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We introduce a simple and fast SSFM-based algorithm, named SCAOS, for simulating the  
counter-propagation of optical signals. Applications to the vectorial counter-propagation of a  
polarized pump and probe demonstrate the phenomenon of lossless polarization attraction.

1. Introduction
In  many  photonics  applications,  especially  in  optical  fiber  based  systems,  the  state  of 
polarization  (SOP)  of  light  remains  so  far  en  elusive  uncontrolled  variable,  that  can 
dramatically  affect  systems performance and that  one would  like  to  control  as  finely  as 
possible.  Recent  experiments  and  simulations  [1-4]  have  demonstrated  that  a  lossless 
polarization attractor can be realized, even using telecom fibers at moderate signal powers 
[2]. Based on the injection of a counter-propagating fully polarized continuous-wave (CW) 
pump,  the attractor can transform the SOP of  any input  probe  signal  into a unique well-
defined output SOP, dictated by the pump SOP. It is worth noting that, as opposed to other 
devices that employ polarization dependent loss/gain, as, e.g., those based on the Raman 
amplification, the physical mechanism behind the lossless polarization attractor is merely the 
Kerr effect [3]. Repolarizing an arbitrarily (un-)polarized optical signal by means of a lossless 
instantaneous  nonlinear  interaction  is  a  fundamental  effect  of  great  interest  for 
telecommunication  applications  and  optical  signal  processing  systems.  Rather  than 
discussing  possible  applications,  we  concentrate  here  on  the  numerical  simulation 
techniques for this phenomenon, which entails counter-propagating signals as a fundamental 
prerequisite for the lossless attraction to happen [1]. 
Simulating polarization attraction requires the joint integration of the two vectorial nonlinear 
Schroedinger equations (VNLSE) of the pump and probe fields. Since the fields initial values 
are supplied at opposite fiber ends, the problem at hand is a Boundary Value Problem (BVP), 
that cannot be tackled with the split-step Fourier method (SSFM). Resorting to traditional 
finite difference integration requires large amounts of memory and long computation times: 
the authors of [1,2] perform numerical simulations in the case of a short fiber (2m) [1], leaving 
to experiments the case of long fibers (kms) [2]. 
In this work, we describe a novel iterative algorithm for the numerical simulation of counter-
propagating optical  signals,  which is based on the SSFM, hence can be implemented in 
many traditional optical simulators that were originally devised for co-propagating channels. 
In addition, having the SSFM as the fast and efficient core of the algorithm's iterations makes 
it suitable for simulating counter-propagation even in (kilometers) long fibers [2], where finite 
difference  integration  is  not  practical.  The  proposed  algorithm,  named  SCAOS  (simple 
counter-propagation algorithm for optical signals), is then applied to simulate the nonlinear 
polarization  interaction between a probe and a pump signals,  that  propagate in opposite 
directions, thus demonstrating the operation of a lossless Kerr-based polarization attractor.
 
2. The SCAOS algorithm
We  wish to  simulate  the  counter-propagation  of a  probe E+(z,t)  and a pump signal E-(z,t), 
travelling  within a fiber of length L, whose  initial values E+(0,t) and E-(L,t)  are  given.  Signal 



Fig.1 (left)  Schematic  description of  the iterative SCAOS algorithm; (right  top) fraction of  
probe energy attracted towards a right-circular pump SOP, in a short lossless attractor, as in  
[1]; (right bottom)residual normalized rms error during SCAOS iterations.

superscripts  ± identify the propagation direction, so that E+(t) propagates from z=0 to z=L, 
and vice-versa for E-(t). Hence, the final result is to calculate the outcoming probe E+(L,t) and 
pump E-(0,t).  The basic idea behind the proposed algorithm is to let E+ and E- iteratively 
propagate from z=0 to z=L and vice-versa (i.e., in the “reverse fiber”, as seen from z=L to 
z=0). In each propagation, one of the fields forward-propagates, starting from its given initial 
value,  towards  its  output  fiber  end,  while  the  other  backward-propagates,  i.e.,  travels 
according to an inverse-Schroedinger equation, starting from an estimated value. Backward-
propagation is an option that can be easily implemented in the SSFM, which is originally 
devised for a fast and efficient (forward-)signal propagation. We did so, while implementing 
the  whole  SCAOS  algorithm,  within  Optilux  [5],  the  SSFM-based,  open-source  optical 
simulator developed at the University of Parma. 
Fig.1(left) sketches the n-th algorithmic iteration. Before the first iteration, the initial pump 
estimate E0

-(0,t) is found by letting the pump initial condition E -(L,t) forward-propagate as a 
single field, from L to 0. After each half-iteration, the backward-propagating signal completes 
a round-trip towards its input fiber end, yielding a new n-th estimate for the input field (E n

-

(L,t), at z=L, or En
+(0,t), at z=0). A normalized root mean square (rms) error is calculated, 

between  such  an  estimate  and  its  true  initial  value.  At  the  same time,  the  given  initial 
(boundary) value is substituted to the estimate, so that the outcoming forward-propagating 
field (En

+(L,t), at z=L, or En
-(0,t), at z=0, which are the sought quantities) is refined, at the next 

iteration. 
The rms errors RMSn

±,  evaluated for the pump and probe at n-th iteration, drive the stop 
criterion: the algorithm stops when both RMSn

± are below a certain threshold, meaning that 
the round-trip field estimates are sufficiently close to their true initial values. Fig.1(bottom-
right), obtained for the polarization attraction setup of Sec.3, shows a typical behavior of the 
normalized rms errors, where the errors becomes negligible (below 0.1%) in a few iterations.

3. Application to lossless polarization attraction in a short highly nonlinear fiber
As a first application of the SCAOS algorithm, we simulate the system setup described in [1] 
and used for  the first  experimental  demonstration  of  lossless  polarization  attraction.  The 
counter-propagating pump and probe beams, both consisting of a completely polarized 10ns 
intensity-modulated light pulse, are transmitted on a highly nonlinear single mode fiber, with 
length L=2m. The large Kerr coefficient  (γ=22W-1Km-1) and pulse intensities (up to 45W) 
used  in  the  experiments  allow  a  significant  nonlinear  interaction.  In  such  a  short  fiber, 
propagation is  governed by the VNLSE,  where  circular  polarizations  play  a special  role, 
hence a rigth circular polarization is chosen for the input pump SOP (S3 in Stokes space).  



Fig.2 Lossless polarization attraction between pulses in a short fiber. Left to right (a-d): (a)  
SOP traces along z; (b) motion of the average attracted SOP; (c) resulting DOP, along z; (d)  
output average probe SOP (DOP=magnitude) for 50 random input SOPs.

After propagating 7 different input probe SOPs with increasing ellipticity and random azimuth, 
Fig.1(top-right) shows the fraction of output probe energy that is aligned with (solid line) or 
ortogonal to (dashed line) the input pump SOP, as a function of the equal pump and probe 
peak  powers  injected  into  the  fiber.  Results  coincide  exactly  with  those  reported  in  [1] 
(obtained with finite difference integration), and show how, as power increases, each input 
probe SOP is attracted towards the right circular polarization imposed by the pump.
To gain further insight into the polarization attraction process, we report in Fig.2 details about 
the polarization states of the pump and probe along the fiber, in the case of an input probe 
with linear horizontal SOP and input powers 100W. The degree of polarization (DOP) of the 
launched pump and probe pulses is  unitary.  This  is  no longer  true when the two signal 
beams start  interacting:  Fig.2(a) shows the  depolarization traces,  for the probe (red) and 
pump (blue), on the Poincaré sphere. Each trace represents the time evolution of the pulse's 
SOP, at a given position z∈[0,L] along the fiber, and the inner black vectors represent its 
power-averaged SOP. From each trace, we report, in Fig.2(b-c), the average SOP and the 
DOP. The probe average SOP is attracted towards the pump SOP, with a relatively small 
depolarization,  while  the pump is much more depolarized and ends away from the input 
probe.  Full  results,  as  in  Fig.2(a-c),  are  obtained  with  the  SCAOS  algorithm  in  8min 
computation time, on an ordinary PC.
Different choices for the input probe SOP yield similar results: Fig.2(d) shows the resulting 
average output polarization, for 50 random input probe SOPs, along with the DOP of the 
output  pulse,  represented  by  the  vectors'  magnitude.  The  figure  shows  an  effective 
polarization attraction towards the right-circular pump SOP, for all but those probe SOPs that 
are initially  almost  orthogonal  to the pump. On the contrary,  we verified that  polarization 
attraction is not equally effective, in this setup, if the pump is not circularly polarized: a fact  
that has not been sufficiently pointed out in [1].

4 Application to lossless polarization attraction in a long telecom fiber
As demonstrated in [2], polarization attraction can happen even at moderate power levels, 
provided  that  the  nonlinear  polarization  interaction  occurs  in  a  longer  fiber.  The second 
system setup to which we apply the SCAOS algorithm is similar to the one used for the 
experiments in [2]. An intensity modulated probe pulse, with duration  3µs and  peak power 
1.2W, undergoes lossless Kerr interaction with a counter-prapagating CW pump, with equal 
power, on an ordinary telecom fiber, with Kerr coefficient  γ=1.99W-1Km-1 and length L=10km. 
Thanks to the random birefringence of the fiber, propagation is governed by the Manakov 
equation [3-4], where the Kerr effect is isotropic, on the Poincaré sphere. Hence, we choose 
a linear horizontal pump SOP (similar results were obtained for any other tested pump SOP).
Simulation  result  are shown in Fig.3,  in the same framework  as those reported in  Fig.2. 
Choosing  a  right-circular  input  probe  SOP  yields  the  depolarization  traces reported  in 
Fig.3(a) (10 traces, plotted every km of propagation). The probe average SOPs, plotted on a 
finer  scale in Fig.3(b),  show  that  attraction  occurs  towards the  pump SOP,  along a spiral 



Fig.3  Lossless  polarization  attraction  of  a  probe  pulse  towards  a  (linear  horizontal)  CW 
pump, in a long fiber. Left to right (a-d): (a) SOP traces along z; (b) motion of the average  
attracted SOP; (c) resulting DOP, along z; (d) output average probe SOP (DOP=magnitude)  
for 50 random input SOPs.

trajectory.  The probe  depolarization is  visible in the DOP  curve in Fig.3(c),  while the pump 
depolarization is negligible here, being the pump much longer than the probe duration.
Repeating the propagation for 50 random input probe SOPs yields similar results. Fig.3(d) 
shows the corresponding average output probe SOPs. Polarization attraction is testified by 
the  50  vectors  surrounding  the  attracting  pump  SOP (S1),  where  the  output  DOPs  are 
reported as the vectors' magnitude.

5. Conclusions
We  introduced  a  novel  iterative  algorithm,  named  SCAOS,  to  simulate  the  counter-
propagation of optical signals, and implemented it in the  Optilux simulator [5]. We applied 
SCAOS to simulate the nonlinear polarization interaction between a pump and a probe field, 
due to Kerr effect. Two system setups were analyzed, showing that polarization attraction 
takes place both in a short highly nonlinear fiber, where powerful signals are launched, and 
in a long telecom fiber, even with moderate signal powers. The algorithm, always converging 
in  a few iterations (with fast  computation times),  allowed a detailed  study of  the signals' 
polarization evolution, thus pointing out the dynamics of lossless polarization attraction.
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