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Abstract—Expectation Propagation (EP) is a promising frame-
work in message-passing algorithms based on factor-graphs. The
inherent ability to combine prior (partial) knowledge of system
variables with channel observations suggests that an effective
estimation of random channel parameters can be achieved even
with a very limited number of pilot symbols, thus increasing
the payload efficiency. Yet, the way in which the probability
distributions of latent variables (both data and parameters) are
combined and projected often requires ad-hoc adjustments to
reach satisfactory performance. Here, we apply EP to a classical
problem of LDPC-coded transmission on a strong Wiener phase
noise channel and discuss how and why, even in the simple case
of binary modulation, EP can fail or succeed.

Index Terms—expectation propagation (EP), phase-noise, it-
erative detection/decoding, factor graphs (FGs), sum-product
algorithm (SPA), low-density parity-check (LDPC) codes.

I. INTRODUCTION

Detection algorithms for channels affected by a time-
varying phase noise have received a lot of attention in the
literature considering either linear or continuous-phase modu-
lations and different scenarios (see, e.g., [1]–[5] and references
therein). This is because in many communication links phase
noise must be considered one of the major impairments.
Examples are represented by scenarios employing a high
carrier frequency, such as (coherent) optical communications,
communications from geostationary satellites, etc. In partic-
ular, iterative soft-output detection and decoding has been a
widely investigated subject.

One of the most effective algorithms in this class is that
proposed in [1]. It is designed using the framework based on
factor graphs (FGs) and the sum-product algorithm (SPA). In
a scenario like the one at hand, where continuous random
variables (the channel phase) appear in the FG, a common
approach to implement the SPA is to resort to the use of
canonical distributions [6]. In particular, in [1], the messages
representing the a-posteriori probability density functions
(pdfs) of the channel phase are represented through Tikhonov
distributions, which can be described by a single complex
parameter.

Although suboptimal, the resulting algorithm exhibits an
excellent trade-off between performance and complexity. The
suboptimality is related to the presence of both discrete (the
code symbols) and continuous random variables in the graph,
which brings up mixture pdfs with exponential proliferation,
approximated in [1] with unimodal distributions. The presence

of distributed pilot symbols is thus required to make the
iterative joint detection and decoding algorithm bootstrap.

As an extension of [3], the results of Raphaeli and cowork-
ers [4], [5] are obtained by letting mixture messages propagate
one step further into the FG; their exponential proliferation
being limited by an appropriate pruning of the mixture com-
ponents, performed at the level of the Markov chain governing
phase noise. This way, the phase uncertainty inherent in the
observation of channel output is free to interact with the
provisional estimation of previous phase samples (or with the
following ones, in backward block processing). Such a mixture
message reduction approach, however, is characterized by a
considerable complexity.

The same objective of letting channel observations inter-
act with provisional estimates of adjacent phase samples is
achieved by the expectation propagation (EP) algorithm [7]–
[10], where similar mixture reduction techniques are applied
to the marginal distributions of the variables of interest,
rather than to individual messages. Despite the projection of
messages or marginals do have some features in common,
and can even reduce to the same algorithm in some cases
[11]–[13], there is a profound conceptual difference between
them. In fact, only in the latter case, a message coming from
a channel observation is merged, i.e., multiplied, with the
(provisional) prior belief on the destination variable that comes
from the rest of the FG. This is the key to the potential
success of EP in many similar applications, including, e.g.,
transmission over fading channels [14]–[16].

The EP framework has already been successfully applied to
phase noise channels, with either distributed or concentrated
pilots [17], [18], resorting to a joint detection and decoding,
as implemented by EP message passing on the overall FG.
This is not, however, a practical solution, since a separate (and
sequential) detection of channel parameters and decoding is
desirable in the design of digital receivers.

In this work, we discuss why an effective phase detection
is not achieved by EP before any data information is provided
by the decoder. We propose a modification of EP that over-
comes its limitations and remarkably reduces the algorithmic
complexity. The proposed algorithm reaches the performance
benchmark even in the challenging scenario where pilot sym-
bols are concentrated in the preamble/postamble of the data
packet, as done in [17], to solve the initial phase ambigu-
ity. Concentrating pilots is consistent, for instance, with the
CCSDS (Consultative Committee for Space Data Systems)
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Fig. 1. Factor graph representing the joint probability distribution of phase
noise samples and coded symbols.

standards for deep space telemetry and telecommand. In a
scenario like that of deep space communications, where low
signal power levels and low baud rates are employed, one often
resorts to a binary modulation format, which is (also for the
sake of simplicity) the one adopted in the investigated system.

II. SYSTEM MODEL AND RELATED FACTOR GRAPH

In the system we wish to investigate, an LDPC codeword
c = [c0, c1, · · · , cK−1], with length K, is transmitted over an
additive white Gaussian noise (AWGN) channel also affected
by Wiener phase noise, so that the received samples are

rk = cke
jθk + nk , (1)

where {nk} is a sequence of independent (complex and
circularly symmetric) Gaussian noise samples, i.e., nk ∼
NC(0, 2σ

2), with zero mean and given variance per component
σ2, while the phase noise sequence θ = [θ0, θ1, · · · , θK−1]
follows the Wiener model, where each sample

θk = θk−1 +∆k (2)

results from the previous one plus a zero-mean (real) Gaussian
increment ∆k ∼ N (0, σ2

∆) whose variance σ2
∆ dictates the

severity of phase noise.
Since the system model is the same as the one discussed

in [1], the FG representing the joint distribution of the latent
variables θ and c, conditioned on the value of the observed
variables r = [r0, r1, · · · , rK−1], is the same as the one
shown therein and is reported in Fig. 1. The subscripts
of messages identify their direction in the FG (up, down,
forward, backward), whereas the subscript of variable and
factor nodes coincides with a time index.

Before observing the channel output, the phase noise se-
quence is independent of that of coded symbols, so that the
joint posterior distribution1 of all latent system variables is

P (c, θ|r)∝ P (c)p(θ)p(r | c, θ)

∝ χ(c)p(θ0)

K−1∏
k=1

p(θk | θk−1)

K−1∏
k=0

fk(ck, θk)
(3)

where ∝ is the proportionality symbol, χ(c) is an indicator
function implementing the code constraints and we assumed
that all the allowed codewords in the employed LDPC code-
book are equally likely.

The factor node fk implements the observation of the
received samples in (1), hence

fk(ck, θk) = p(rk | ck, θk) = gC(rk − cke
jθk ;σ2)

∝ exp

(
− 1

2σ2

∣∣rk − cke
jθk

∣∣2) (4)

is a complex Gaussian distribution that we denote by
gC(x− ηX ;σ2

X), for a general complex vector X with mean
ηX and covariance matrix σ2

X .
Besides fk, the only other factor nodes in the FG of Fig. 1

(if we disregard the check nodes included in the code sub-
graph) are the ones related to the conditional pdfs in (3)
that implement the Markov chain governing the Wiener phase
noise,

p(θk | θk−1) ≜ p∆(θk − θk−1) = g(θk − θk−1;σ
2
∆) , (5)

which are Gaussian too, as per (2). In (5), we denote by
g(y − ηY ;σ

2
Y ) the pdf of a real Gaussian variable Y with

mean ηY and covariance matrix σ2
Y .

Owing to the fact that the additive sources of randomness
in (1) and (2) are Gaussian, the FG in Fig. 1 seems to
represent a Gaussian belief network, where all messages are
Gaussian [19] and the message passing procedure resembles
the simple operations of a Kalman smoother. This is clearly
not true, for two reasons. First, the problem at hand entails
a “mixed model”, where continuous (θ) and discrete (c)
variables coexist, which produces probabilistic mixtures in
the FG, specifically arising from the messages pd(θk) which
are linear combinations of simpler component distributions. In
addition, (4) is a Gaussian pdf only if seen as a function of rk
whereas the factor nodes fk send downward messages pd(θk)
to the variable nodes θk, hence (4) must be seen as a function
of θk and is thus proportional to a Tikhonov distribution [1],

fk(ck, θk) ∝ exp

(
−|ck|2

2σ2
+

1

σ2
ℜ
[
rkc

∗
ke

−jθk
])

= exp

(
−|ck|2

2σ2

)
2πI0(|zk|)t(θk; zk)

(6)

where zk = rkc
∗
k/σ

2 is the complex parameter characterizing
the general Tikhonov distribution

t(θk; zk) =
1

2πI0(|zk|)
exp

(
ℜ
[
zke

−jθk
])

. (7)

1We denote by p(·) the probability density function of continuous variables
(vectors) and with a capital P (·) the probability mass function (pmf) of
discrete variables as well as the pdf of mixed random vectors.
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In directional statistics [20], the phase ∠zk corresponds to the
circular mean of the circular random variable θk in (7), while
the magnitude |zk| is a measure of its precision, i.e., of the
inverse of the variance σ2

θk
= 1− I1(|zk|)

I0(|zk|) ∈ [0; 1], where Ip(x)

is the modified Bessel function of the first kind of order p.2

The Bayesian inference problem for the estimation of sym-
bols and channel parameters cannot be solved by the plain
SPA since the message

pd(θk) =

M−1∑
m=0

Pd(c
m
k )fk(c

m
k , θk) ∝

M−1∑
m=0

αm
k t(θk; z

m
k )(

αm
k = Pd(c

m
k ) exp

(
−|cmk |2

2σ2

)
2πI0(|zmk |)

) (8)

is a Tikhonov mixture, whose coefficients αm
k depend on the

extrinsic information on each symbol (i.e., on the values of
its pmf for each of the possible M symbols cmk ), as provided
by the LDPC decoding part of the FG (top of Fig. 1), as
well as on the magnitude of the symbols. In the SPA, the
mixture messages (8) would propagate through the bottom half
of the FG and eventually proliferate to produce untractable
mixtures with an exponentially increasing number of compo-
nents. Approximate inference is thus demanded, which can be
performed in a variety of ways.

III. TRANSPARENT PROPAGATION ALGORITHMS AND
EXPECTATION PROPAGATION

The first and most straightforward approach to approximate
message passing is to discretize the distribution of θk, with
a given number of samples Nθ, so that all the latent system
variables appear to be discrete and modelled by their pmf. This
produces an algorithm called discrete-phase BCJR (dp-BCJR)
in [1], since the forward-backward message passing procedure,
along the Markov chain in the bottom half of the FG, is the
same as that of the celebrated BCJR algorithm. Its computa-
tional complexity is very high, thus we shall implement this
algorithm, denoted as dp-BCJR in the simulation results, as a
practical benchmark, assuming that its performance gets close
to that of an ideal SPA when Nθ is sufficiently large.

A totally different approach relies on projecting mes-
sages and/or marginals onto a selected family of ap-
proximating distributions, usually in the exponential form,
q(x) = exp(

∑
i ηigi(x)) (so that the family is closed under

the multiplication operation), where ηi are called natural
parameters and the functions gi(x) are the features of the
family. This way, only the natural parameters ηi are updated,
for each distribution, resulting in a parametric message pass-
ing procedure. In [1], the Tikhonov approximating family is
selected quite naturally, since it is known to be the marginal
distribution of θk, conditioned on the values taken by the cor-
responding symbol and by the corresponding channel output,
i.e., p(θk | ck, rk) ∝ fk(ck, θk), as per (4). Curiously, the way

2More in general, the p-th trigonometric moment of the Tikhonov variable
θk is Et[exp (jpθk)] = exp (jp∠zk)

Ip(|zk|)
I0(|zk|)

, where Et[·] denotes expec-
tation under the distribution t(·), so that the phase of the first trigonometric
moment is the circular mean.

in which message pd(θk) has been projected onto a Tikhonov
pdf in [1] relies on the Gaussian expression (4) of the factor
node, so that (8) is approximated by the Gaussian pdf with
minimum Kullbach-Leibler (KL) divergence from the mixture,
which is further interpreted as a Tikhonov message towards θk.
We shall denote this algorithm as TP Gauss, in the simulation
results.

A more natural solution would have been to project the
Tikhonov mixture (8) onto a Tikhonov pdf with minimum
KL divergence, which is achieved (for this as well as for
any other exponential approximating family) by matching the
expectations of the features [8]. The features of a Tikhonov
pdf like (7) are cos(θk) and sin(θk), associated with the
natural parameters ℜ[zk] and ℑ[zk] respectively, so that their
expectations can be jointly computed as the ℜ/ℑ parts of
the first trigonometric moment E[exp(jθk)]. Exploiting known
results [20] and the linearity of expectation, the mixture in (8)
is approximated by the Tikhonov pdf pTP

d (θk) = t(θk; z
TP
k ),

which achieves the minimum KL divergence when zTP
k obeys

the following moment matching equation

I1(|zTP
k |)

I0(|zTP
k |)

ej∠zTP
k =

M−1∑
m=0

αm
k

I1(|zmk |)
I0(|zmk |)

ej∠zm
k (9)

where αm
k stands for the normalized version of the coefficients

in (8), i.e.,
∑M−1

m=0 αm
k = 1. The complex equation (9) yields

the circular mean ∠zTP
k as well as the variance of phase noise,

related to the Bessel ratio of the magnitude |zTP
k | [4]. We shall

denote this variation of the algorithm in [1] as TP Tikhonov,
in the simulation results.

In the EP algorithmic framework [7], denoted as EP in
the simulation results, it is the entire marginal of each
latent variable that is approximated/projected; in our case,
p(θk) = pd(θk)pf (θk)pb(θk), of which the message pd(θk)
only represents one factor. Denoting the projection operation
by proj[p(·)] = argminq(·)∈F KL [p(·) ∥ q(·)], where F is
the approximating family, the approximating message

pEP
d (θk) =

proj[pd(θk)pf (θk)pb(θk)]

pf (θk)pb(θk)
(10)

is computed and sent in place of the mixture pd(θk). In (10),
the product of forward and backward messages, pf (θk)pb(θk)
plays the role of a temporary prior for the variable θk,
whose estimated marginal is updated, after the observation
fk(ck, θk). Hence, the EP approximation for the marginal
p(θk) is pEP (θk) = pEP

d (θk)pf (θk)pb(θk), which is equal
to the numerator of (10) and thus belongs, by construction, to
the approximating family (Tikhonov, in our case).

The projection operation in (10) still amounts to a moment
matching operation like (9), despite a marginal is projected, in
EP, rather than a message, as in TP. Of course, in the case of
EP, the temporary prior pf (θk)pb(θk) must be accounted for
in the right hand side of (9), by simply adding the (complex)
parameters zk,f and zk,b of the forward and backward mes-
sages to those of each mixture component, i.e., to zmk (hence
the coefficients αm

k must be calculated accordingly).
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The general approach to approximate message passing can
be either a projection of the marginal pdf of each variable
node (onto the selected approximating family), as prescribed
by EP, or a projection of individual mixture messages onto the
same family, as described above. If, for the sake of argument,
the EP algorithm did not produce any information about the
temporary prior, then we would assume pf (θk)pb(θk) to be
uniform in (10) and hence it would transparently shift out of
the projection operation, to be simplified with the denominator,
so that (10) would reduce to the simple projection of message
pd(θk). This is the reason for which we denote the message
projection approach as transparent propagation (TP) [12],
hence the superscript TP. It can be demonstrated that in some
specific problems, the TP and EP approaches lead to the same
solution [13], [21], [22], although in general they differ.

No matter if one of the TP algorithms or if EP is
adopted, the forward and backward messages pf (θk) and
pb(θk) are assumed to belong to the Tikhonov family too,
despite the factor nodes in the Markov chain of the FG, e.g.,
p(θk+1 | θk), introduce a convolution between the Tikhonov
message p

TP/EP
d (θk)pf (θk) and a Gaussian like (5), for the

computation of pf (θk+1). As it is shown in the Appendix of
[1], if the phase noise variance σ2

∆ is not exaggeratedly large
then pf (θk+1) is very well approximated by a Tikhonov pdf
whose parameter |zf,k+1| is less than that of the incoming
message, |zf,k + z

TP/EP
k |, while the circular mean is the

same (see (36)-(38) in [1], for details). This corresponds
conceptually to the fact that the Wiener phase noise update in
(2) does not bias the temporary estimate for θk+1 but decreases
its precision, according to its Gaussian variance. A similar
conclusion holds for the backward messages too.

IV. THE FAILURE OF EP AND ITS MODIFICATION

The EP algorithm has been already applied to transmission
over Wiener phase noise channels in [17] (and later in [18]),
in the absence of distributed pilot symbols, achieving a good
performance when global detector-decoder iterations are em-
ployed (in [17], NDD = 5). Albeit, the challenge of making
EP work with separate phase detection and decoding has not
been solved. In fact, simulation results, presented in Sec. VI,
reveal that, with distributed pilots, the performance of EP after
the first phase-detecting iteration is limited and TP algorithms
can perform better, especially in the large signal to noise
ratio (SNR) regime. Its difficulties become even more evident
when moving to a different scenario, where pilot symbols
are concentrated, as a preamble/postamble (half and half) at
both ends of the codeword. In the concentrated pilots scenario,
however, EP is the only choice, since both algorithms based
on the Tikhonov parametrization (TP Gauss and TP Tikhonov)
are known to fail completely in this case [1], [17]. In fact,
they cannot achieve any effective phase detection, at the first
iteration, without the aid of distributed pilots. On the contrary,
the interest in EP with concentrated pilots lies in its ability to
self-sustain the process of phase estimation across a long block
of payload coded symbols, once it is bootstrapped by a proper
block of preamble/postamble pilots.

Through a detailed numerical analysis of EP (on which
we shall not go deeper in this paper), we found that its
failure is confined to some critical data packets that, due to
a long sequence of noisy observations, bring the sequence
of precision values |zEP

k,f/b| to a collapse, while propagating
forward or backward messages, pf (θk) and pb(θk). Once a
critical lower threshold is exceeded, the precision approaches
zero and is rarely able to recover, even if the channel in (1)
outputs reliable observations, i.e., samples rk with little noise.
Since |zEP

k,f/b| result from the EP message (10), computed
by applying the moment matching (9), we verified that the
above phenomenon is largely due to a numerical instability
entailed in the approximation of the Bessel ratio I1(x)/I0(x)
in (9) whose inverse, not available in closed form, is necessary
to obtain |zEP

k,f/b|. In fact, despite the commonly adopted
approximation I1(|z|)/I0(|z|) ≃ exp(−0.5/|z|) [17], [18]
is very accurate when |z| ≫ 0, the saturating shape of
I1(|z|)/I0(|z|) < 1 (whose value switches from 0 to 0.9 when
|z| increases from 0 to 5) tends to compress the precision
|z|, hence to depress the level of confidence of the estimation
embedded in the transmitted message.

As a countermeasure, we introduce two modifications in the
EP algorithm. First, we very roughly substitute I1(|z|)/I0(|z|)
with |z|, in (9), so as to avoid a saturation of the preci-
sion values. Remarkably, with this substitution, the moment
matching operation takes the form of a linear combination of
the Tikhonov parameters of the mixture components, so that
the corresponding parameter for the marginal of θk results:
zEP
k =

∑M−1
m=0 αm

k zmk . In the second place, we introduce a
monitoring of the precision values |zEP

k,f/b| along the forward
and backward propagation of pf/b(θk). This revealed that ev-
ery error in phase detection, i.e., every phase slip, is associated
with a sudden drop of the corresponding precision values. It
is then sufficient to reject those messages pf (θk) or pb(θk)
whose precision decreases abruptly, and thus rely only on the
opposite message (pb(θk) or pf (θk)), to estimate θk.

V. MESSAGE SCHEDULING

Regarding message scheduling, for any algorithm, we take
advantage of the structure of the FG, which evidences the
logical separation of the decoding part from the phase de-
tection part, corresponding to the upper and lower halves of
Fig. 1. Indeed, although it is known that messages in an FG do
not represent probability distributions,3 Pd(ck) is the extrinsic
information on the k-th code symbol, sent from the decoder
to the phase detector, as well as pu(θk) ≜ pf (θk)pb(θk) (not
specified in Fig. 1), which is seen as a temporary estimate of
phase noise, sent towards the decoder.

We shall assume that the phase-detector subgraph operates
first, by exchanging horizontal messages along the Markov
chain in the lower part of Fig. 1, so as to update pf (θk)
and pb(θk) by message passing (see [1], to recall the rules
of computation). After that, vertical messages pu(θk) are

3Hence, a so-called improper distribution, e.g., a Gaussian with negative
variance, could arise from (10) and it is allowed to propagate it along the
graph, although certain EP variants employ a rejection of such messages [19].
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Fig. 2. Bit error rate curves for the tested algorithms, without (NDD = 1)
or with (NDD = 3) detector-decoder iterations. The phase noise standard
deviation is σ∆ = 6 [deg] and (1/20) pilot symbols are distributed among
the payload. In dp-BCJR, phase is discretized using Nθ = 64 levels.

sent from the phase detector to the upper part of the FG,
implementing the decoder, where an inner message passing
procedure takes place, until convergence or until a maximum
number of decoding iterations is reached (we fix this maximum
to 200).

The exchange of information, through vertical messages,
between detector and decoder can be iterated for NDD times,
so as to yield a refinement of both the symbols’ and the
phase samples’ estimates, from which the other receiver half
can benefit. On the other hand, detector-decoder iterations
are considered impractical and are usually avoided in the
implementation of digital receivers.

The horizontal message passing occurring in the phase de-
tector subgraph could be itself iterated, with multiple forward-
backward passes, before sending vertical messages to the
decoder subgraph. Despite such multiple “inner” iterations
could in principle refine the phase estimate, this is hardly
ever the case. In fact, for this as well as for other similar
problems that we analyzed [11], no real improvement was
observed, hence we limited the phase detecting (horizontal)
message passing to a single (inner) iteration.

VI. SIMULATION RESULTS

We report in Fig. 2 the performance of different receivers
for a block coded transmission through the system under
investigation. Bit error rate (BER) is plotted versus the SNR
Eb/N0, where N0 = σ2 is the variance per component of noise
samples in (1) and Eb is the average energy per information
(payload) bit. We transmitted a block of 4000 coded symbols
punctured by distributed pilot symbols, which are known
at the receiver, amounting to a 5.3% overhead. Pilots were
distributed across the block of payload symbols by regularly
alternating one pilot symbol and 19 payload symbols, so that
the transmitted sequence started with a pilot. The payload
symbols were the output of a (3, 6)-regular low-density-parity-
check (LDPC) code with rate-1/2 and length 4000 [23] and the
binary phase-shift keying (BPSK) modulation format (M = 2)

Fig. 3. Bit error rate curves for the tested algorithms, with separate
detection and decoding (NDD = 1). The phase noise standard deviation
is σ∆ = 3[deg] and (1/20) pilot symbols are concentrated in the preamble
and postamble (half and half) of the transmitted packet. In dp-BCJR, phase
is discretized using Nθ = 64 levels.

was adopted, since it is robust to the strong phase noise that
was assumed with σ∆ = 6◦.

For the known phase scenario, there was no need for phase
estimation, hence the factor nodes fk were leaves of the FG in
Fig. 1, thus reduced to a tree. The fk nodes sent the conditional
probability of the observation P (rk | ck) upwards (in our case,
the log-likelihood ratio for the possible binary values of ck)
and the whole system reduced to a coded transmission over
an AWGN channel. Thus, the known phase curve in Fig. 2
shows the performance of the adopted LDPC code. In order
to make a fair comparison, we accounted for the presence of
pilot symbols, when computing the average energy per bit Eb,
even though they were useless in this case.

In the implementation of dp-BCJR, we found that the rule
of thumb Nθ = 8M [1] (where M is the cardinality of a PSK
constellation) was not sufficient for an accurate quantization of
the phase noise variables, that required at least 32 levels in the
BPSK case [17]; we used Nθ = 64 as reported in the legends
of Figs. 2,3. In the absence of detector-decoder iterations
(NDD = 1), dp-BCJR is less than half a dB away from the
theoretical known phase reference, while multiple iterations
bring its performance a little closer, practically reaching a limit
after three iterations (reported in Fig. 2 with NDD = 3).

The two TP algorithms described in Sec. III, with the
Gaussian projection of [1] or with the Tikhonov projection
in (9), performed identically, both showing a 1 dB penalty,
compared to the practical dp-BCJR benchmark, in the absence
of detector-decoder iterations. The overlapped curves of TP
Gauss and TP Tikhonov in Fig. 2 demonstrate that the pro-
cedure in [1] of matching of Gaussian moments practically
achieves the same results as that of matching the circular
moments (9), when projecting the mixture message pd(θk)
onto the Tikhonov family. Remarkably, both TP algorithms
get very close to the dp-BCJR benchmark after NDD = 3
detector-decoder iterations.

Even better was the performance for the EP algorithm
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when NDD = 3, since its BER curve overlaps the dp-
BCJR benchmark. Despite EP is thus the best algorithm with
affordable complexity, we notice that this is not the case if we
constrain NDD = 1. In fact, in the absence of detector-decoder
iterations, EP seems to outperform the TP algorithms only for
low to moderate Eb/N0 values, while a sudden change of slope
limits the achievable BER values in the large SNR regime.
This was a clear sign of weakness, for the EP algorithm, that
could be overtaken only by letting the phase-detecting and the
decoding part of the FG exchange (vertical) messages, i.e., by
allowing NDD > 1 iterations.

The partial failure of EP when NDD = 1 could not
be attributed to its classical tendency to generate improper
distributions, since we tested and implemented a number of
strategies, taken from the literature, to cope with this issue.
Unfortunately, improper message rejection strategies [19] were
not able to solve the problem while message damping [10]
only mitigated but did not remove the apparent error floor of
EP in Fig 2.

The difficulties of EP became even more evident when
referring to the concentrated pilots scenario as in Fig. 3, where
we report the performance of receivers using the algorithms
described above while constraining NDD = 1, hence with-
out any detector-decoder iteration. In this case, we assumed
σ∆ = 3 [deg.] for the phase noise, since none of the tested
receivers could achieve a good performance when σ∆ = 6
[deg.]. As expected, both TP algorithms failed completely, due
to the concentrated pilots, while the performance of EP is still
unsatisfactory, as evidenced by the BER curves, and would
only marginally improve by letting NDD > 1, as we tested.
On the contrary, the Modified EP algorithm discussed in Sec.
IV and labelled EP Mod in Fig. 3, almost coincides with the
practical dp-BCJR benchmark, and is less than 0.2 dB away
from the theoretical known phase limit. For this algorithm, no
further iteration NDD > 1 is needed and the receiver achieves
an excellent performance with separate phase detection and
decoding.

VII. CONCLUSIONS

We demonstrated, for the first time to our knowledge, the
successful operation of an algorithm derived by expectation
propagation in a digital receiver for transmissions over chan-
nels affected by Wiener phase noise, when no distributed pilot
symbols are employed and the receiver implements a practical
separation of phase detection and decoding.

By carefully analyzing the message passing procedure in
a simple scenario employing LDPC and binary modulation,
we found that the EP rules of computation for the messages
can sometimes induce a collapse of the level of confidence
(precision) in the resulting estimates, hence lead to phase
slips and subsequent errors. We introduced a modification of
the message projection rule of EP that, remarkably, simplifies
the computational complexity of the resulting algorithm and
makes it possible to detect and avoid the above spurious phase
detection errors so as to reach the performance of the reference
benchmark.
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