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Abstract—This work addresses the estimation of Gaussian
signals over power line channels which are impaired by impulsive
noise. The Markov-Middleton model is used to describe the
memory and the multi-interferer nature of the impulsive noise.
The estimation of Gaussian samples has been obtained by using
a message passing algorithm. The message passing approach
involves estimation of the channel states, approximation of the
Gaussian mixtures and estimation of the correlated Gaussian
samples. Correlation of channel states and correlation of input
samples results in a loopy factor graph. To implement message
passing on a loopy factor graph, we divide the graph in two
main parts that exchange their messages by using a parallel
iterative schedule. The lower part detects the channel states using
the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm and the upper
part estimates the signal samples using a Kalman smoother. The
proposed approach extensively reduces the complexity of the
overall estimation process.

Index Terms—power line communications, impulsive noise,
Markov-Middleton model, Bayesian estimation, message passing
algorithms

I. INTRODUCTION

Power Line Communications (PLC) enable broadband data
transmission over existing electrical power infrastructures. One
of the main limitations of the PLC systems is the channel
noise which is not a simple Additive White Gaussian Noise
(AWGN). Besides a stationary background noise component,
the dominant noise in PLC is the impulsive noise [1], [2].
Quick changes in the state of the electrical devices and sudden
connection and disconnection from power supplies are the
main sources of the impulsive noise. Moreover, multicarrier
modulation schemes are widely used in PLC [3], [4]. Trans-
mission of data symbols in a multicarrier modulation system
can simply be modeled by the transmission of analog Gaussian
signals. Therefore, a meaningful investigation of a PLC system
can be obtained through an accurate modeling of the impulsive
noise and by devising an optimal estimation strategy, which is
the main objective of this work. Previous attempts to model
impulsive noise can be summarized as follows. The simplest
model was the Bernoulli-Gaussian, in which it was assumed
that impulsive noise has a Gaussian distribution with variance
larger than that of background noise [5]. The model did
not consider noise memory. In [6], Fertonani and Colavolpe
proposed the Markov-Gaussian model which reflects the mem-
ory of the channel by considering the Markovianity of noise
samples. The first report on Middleton class A noise was
[7]. The model states that channel noise is a combination of
independent and zero-mean Gaussian distributions. Ndo et al.

[8] proposed a Hidden Markov Model (HMM) to describe
the Middleton class A noise and the Markovianity of noise
samples. Previous works on estimation of Gaussian signals in
the presence of impulsive noise use the above models. In [9],
Banelli derived the Minimum Mean Square Error (MMSE)
Optimal Bayesian Estimation (OBE) to estimate Gaussian
signals in the Middleton class A noise. Alam et al. [10]
proposed the joint MMSE OBE of Gaussian symbols and
detection of correlated channel states in the Markov-Gaussian
impulsive noise. Vannucci et al. [11] proposed a novel factor
graph based approach for joint estimation of correlated Gaus-
sian symbols and detection of correlated channel states in a
Markov-Gaussian scenario.

The main subject of this work is to investigate data trans-
mission over PLC links, impaired by impulsive noise. To
this end, we adopt the HMM proposed in [8] to model the
impulsive noise and the same estimation approach as in [11]
to estimate correlated Gaussian samples in the presence of
Markov-Middleton class A impulsive noise, thus extending the
results in [11], that are limited to a binary Markov-Gaussian
channel, to a more realistic impulsive noise scenario. We focus
our attention from a minimum of 4 to a maximum of 16 noise
states, i.e., 3 to 15 possible sources of impulsive noise. It
should be noted that the 2-state noise model is fully analyzed
in [11]. Moreover, it is expected that the results would not
considerably change for higher noise states than 16-state noise
model. Approximate inference algorithms can be applied to
the factor graph that models the overall system, in order
to devise an optimal receiver. Dealing with a loopy factor
graph, it is convenient to split the graph in two subgraphs
and to establish a parallel iterative schedule between the two
halves. One subgraph detects the channel states, through the
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, and the other
subgraph estimates the correlated signal samples, through a
Kalman smoother.

II. CHANNEL MODEL

A sequence of correlated Gaussian samples {sk}K−1
k=0 are

obtained by passing a white noise process through a single
pole Infinite Impulse Response (IIR) digital filter, which forms
an autoregressive model of order one (AR(1))

sk = a1sk−1 + ωk (1)

where {ωk} is a sequence of i.i.d. Gaussian noise samples,
ωk ∼ N(ηω, σ

2
ω), and a1 determines the pole of the filter. The
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Fig. 1. Three-state Markov-Middleton noise model.

mean and variance of a signal sample sk can consequently
be calculated as ηs = ηω/(1 − a1) and σ2

s = σ2
ω/(1 − a2

1),
respectively. The correlated Gaussian samples are transmitted
over a Middleton Class A noise channel [7], so that the
received samples can be described by

yk = sk + nk (k = 0, 1, · · · ,K − 1) (2)

in which nk is a real-valued noise random variable whose
probability density function (pdf) can be written as

p(nk) =
∞∑
i=0

pi√
2πσ2

i

exp

{
− n2

k

2σ2
i

}
(3)

In (3), pi represents the probability of being in the i-th noise
state and has a Poisson distribution,

pi =
e−AAi

i!
(4)

in which A is the impulsive index and equals the average
number of active impulsive sources per unit time; σ2

i is the
variance of the overall impulsive noise component and can be
calculated as

σ2
i =

(
1 +

i

AΓ

)
σ2

0 (5)

which implies that the total variance of noise is equal to
the variance of the background Gaussian noise, σ2

0 , plus the
variance of the impulsive noise, i

AΓσ
2
0 . The physical meaning

of Γ stems from the expectation of (5),

σ2 = E[σ2
i ] =

∞∑
i=0

σ2
i pi =

(
1 +

1

Γ

)
σ2

0 (6)

Equation (6) states that the average power of the noise is
equal to the average power of background Gaussian noise
plus the average power of impulsive noise. Therefore, Γ is
the ratio of the average power of background noise to the
average power of impulsive noise. Suppose that i impulsive
sources are simultaneously active at a given time. In this case,
the Middleton class A noise can be seen by the receiver as a
single Gaussian distributed sequence with larger variance, σ2

i .
Now we may consider the channel memory. To this end, we

use the proposed HMM by Ndo et al. [8] which consists of
the Middleton class A noise model parameters, A, Γ,σ2, and a
correlation parameter, which reflects the channel memory. The
pdf of the Middleton class A noise has an infinite number

of terms. An approximation can be made by considering a
maximum number of impulsive sources M − 1. Truncating
(3), the pdf of the M -state Middleton class A noise can be
written as

p(nk) =
M−1∑
i=0

p′i√
2πσ2

i

exp

{
− n2

k

2σ2
i

}
(7)

where, consistent with [8]

p′i =
pi∑M−1

i=0 pi
(8)

is set for normalization. The corresponding HMM state dia-
gram is shown in Fig. 1 for M = 3. The correlation parameter
x can be interpreted as the probability of remaining in the same
state. The transition matrix P for the corresponding HMM can
be written as

P =

 x+ (1− x)p′0 (1− x)p′1 (1− x)p′2
(1− x)p′0 x+ (1− x)p′1 (1− x)p′2
(1− x)p′0 (1− x)p′1 x+ (1− x)p′2


(9)

The average number of consecutive samples staying in a
given noise state i can be derived from (9) as

Ti =
1

(1− x)(1− p′i)
(10)

which thus represents the average duration of an impulsive
noise event due to i active impulsive sources.

III. ESTIMATION STRATEGY

A. Drawing the Factor Graph
In this section, we describe our strategy to estimate cor-

related Gaussian samples in the presence of impulsive noise
with memory, as modeled by the above Markov-Middleton
model. The proposed estimation method by Vannucci et al.
in [11] is employed in this work. A traditional approach to
signal estimation can be performed by first detecting the noise
state at every time slot. On the contrary, for an optimal signal
estimation, joint estimation of the correlated Gaussian samples
and detection of the correlated channel states is demanded.
Factorizing the joint pdf of signal samples s = {sk} and
channel states i = {ik} conditioned on the observation
samples y = {yk} yields

p(s, i | y) ∝ p(s, i, y) = p(y | s, i)p(s)P (i)

=

[
K−1∏
k=1

p(yk | sk, ik)p(sk | sk−1)P (ik | ik−1)

]
p(y0 | s0, i0)p(s0)P (i0)

(11)

Considering the Markovianity of noise states, P (ik | ik−1)
can be computed from matrix P in (9) as

P (ik | ik−1) = P (ik−1 + 1, ik + 1) (12)

and its initial value is set by the distribution

P (i0) =
M−1∑
n=0

p′nδ(i0 − n) (13)

2019 1st Global Power, Energy and Communication Conference (IEEE GPECOM2019), June 12-15, 2019, Cappadocia, Turkey

69



Fig. 2. Schematic of the factor graph for joint probability distribution p(s, i | y). ik and sk represent the noise state and the signal sample at time instant
k, respectively. At the k-th stage, the messages sent from factor nodes to variables nodes are indicated in the graph.

where M is the number of noise states. From the AR(1)
process (1), p(sk | sk−1) can be written as

p(sk | sk−1) = g(sk − (a1sk−1 + ηω), σ2
ω) (14)

in which g(x − η, σ2) denotes the Gaussian pdf with mean
η and variance σ2. Substituting ηω = ηs(1 − a1) and σ2

ω =
σ2
s(1− a2

1) in (14) results in

p(sk | sk−1) = g((sk−ηs)−a1(sk−1−ηs), σ2
s(1−a2

1)) (15)

so that the initial distribution of signal samples can be obtained
by simply setting a1 to zero

p(s0) = g(s0 − ηs, σ2
s) (16)

which is the prior distribution of samples sk. From (2), the
conditional pdf of the observed sample at time k is

p(yk | sk, ik) = g(yk − sk, σ2
i,k) (17)

in which σ2
i,k is determined by the noise state at time k and

can be computed from (5) as a function of ik.
The factor graph corresponding to the joint pdf in (11) is

depicted in Fig. 2. As extensively discussed in [11], such a
factor graph with loops and mixed discrete (ik) and continuous
(sk) random variables makes the message passing procedure
intractable. One way to overcome these difficulties is to split
the factor graph in its lower and upper parts and let them
operate separately, while approximating the messages that
these two subgraphs exchange along the vertical edges Fig.
2. Three main operations are thus implemented in the graph.
Throughout the bottom line of the graph, channel states are
detected using the BCJR algorithm. Throughout the top line
of the graph, signal samples are estimated using a Kalman
smoother. The reason for referring these two well assessed
algorithms is that, as can be easily demonstrated [11], the two

halves of the factor graph indeed reduce to the implementation
of BCJR (lower half) and Kalman smoother (upper half). On
each vertical edge of the graph, a hard decision on ik is used to
perform the approximation of Gaussian mixtures, that naturally
arise as messages [11], which remarkably reduces the overall
complexity of the computation. The communication procedure
among the algorithmic blocks is known as parallel iterative
schedule [11]. In the following sections, the algorithms will
be briefly discussed.

B. BCJR

Suppose that the upper part of the factor graph provides the
estimation of Gaussian signal samples at a given iteration, i.e.,
that node sk provides its own estimated pdf, with mean η̂k and
variance σ̂2

k. Thus, the message sent from the variable node
sk to the factor node p(yk | sk, ik), named as pd(sk), can be
written by

pd(sk) = g(sk − η̂k, σ̂2
k) (18)

The message received by the variable node ik from the
factor node p(yk | sk, ik) can be computed with a convolution
of Gaussian pdfs as

Pd(ik) =

∫
pd(sk)p(yk | sk, ik)dsk

=

∫
g(sk − η̂k, σ̂2

k)g(yk − sk, σ2
i,k)dsk

= g(yk − η̂k, σ̂2
k + σ2

i,k) = p(yk | ik)

(19)

It should be noted that σ2
i,k can take values from a set

of M different variances, each corresponds to one particular
channel state. Having Pd(ik) for all channel states, enables
us to compute the forward and the backward messages on the
bottom line of the factor graph.
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Fig. 3. MSE vs. SNR curves, 4-state noise model. The signal parameters are
a1 = 0.9, ηs = 0 and σ2

s = 1. The noise parameters are x = 0.9, A = 0.2, 1
and Γ = 0.01. 100 frames of 1000 samples have been transmitted. The genie
aided Kalman smoother is a lower bound for the estimation. The Parallel
Iterative Schedule is a suboptimal estimator in which the noise variances are
provided by the hard decision unit.

Pf (ik) =
∑
ik−1

P (ik | ik−1)Pf (ik−1)Pd(ik−1) (20)

Pb(ik) =
∑
ik+1

P (ik+1 | ik)Pb(ik+1)Pd(ik+1) (21)

in which k = 1, · · · ,K − 1 for Pf (ik) and k = K − 2, · · · , 0
for Pb(ik). The initial values for forward and backward
equations are Pf (i0) = P (i0) in (13) and Pb(iK−1) = 1,
respectively. It can be shown that the the above equations
implement a celebrated MAP symbol detection algorithm,
known as BCJR [12]. Once a forward (filtering) and backwards
(smoothing) message-passing iteration has been completed, the
completion step of the BCJR algorithm can be obtained by
multiplying all of the incoming messages to variable node ik:

P̃ (ik) = Pf (ik)Pb(ik)Pd(ik) (22)

The message that goes upward from the variable node ik to
the factor node p(yk | sk, ik) can now be calculated as

Pu(ik) = Pf (ik)Pb(ik) = P̃ (ik)P−1
d (ik) (23)

C. Kalman Smoother

Suppose that the lower part of the factor graph uses the
above estimation (22) on ik to provide p(yk | sk, ik) at the
next iteration. Assume that this probability is a single Gaussian
distribution with mean yk and variance σ2

n,k at each time
instant k. Therefore, the message sent from the factor node
p(yk | sk, ik) to the variable node sk, can be written in a way
similar to (17), as

pu(sk) = g(yk − sk, σ2
n,k) (24)

Having pu(sk) for all signal samples, and by considering
that the noise variance changes from sample to sample,
which implies that noise is not stationary, the upper part
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Fig. 4. MSE versus SNR curves, 16-state noise model. Same parameters as
in Fig. 3. 100 frames of 1000 samples have been transmitted.

of the factor graph coincides with a Kalman smoother (see,
e.g., [13]). Assuming that pf (sk) = g(sk − ηf,k, σ

2
f,k) and

pb(sk) = g(sk − ηb,k, σ2
b,k), the estimated Gaussian samples

from the Kalman smoother can be described by their means
and variances. After completing the message passing proce-
dure, results

η̂k = (σ−2
f,k + σ−2

n,k + σ−2
b,k)−1[

ηf,k
σ2
f,k

+
yk
σ2
n,k

+
ηb,k
σ2
b,k

] (25)

σ̂2
k = (σ−2

f,k + σ−2
n,k + σ−2

b,k)−1 (26)

The estimates in (25) and (26) will be fed back to the lower
half of the graph, so that BCJR and Kalman smoother can
iterate until convergence.

D. Hard Decision

The Gaussianity of message pu(sk) is not trivial. Let us
describe the crucial role of the hard decision unit and provide
a description of the parallel iterative schedule. According to
(19), the message from the factor node p(yk | sk, ik) to
the downward variable node ik, Pd(ik), is a single Gaussian
distribution. However, the upward message from the factor
node p(yk | sk, ik) to the variable node sk, pu(sk), is a
mixture of Gaussian distributions. The reason is that Pu(ik)
is the estimation of the probability mass function (pmf) of
the discrete variable ik, with M different probability masses,
such that the resulting observation yk has to account for
M possible noise variances (through the theorem of total
probabilities). Consequently, pu(sk) consists of M different
terms each associated to one possible noise state.

pu(sk) =
M−1∑
j=0

Pu(ik = j)g(yk − sk, σ2
j,k) (27)

Therefore, there is a mixture of Gaussian distributions at
each vertical edge of the factor graph, which dramatically
increases the overall estimation complexity. Our approach to
overcome this problem is to approximate pu(sk) by its n-th
Gaussian term which has the largest mass in the pmf. To this
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end, according to (23), a hard decision is taken on P̃ (ik), as
provided by the BCJR algorithm, to find out the most likely
state ik = n and to compute pu(sk) as a single Gaussian
distribution.

pu(sk) ≈ g(yk − sk, σ2
n,k) (28)

The parallel iterative schedule can now be described explic-
itly. Kalman smoother and BCJR work in parallel and they ex-
change their messages at every iteration. At the first iteration,
Kalman smoother works with initial values of P (ik) = P (i0)
for all channel states and BCJR starts with initial values of
p(sk) = p(s0) for all signal samples. At every iteration, hard
decisions for ik are taken to compute pu(sk) for the next
iteration.

IV. SIMULATION RESULTS AND DISCUSSION

The Mean Squared Error (MSE) versus Signal to Noise
Ratio (SNR) curves for estimation of correlated Gaussian
samples in the correlated 4-state and 16-state Middleton class
A noise are depicted in Fig. 3 and Fig. 4, respectively. The
simulation parameters were set as follows. We considered a
correlation parameter x = 0.9, characterizing the Markovian
memory of the channel, that tends to remain in the same state
with probability 0.9. Hence, once an impulsive noise event is
started due to the presence of i electromagnetic interferers,
such a number is expected to change with probability 0.1.
The impulsive index A, that is the average number of active
interferers, was considered to be either 0.2 or 1 and we set
Γ = 0.01, so that the average power of impulsive noise
is 100 times larger than that of the background noise. We
assumed that the transmitted signal samples sk are strongly
correlated, with a1 = 0.9 being the pole of the IIR digital
filter in (1). The opposite situation of independent Gaussian
transmitted samples, i.e., a1 = 0, is the one analyzed in [10],
for which a much simpler cycle-free factor graph is obtained.
We assumed zero mean correlated signal samples, so that
ηs = 0, simply because a nonzero mean would result in a
trivial, biased extension of the same system model. We set a
normalized value σ2

s = 1 for the variance of signal samples,
which represents the asymptotic values for the MSE curves,
(σ2

s)dB = 0 dB, on the left of Figs. 3 and 4, when noise
dominates over signal power (so that the signal estimates
degenerates onto the prior signal average). We transmitted
100 frames of 1000 samples each (for a total number of
105 samples, and the average MSE is reported for SNR
values ranging from −40 dB (close to a purely noisy received
signal) to +30 dB (close to a noiseless signal estimation). The
curves labeled “Genie Aided Kalman Smoother” address the
estimation process in which the Kalman smoother has an exact
knowledge of the noise variance at any time instant. Since,
with such a side information, Kalman smoother is known
to be the optimal estimation strategy in additive (possibly
non-stationary) Gaussian noise, then these curves represent a
lower bound for the performance. The curves labeled “Parallel
Iterative Schedule” address the estimation process in which
the hard decision unit approximates the Gaussian mixtures

and provides the noise variances for the Kalman smoother.
Therefore, this is a suboptimal estimator. The final estimation
is obtained after three iterations, denoted by “it.3” in the
figures. Since as we verified, the iterative message passing
procedure has reached convergence and results would not
improve appreciably, for further iterations.

Since the 2-state scenario is fully analyzed in [11], we
considered more noise states, i.e., from 4 up to 16 noise states,
meaning that impulsive noise can be due to 3 to 15 possible
sources of electromagnetic interference. As it can be seen in
Figs. 3 and 4, increasing the value of impulsive index A results
in a reduction of the system performance, as expected. This is a
logical result, since the impulsive index determines the average
number of active interferers per unit time. A better insight is
obtained by checking the numerical values of MSE at different
SNRs. For instance, in 4-state scenario, the MSE is −10.96
dB for A = 0.2 and is −8.265 dB for A = 1 at SNR = 5 dB.
These values change to −10.88 dB and −8.158 dB in the 16-
state case, revealing that the maximum number of interferers
has little impact, once the SNR is fixed, as seen by comparing
the curves with equal A parameter, in Figs. 3 and 4. It can
be concluded that for the fixed frame length of 1000 samples,
increasing the number of active interferes beyond 4 noise states
does not change the estimation performance considerably. The
reason is that the higher order interferers, which are extra
sources of noise, have smaller prior probabilities and are rarely
observed in a simulated frame. A much larger number of noise
states, i.e., the presence of many more than 15 sources of
impulsive noise, can change results significantly but is anyhow
left to further investigation since, for M � 16, simulations
become computationally demanding.

V. CONCLUSION

In this paper, a message passing approach is proposed to
estimate correlated Gaussian signals in the presence of the
Markov-Middleton class A noise. The noise was modeled by
considering up to 15 sources of impulsive noise. Results show
that, for a given overall SNR level, the presence of many
(weaker) sources of impulsive noise induces a degradation that
is similar to that of fewer (stronger) ones. It has been shown
that the hard approximation of Gaussian mixtures results in a
suboptimal estimation strategy while leading to a considerable
reduction of estimation complexity.
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