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In lossless polarization  attraction,  we find the optimal  (co-propagating)  pump wavelength  
placement and the related scaling rule, as a function of symbol period. We demonstrate that  
polarization attraction occurs only within a limited range of walk-off values.

1. Introduction
Lossless  polarization  attraction (LPA)  is  a nonlinear  phenomenon for  which the arbitrary 
polarization  of  a signal,  propagating in  a fiber,  is  attracted towards the polarization  of  a 
continuous wave (CW) pump, that is usually counter-propagating. Being based on the Kerr 
effect,  LPA is  promising for  devising polarization  control  devices  and for  other all-optical 
telecom applications.  One of  the possible applications of  LPA is  the noise cleaning of  a 
polarized signal, which can enhance the OSNR by a factor close to 3 dB [1].
However, the numerical simulation of LPA requires costly iterative algorithms [2], due to the 
counter-propagating  configuration.  The  study  of  LPA  has  recently  moved  to  the  co-
propagating configuration [3], which is simpler to simulate and, mostly, even more flexible, 
since it allows the designer to finely control the relative pump-probe propagation speed, i.e., 
the walk-off, by selecting the fiber type and the pump-probe wavelength spacing ∆λ [3]. As a 
consequence, the co-propagating LPA can effectively repolarize even short (picoseconds) 
pulses, whereas LPA traditionally fails because of the large (microseconds) transient time [4].
Here, we characterize the performance of LPA, in the co-propagating configuration, as a 
function of the total walk-off delay TD, for values of the pulse duration typical of telecom links 
(symbol period: 10-103 ps). At the same time, we shall cast new light onto the central role of 
walk-off in the dynamics of LPA, by showing the interval of wavelengths where to place the 
pump, in order to reach the polarization attraction regime.

2. System Model and Parameters
We consider LPA occurring in a non-zero dispersion-shifted fiber (NZ-DSF) span, with length 
L=20 km, attenuation α=0.2 dB/km, nonlinear Kerr coefficient γ=1.99 W-1km-1 and dispersion 
parameter D=4 ps/nm/km. We inject into the fiber a single intensity-modulated pulse (probe) 
with limited duration TS, placed at the fiber zero dispersion wavelength λZDW. A fully-polarized 
CW pump, placed at wavelength λp, is injected into the same fiber end as the probe. Hence, 
pump and probe propagate at different speeds, and their total walk-off delay, at the fiber 
output, is TD=D·∆λ·L, where ∆λ=λp-λZDW. Since we fix the fiber type and length, as well as the 
probe wavelength, TD can be tuned by varying the pump wavelength placement. In order to 
explore a wide range of walk-off delays, we varied ∆λ from 0 to 20 nm, still keeping probe 
and pump within the conventional telecom bandwidth (C-band), so that TD varies between 0 
and 1600 ps. The simulation of very small TD values is mainly of theoretical interest, since it 
would require Δλ≅0, hence an overlap of pump and probe spectra [3].
We  consider  the  practical  case  of  a  randomly  birefringent  telecom  fiber,  with  a  PMD 
coefficient DPMD=0.05 ps·km-0.5, typical of recently manufactured fibers. For the fiber length L 
used in our LPA, DPMD  is small enough to make linear PMD effects negligible [3], while the 
random birefringence is such that the propagation is governed by the Manakov equation 
[3,4]. Hence, the evolution of the (unattenuated) probe and pump Stokes vectors is governed 
by the following equations [3]:
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the  inverse of  the  “walk-off  speed”.  In  (1), S  z , t =S 0 z ,t  s  z ,t  is  the  probe  Stokes 
vector, with magnitude S0(z , t ) , equal to the power profile of the probe pulse, and direction
s  z , t  , representing the state of polarization (SOP) evolution, onto the Poincaré sphere; 

similarly, P  z , t =P0 p z , t  is the Stokes vector of the CW pump. The equations in (1) 
are spherically isotropic, implying that polarization attraction occurs for any input pump SOP
p0 (fully polarized, at z=0) [2,3]. In the results that follow, we arbitrarily choose a linear 

horizontal pump polarization, hence p0=s1 is the first Stokes axis.
When a fully polarized probe pulse, with a specific input SOP s 0 , is launched into the 
fiber, the LPA performance is quantified by the degree of attraction (DOA) [5]. Averaging the 
DOA over the (uniform) distribution of input probe SOPs, the overall  performance of LPA 
coincides with the usual definition of the degree of polarization (DOP), evaluated over the 
output  probe  [3], DOP=∥E [ 〈S L , t 〉]∥/〈S 0L , t 〉 ,  where 〈 ·〉 and E [ ·] represent 
time- and statistical-averaging, while ∥·∥ is the euclidean norm. To evaluate the DOP, we 
averaged over 100 launched probe SOPs, with uniform distribution over the Poincaré sphere.
Being a nonlinear phenomenon, LPA depends mainly on the injected power level [3,5]. Here, 
we kept the overall optical power at a moderate level, and chose the same probe and pump 
peak power, P0=S0

peak=200mW . At such power levels, four wave mixing (FWM) effects, 
such as pump power depletion (that eqs. (1) do not account for) are negligible [3], as we 
numerically verified.

3. Optimization of the pump wavelength placement
Fig. 1(a) shows the LPA performance, quantified by the output DOP, as a function of the total 
walk-off delay  TD between pump and probe.  Different plots are obtained for  a rectangular 
probe pulse with the following durations TS: 1000, 400, 100, and 10 ps. Fig. 1(a) shows that 
an optimal walk-off delay TD

*, hence an optimal pump wavelength λp
*, exists, that maximizes 

the performance of attraction. While such optimal  TD
*  (and the whole plot) depend on the 

probe pulse duration TS, it is remarkable that the best DOP value is independent of it, being 
DOP*≅0.78 for  all  the tested pulses.  Moreover,  TD

* increases with the pulse  duration  TS, 
meaning that the effectiveness of polarization attraction fades away, i.e., DOP drops below 
DOP*, whenever the walk-off delay TD is too large or too small, compared with the duration of 
the pulse to be attracted. 
The above results suggest that a scaling rule exists.  This is indeed verified in Fig. 1(b), 
where the obtained DOP values are plotted versus the walk-off delay TD/TS, normalized to the 
pulse duration. Hence, each curve in Fig. 1(a) can be obtained by rescaling the single curve, 
visible in Fig. 1(b), which summarizes the performance of LPA for any pulse duration, at the 
chosen power level. In agreement with the results in [3], such a curve is expected to reach 
larger DOP values,  by increasing pump and probe power, although we do not test other 
power levels, here. The optimal normalized walk-off delay is TD

*/TS≅1.75.
The scaling rule, just verified numerically, should not surprise, since it can be demonstrated 
analytically. From the propagation equations (1), suppose we make the change of time scale
τ=t /T , so that S '( z , τ )=S(z , t /T ) is a compressed version (if 0 < T < 1) of the probe 

pulse. It is easy to show that S '( z , τ ) and P '( z , τ )=P (z , t /T ) obey a set of equations 
identical  to (1), provided that the walk-off speed vwo is changed into vwo '=vwoT . This 
implies that the output probe evolution, hence its polarization and the corresponding overall 
DOP, are the same as those got by solving (1), for a rescaled walk-off speed, hence for a 
rescaled  delay T D '=L /vwo '=T D /T .  As  a  consequence,  if  we choose the time-scaling 



factor equal to the pulse duration, T=TS, all the curves in Fig. 1(a) coincide, as demonstrated 
in Fig. 1(b). The practical implication of the obtained result is that, given the LPA parameters 
and the pulse duration, the optimal  TD

*≅1.75·TS can be reached by placing the pump at an 
optimal wavelength distance ∆λ*=TD

*/(D·L) from the probe. On the contrary, for a given pump 
wavelength, hence a fixed  ∆λ (and  TD),  an optimal pulse duration  TS

*≅TD/1.75 exists,  that 
maximizes the effectiveness of LPA. In any case, polarization attraction effectively occurs 
only for a limited range of pulse durations; e.g., in the present case of system parameters, 
results in Fig. 1(b) show that TD/6 < TS < TD is required, in order to get DOP > 0.7.

4. Polarization Rotation and Polarization Attraction Regimes
As a matter of fact, lossless polarization attraction is the joint effect of Kerr nonlinearity and 
walk-off,  both occurring between pump and probe,  in carefully  balanced amounts.  Fig.  2 
shows a numerical exemplification of this assertion. 
The plots in  Fig. 2 show the evolution of the probe polarization along the LPA fiber. Each 
(red) circle is the time-averaged SOP of the probe pulse, at a given position 0 ≤ z ≤ L, i.e., 
the direction of S  z =〈S  z ,t 〉 . Fig. 2 was obtained for specific probe and pump input 
SOPs:  namely, s 0= s3 (right-circular)  and p0=s1 (linear-horizontal),  both  marked 
with a (red or black) vector, in the figure. The three plots correspond to different values of the 
walk-off delay TD, equal to zero (a), 5·TS (b), and 32·TS (c).
As clearly seen in Fig. 2, the average probe SOP, starting at s3 , moves towards the pump 
SOP s1 ,  hence  evolves  according  to  a  polarization  attraction  regime,  only  for  the 
intermediate case. On the contrary, the probe SOP keeps rotating in a circle, i.e., undergoes 
a  polarization rotation regime, in the other two cases. Such a behavior,  that we regularly 
observed for any input probe SOP, can be simply explained, in the case TD=0 (Fig. 2(a)). In 
fact, it is well known that, in the absence of walk-off, both pump and probe SOPs evolve in z 
according to a “carousel model” [6], i.e., they rotate around a fixed pivot equal to their vector 
sum, hence located middle way between s3 and s1 , in the present case of equal pump 
and  probe  power.  The  circle  thus  described  by S(z) ,  as  seen  in  Fig.  2(a)  can  even 
become aligned with the pump SOP ( s1 ), for certain values of z and/or power, but still in a 
polarization rotation regime,  and not in the  polarization attraction regime, hence subject to 
change with length, power, and input probe SOP. The other extreme case of very large walk-
off,  shown in Fig. 2(c),  can be equally well  explained with the rotation of the probe SOP 
around the pump SOP (here s1 ), as dictated by the first eq. in (1). This case differs from 
the zero walk-off case since, in the limit, it is as if the probe pulse were infinitely short, hence 
is unable to perturb the pump polarization, through the second eq. in (1).
Hence, the two polarization rotation regimes can be explained theoretically and never result 

     (a)      (b)

Fig.1  Performance  of  lossless  polarization  attraction  (LPA):  output  probe  DOP vs.  total  
pump-probe walk-off delay TD. Results obtained for different pulse durations TS (a) obey a  
scaling law, so that DOP only depends on the normalized delay TD/ TS  (b).



in  polarization  attraction,  since  the  probe  SOP  evolves  in  circles  (although  an  illusory 
attraction can occur, in the first case, for specific LPA parameters). An effective polarization 
attraction regime  is reached, instead, for intermediate values of the walk off, close to the 
optimal TD, that depend on the duration of the pulse to be attracted. In this case, the probe 
SOP S (z) follows a spiral trajectory, as in Fig. 2(b), leading towards the pump SOP, at the 
LPA output. The geometrical features of such a spiral, related to the polarization attraction 
dynamics, deserve further investigation.

5. Conclusion
We characterize the performance of lossless polarization attraction, in the co-propagating 
configuration, by measuring the average output DOP, as a function of the walk-off delay TD 

between  the  attracting  CW pump and  an  attracted probe  pulse,  with  duration  typical  of 
telecom links. We demonstrate that a scaling rule exists, so that the optimal performance 
(DOP)  can  be  achieved  for  any  pulse  duration,  provided  that  the  walk-off  is  tuned 
accordingly, by placing the pump at an optimal wavelength. As a consequence, we show that 
the  "polarization  attraction  regime"  occurs  only  when  Kerr  nonlinearity  and  walkoff  are 
carefully  balanced.  In this case,  the probe SOP evolves along a spiral  trajectory,  ideally 
collapsing into the pump SOP, while, in all other cases, we only observe a SOP rotation, that 
never results in a genuine polarization attraction.
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(a) (b) (c)
Fig.2 Evolution of the average probe pulse polarization along the LPA fiber. Here, the input  
probe and pump SOPs are right-circular  and linear-horizontal  ( s3,1 ,  as marked in  the  
figure). A too small (a: TD=0) or too large (c: TD=32·TS) walk-off induces polarization rotation,  
while LPA is effective for a intermediate values (b: TD=5·TS).


