5) with a filter that aims at reduc-
ing the memory of the effective impulse 
response from L  to K L1  and 2) apply 
the VA to the filtered signal, but based on 
the shorter effective channel. Thus, the VA 
traverses a trellis with X K  states rather 
than the full trellis of size .X L  In terms 

of a general linear channel, what is done is 
that the conditional pdf (13) is replaced by 
the mismatched version 

	 ( | ) ,expr x
Wr Fx

T N0

2

? -
-c m � (16)

where W  is the channel shortener, F  is a 
matrix that has K  nonzero consecutive 
diagonals, and the normalization constant 
has been neglected. This specifies a trellis 
with X K  states so that the VA or the 
BCJR can be applied. The operations of 
such VAs or BCJR algorithms are specified 
by (14) with ru  and L  being replaced by 
Wr  and ,F  respectively.

However, instead of using (14), we can, 
with identical complexity, use (15). By 
expanding the square magnitude in (16) 
and neglecting the irrelevant terms we 
can express ( | )r xT  as 

( | ) expr x F Wr F FxT N
x x2R * * * *

0
?

-c m
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� (17)

and then execute the trellis processing via 
(15) by replacing y  and G  with F Wr*  
and ,F F*  respectively.

If the processing is done via (15), only 
the matrices F W*  and F F*  are relevant, 
and not the matrices W  and F  them-
selves. We can therefore relax the struc-
ture of F W*  and F F*  so that we replace 
( | )r xT  in (17) with 

	 ( | ) { } ,expr x x H x G x
T N

r2R * *
r r

0
?
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where Hr  is arbitrary and Gr  is a Hermit-
ian matrix with only the main K2 1+  
diagonals holding nonzero values. The 
strength of replacing F F*  with Gr  is that 
the matrix Gr  needs not to be positive 
semidefinite, unlike the matrix F F*  which 
is positive semidefinite by construction. 
This allows for a wider class of mismatched 
conditional pdfs than what can be reached 
by (16); based on (16), one is restricted to 
have a positive semidefinite Gr  matrix.

As far as the derivation of Gr  and Hr  
according to a proper optimality criterion 
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is concerned, we refer the reader to [11]. 
Importantly, to find optimal Gr  and Hr  is 
much simpler than finding optimal W  and 

.F  Somewhat surprisingly, the optimal Gr  
matrix to choose is often in-definite so that 
a mismatched conditional pdf of the form 
(16) is inferior to the form (18).

In brief, channel shortening has been 
studied since 1973, but the starting point 
has always been the Forney model. This is 
suboptimal, as the optimal solution for an 
Ungerboeck-based channel shortening 
receiver can not, in general, be reached 
with the Forney model.

Max-log-MAP Demodulation  
of MIMO Channels
The computation of the pdf (13) required 
for the implementation of the strategies 
(1) or (2) requires the computation of 
metrics r Hx 2-  for all possible values 
of .x  How many complex multiplications 
are needed to do this task? If we assume 
an M M#  channel matrix, we have 
X M  vectors x  to test. For each vector 

we need M2  multiplications to form ,Hx  
and then M  more to compute the norm. 
Hence, a brute force evaluation would 
give about ( )M M1X M

+  complex mul-
tiplications. In [12], a much more effi-
cient computation is presented by a 
clever rewriting of the associated terms 
of computing each metric .r Hx 2-  To 
exemplify how the metric is rewritten for 
simplifying the calculations, we consider 
the case of a 2 2#  MIMO system. The 
received signal, the channel matrix, and 
the transmitted data vector, all complex 
valued, are expressed as 
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respectively. With that, in [12] the metric 
is expressed in the following manner [see 
(19) in the box at the bottom of the page]. 

Notice that we neglected the term 
,r 2  which is irrelevant for detection. 

Although never mentioned in [12], this is 
precisely the Ungerboeck model, but in a 
real-valued formulation. In fact, as defined 
in the section “Detection on General Lin-
ear Channels,” it is y H r*=  and 

,G H H*=  and thus y r H r H* *
,
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,1 1 1 1 2 2 1= +  

and ,y r H r H* *
,

*
,2 1 1 2 2 2 2= +  G H, ,1 1 1 1

2=  
,H ,2 1
2+  G H H H H, ,

*
, ,

*
,1 2 1 1 1 2 2 1 2 2= + =

,G ,
*
2 1  etc. Hence, (19) becomes 
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which is exactly the argument of the expo-
nential in (15) in real-valued formulation.

Based on the formulation (19), [12] 
developed a methodolgy to calculate all 
the X M  metrics by only ( )M M2 2 32 +  

M2-  multiplications. This remarkable 
result relies on the structure of the Unger-
boeck model (15), which allows for a hier-
archical formulation of the minimum 
metric terms, using submetrics in an effi-
cient manner avoiding duplication of cal-
culations. The Ungerboeck metric is 
utilized in such a way that parallelization 
is achieved and multiple calculations are 
done in one clock cycle. Furthermore, a 
doubly recursive evaluation of submetrics 
is used; for a detailed description of this, 
see [12]. In [12], it is also shown that an 
efficient implementation of a soft output 
max-log MAP detector for a M2 #  MIMO 
system with quadrature amplitude modu-
lation (QAM) inputs reduces the number 
of candidate tests by a factor of X  by 
rewriting the minimum metric expression 
in a hierarchical manner. The remaining 
candidate tests are performed in a recur-
sive fashion avoiding multiplications alto-
gether. As a result, the computational 
complexity for the metric calculations has 
been reduced by a factor of 250 for a 

M2 #  MIMO system with Gray-coded 
64-ary QAM (64QAM). Furthermore, it 
was estimated that with 10-bit quantiza-
tion of the metric component values, 
64QAM, and a 2 2#  MIMO system, a 
chip area of 0.031 mm2 would be 
required for a clock frequency of 125 
MHz and 65-nm complementary metal–
oxide–semiconductor (CMOS) technol-
ogy. For more details and applications to 
the IEEE 802.11n standard, see [12].

Factor-Graph-Based Detector 
with Linear Complexity in the 
Number of Interferers
As said earlier, optimal detection by means 
of the VA or the BCJR algorithm works 
over a trellis with X L  states. Channel 
shortening tries to transform the original 
channel into a shorter one before detec-
tion. In addition to channel shortening, 
other approaches to complexity reduction 
have been based on a reduced search over 
the original trellis or on a search over a 
reduced trellis obtained from the original 
one through a partial representation of the 
symbols in the trellis state definition. Many 

( ) ( ) { }Hxr r Hx r Hx r Hx x H Hx2R* * * *2 ?- = - - - +

	

{ }
{ }
{ }
{ }

{ }
{ }
{ }
{ }

| | | |
| | | |
| | | |
| | | |

{ }
{ }
{ }
{ }

r H r H
r H r H
r H r H
r H r H

x
x
x
x

H H
H H
H H
H H

x
x
x
x

2
2
2
2

R
I
R
I

R
I
R
I

R
I
R
I

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

T T
1 1 1 2 2 1

1 1 1 2 2 1

1 1 2 2 2 2

1 1 2 2 2 2

1

1

2

2

1 1
2

2 1
2

1 1
2

2 1
2

1 2
2

2 2
2

1 2
2

2 2
2

1
2

1
2

2
2

2
2

=

- +

+

- +

+

+

+

+

+

+

) )

) )

) )

) )

J

L

K
K
K
K
K

J

L

K
K
K
K
K

J

L

K
K
K
K
K

J

L

K
K
K
K
K

N

P

O
O
O
O
O

N

P

O
O
O
O
O

N

P

O
O
O
O
O

N

P

O
O
O
O
O

	

{ }
{ }
{ }
{ }

{ } { }
{ } { }
{ } { }
{ } { }

.

H H H H
H H H H
H H H H
H H H H

x x
x x
x x
x x

2
2
2
2

R
I
I
R

R R
R I
I R
I I

, , , ,

, , , ,

, , , ,

, , , ,

T
1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 2

1 2

1 2

1 2

+

+

- +

+

+

) )

) )

) )

) )

J

L

K
K
K
KK

J

L

K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
OO

� (19)



[lecture notes] 

	 IEEE SIGNAL PROCESSING MAGAZINE  [160]  MAY 2015	

papers have investigated these approaches 
(as an example, see [13] and the references 
therein). They all have in common that 
they work on the Forney observation 
model. An attempt with scarce success has 
been tried in [14] to adapt some of them to 
the Ungerboeck observation model. The 
reason is related to the fact that the partial 
metric of the VA algorithm does not have, 
in the case of the Ungerboeck observation 
model, a probabilistic meaning.

However, the Ungerboeck model allows 
a different approach to complexity reduc-
tion [15]. Neglecting the factors in (9) that 
are irrelevant for detection, we can write 
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Thus, the joint a posteriori probability of the 
transmitted symbols can be factorized as 
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where ( )P xk k  is the a priori probability of 
symbol .xk

The factorization (25) can be visualized 
through an FG; an example is given in 
Figure 2. In this graph, variable and factor 
nodes are represented through circles and 
squares, respectively. An edge connects a 
variable node xk  with a factor node if and 
only if that variable is an argument of the 
factor corresponding to that factor node. 
In the figure, we used dashed lines to rep-
resent edges involving nodes not explicitly 
represented in the graph. The meaning of 
bold edges will be explained below. Note 
that, when ,g 0=,  the factor I ,k k ,-  is 
equal to one and can thus be dropped 
from the factorization (25). In practice, 
the node I ,k k ,-  must be included in (25) 
only when ,g 0!,  i.e., only when xk  and 
xk ,-  interfere with each other.

The factorization (25) is exact, since 
no approximation was adopted in its deri-
vation. On the other hand, the marginali-
zation of (25), required for computing the 
a posteriori probabilities ( | ) ,rP xk" ,  can-
not be exactly carried out by applying the 
SPA to the FG in Figure 2, since it con-
tains cycles. One of these cycles is indi-
cated in the figure in bold. It is easy to 
prove that the FG corresponding to (25) 
cannot contain any cycle of length lower 
than six, irrespective of the number of 
symbols that interfere with each other. In 
fact, being factor nodes of at most degree 
two, the necessary and sufficient condi-
tion for the arising of a cycle of length 
four is to have two factor nodes of degree 
two connected to the same couple of vari-
able nodes, and this is clearly not possible, 
by definition of .I ,k k ,-  Hence, in this 

case, the SPA may lead to favorable 
results since it is generally expected to 
provide a good approximation of the exact 
marginalizations when the length of the 
cycles is at least six.

The algorithm resulting from the 
application of the SPA to the described FG 
is iterative and has a complexity per itera-
tion, which is linear in the number of 
interferers. This is related to the adopted 
factorization having the appealing prop-
erty that nodes ( , ),I x x,k k k k, ,- -  whose 
number linearly increases with the num-
ber of interferers, have degree two (i.e., 
they have two edges) irrespective of the 
number of interferers.

Conclusions
Although the Ungerboeck and the Forney 
observation models are equivalent when-
ever optimal ML receivers are employed, 
the two models have different properties 
with suboptimal receivers. Almost all 
reduced-complexity receivers take the For-
ney model as the basis for complexity 
reduction. The best example is that it took 
more than three decades from the time 
that the Ungerboeck model was published 
until a BCJR was derived for it. Thus, no 
reduced-complexity Ungerboeck-based 
BCJRs could have been researched until 
only recently. Meanwhile, the amount of 
research devoted to reduced-complexity 
Forney-based BCJRs is impressive. We 
believe that many algorithms can benefit 
from being implemented in the Unger-
boeck model and that there is much to gain 
if the awareness of the model is increased. 
As a step in this direction, we have dis-
cussed three examples where the key build-
ing block is the Ungerboeck model.
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consideration. The separation of sea level 
and land motion change is a matter of great 
importance for global change research, Löf-
gren says. “How much does the sea level 
change in different parts of the world and 
what are the causes of this change?”

The researchers note that existing 
coastal GNSS stations, installed primarily 
for the purpose of measuring land move-
ments, can be easily adapted to make sea 
level measurements. “We have success-
fully tested a method where only one of 
the antennas is used to receive the radio 
signals,” Löfgren says. “That means that 
existing coastal GNSS stations—there are 
hundreds of them all over the world—can 
also be used to measure the sea level.”

Löfgren regards signal processing as 
essential to his research. “What I want to 
do is to convert my GNSS measurements 
into measurements of sea level in the most 
accurate way possible,” he remarks. “Most 
of the signal processing is more or less 
standard in the GNSS world, but I have 
applied it on a new and different data set.”

For the two-antenna technique, Löf-
gren determines the vertical distance 
between the upward-looking and the 
downward-looking antenna (the down-
ward-looking antenna will appear to be a 
virtual antenna below the sea level, since 
the reflected signal will travel an addi-
tional path compared to the direct 

signal). “The signal processing is done by 
analysis of the phase of the recorded sig-
nals,” he says. “An observational model is 
set up for the difference in recorded phase 
between the two antennas (incorporating 
clock differences in the receivers, differ-
ences in geometry and differences in the 
phase ambiguity parameter), and it is 
then fitted in a least squares sense to the 
phase observations.”

For the one-antenna technique, a differ-
ent type of signal processing is applied. 
“The interference between the direct and 
the reflected signals can be seen as oscilla-
tions in the signal-to-noise ratio (SNR) 
observable,” Löfgren says. “With the 
assumption of a horizontal non-moving sea 
level, the frequency of these oscillations is 
constant with respect to the sine of the sat-
ellite elevation angle.” This means that the 
oscillations first need to be found and 
extracted from the data. Next, the oscilla-
tions’ frequency content (with respect to 
the sine of the satellite elevation angle 
instead of the usual time) should be found 
either by Fourier transform or a Lomb-
Scargle periodogram (LSP), Löfgren says. 
Finally, the main oscillation frequency 
must be converted to the distance between 
the antenna and the reflection point, which 
is directly proportional to the sea level.

“In both the one- and two-antenna 
methods, the actual installations that 

measures reflected signals are already set 
up,” Löfgren says. This means that the 
geodetic GNSS receivers are first applying 
some kind of signal processing when they 
record the satellite signals. “What I am 
using as techniques are least squares anal-
ysis [for the] two-antenna technique, and 
LSP [for the] one-antenna technique.”

For the project’s next step, the 
researchers are looking toward developing 
multi-GNSS solutions, possibly even com-
bining GPS and GLONASS signals 
together to increase the number of obser-
vations in a combined phase delay analy-
sis, providing more accurate sea level 
estimates. The combination of GPS and 
GLONASS for SNR analysis is expected to 
increase the temporal resolution of the 
corresponding sea level results.

After that step is accomplished, the 
goal will be to use multi-GNSS, multi-
frequency, phase delay, and SNR analysis 
in a filter approach. “Doing so, we expect 
that it will be possible to derive continu-
ous and accurate absolute GNSS sea level 
time series in a wide range of wind 
speeds,” Löfgren says.
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