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Abstract-Based on a polynomial representation of a mem- 
oryless bandpass nonlinearity, a new realization of an optimal 
receiver is proposed to perform maximum likelihood detec- 
tion of data sequences transmitted over nonlinear, possibly 
time-dispersive, channels. The receiver employs oversam- 
pling of the observed signal to compute proper branch met- 
rics for a Viterbi processor. Error performance is compared 
to that of an optimal receiver for the linear channel obtained 
by ideal analog predistortion of the nonlinear device under a 
peak-power constraint. In the presence of nonlinear distor- 
tion, a significant improvement in the symbol error rate is 
shown to be achievable by optimal detection with respect to 
ideal predistortion. The numerical results are based on both 
analytic and simulation methods. 

I. INTRODUCTION 

performance of bandpass digital communication THE systems in the presence of nonlinear distortion due to  
high power amplifiers (HPA), such as travelling-wave tubes 
or solid-state devices, has traditionally been a controver- 
sial topic. In several papers, claims have been made that 
the error performance of these systems is not inherently de- 
graded by the nonlinear distortion [l], or even that there 
may be a substantial gain especially when the channel is 
time-dispersive [2]. 

The main problem with the considered channels is the de- 
sign of an appropriate receiver of affordable complexity able 
to  recover the joint effects of nonlinear distorsion and inter- 
symbol interference (ISI) due to  both the HPA and the pos- 
sibly limited physical channel bandwidth. Several receiver 
structures have been proposed [3]-[5] for performing maxi- 
mum likelihood sequence detection (MLSD) in the presence 
of bandlimited nonlinear channels; one problem with all the 
proposed structures is the dramatic increase in the num- 
ber of matched filters needed in the receiver front-end as 
the dispersion length of the channel and/or the order of the 
nonlinearity grows. 

The aim of this work is to  propose a new optimal MLSD 
receiver structure for linearly modulated signals which uses 
only one filter in the receiver front-end, followed by a sam- 
pler with rate larger than the signaling frequency by a so- 
called “oversampling” factor. Under proper conditions on 
the frequency response of the receiver filter and the over- 
sampling factor, a sufficient statistics for data detection is 
obtained [6]. For a specific possible choice, an uncorrelated 
sampled noise sequence may be obtained, with a significant 
complexity saving in the receiver. The sampled sequence of 
observations is optimally processed by a Viterbi algorithm 
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with proper branch metrics. The main complexity resides 
in the branch metric unit, which needs to  have appropriate 
knowledge of both channel response and nonlinearity. 

The error performance of an optimal receiver is difficult 
to  estimate analytically, since the pairwise error probabil- 
ity (PEP) between sequences does not depend on the error 
sequence only, but also on the particular transmitted se- 
quence. Approximate upper and lower bounds to  the sym- 
bol error probability (SEP) are proposed. It is shown that  
the minimum Euclidean distance between sequences does 
not represent a realistic performance estimate. Simulation 
results based on the proposed receiver structure are pro- 
vided to  complement the analytical findings in a simple IS1 
channel with a dispersion length of two symbol intervals 
and a 16-QAM (quadrature amplitude modulation) signal 
set. The accuracy of the derived bounds is shown. The 
numerical results clearly show that a significant gain can be 
achieved by optimal sequence detection with respect to  ideal 
predistortion. The proposed receiver appears also in [7]. 

11. SYSTEM MODEL 

Let us consider the baseband equivalent of a bandpass dig- 
ital communication system, shown in fig. 1, which transmits 
a sequence { uk} of independent and uniformly distributed 
symbols belonging to  a discrete complex M-ary alphabet. 
The shaping filter with impulse response p ( t )  is followed by 
a bandpass nonlinearity (NL) that feeds the distorted signal 
y ( t )  to  a linear system with impulse response h(t) .  The lat- 
ter filter can be viewed as the cascade of a radio frequency 
(RF) filter, which may limit the spectral occupation of the 
transmitted signal, and the physical channel. The received 
signal s ( t )  is assumed to  be affected by additive white Gaus- 
sian noise (AWGN) n(t). Our primary problem is to  find a 
suitable receiver structure (REC in the figure) that  yields 
a maximum likelihood estimate {iik} of the transmitted se- 
quence. 

In order to obtain a simple analytic representation of the 
received signal s ( t ) ,  we need a model for the baseband equiv- 
alent of the nonlinear memoryless device. Kaye et al. [8] 
showed that a quadratwe model, including different mem- 
oryless nonlinearities in two parallel in phase and quadra- 
ture branches, can account for both amplitude distortion 
(AM/AM) and phase distortion (AM/PM) usually experi- 
enced at the output of bandpass nonlinear devices-both 
effects cannot be otherwise analytically described by a sin- 
gle nonlinear function. A polynomial approximation of the 
nonlinearities in both branches seems appropriate since it 
can be shown [9] that  devices with such transfer charac- 
teristics maintain the same polynomial structure when rep- 
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Fig. 1. Baseband equivalent of a nonlinear system with AWGN. 

resented in terms of input and output complex envelopes. 
Moreover, the baseband equivalent of the quadrature model 
can be described as a single polynomial function with com- 
plex coefficients +yi [lo]. Hence, the relationship between the 
complex envelopes z ( t )  and y ( t )  reads 

in which only odd powers of z ( t )  are present due to  the 
bandpass nature of the nonlinearity [9]. 

The linearly modulated signal z ( t )  with signaling period 
T is expressed as 

n 

Substituting (2) in (1) and assuming a third-order nonlin- 
earity (N = 1) for simplicity, signal y ( t )  may be expressed 
as 

n i j l  

* p ( t  - i T ) p ( t  - j T ) p * ( t  - 1T) * (3) 

This expression may be generalized to  account for higher 
order terms in a straightforward manner. In the following, 
we only consider third-order nonlinearities as it is sufficient 
t o  outline all the relevant concepts. 

Taking into account the filtering effect of h(t) ,  we can 
express the received signal s ( t )  in the compact form 

p ( t  - iT, t - jT ,  t - ZT) + n(t) 

having defined 

f ( t )  /?(r)p(t - r )  d r  
-m 

(4) 

(5) 

J-m 

which may be regarded as a first-order and third-order im- 
pulse response of the nonlinear channel. It may be noted 
that our assumptions are equivalent to  assuming a Volterra 
model for the cascade of a memoryless nonlinearity and lin- 
ear filters: the corresponding Volterra kernels are simply 
found by multiplying the coefficients -yi and the functions 
f( t) ,  P ( t l , t 2 , t 3 ) .  

(ka + 77)$ 
Fig. 2. Optimal receiver structure. 

111. OPTIMAL RECEIVER STRUCTURE 

Let us assume the receiver structure shown in fig. 2. The 
received signal is passed through a receiver front-end fil- 
ter with impulse response r ( t ) .  The filtered signal z ( t )  is 
sampled at a rate $, multiple of the signaling frequency by 
an appropriate integer o. Under proper conditions on r ( t )  
and o, the sampled sequence is a sufficient statistics for the 
estimation of the information sequence. These conditions 
require that the transfer function R(f) of the receiver fil- 
ter is nonzero over the entire bandwidth of s ( t )  and that  it 
is strictly bandlimited [6]. We note that  the bandwidth of 
s ( t )  might be larger than the bandwidth of the modulated 
signal z ( t ) ,  due to  the nonlinearity, but smaller than the 
bandwidth of the distorted signal y ( t ) ,  due to  the RF and 
channel filtering h(t). A sufficient condition is that  R ( f )  is 
constant in the signal bandwidth and IR(f)12 satisfies the 
first Nyquist criterion for the absence of IS1 for a signaling 
frequency 5. In this case, the observed samples are also 
affected by independent Gaussian noise samples. 

The observed signal z ( t )  is thus oversampled, with respect 
to  the signaling rate, to  obtain a set of samples whose 
subscript is conveniently written using two integer symbols: 
k identifies the transmitted symbol period and scans the 
o samples obtained in the k-th period, r] taking values in 
the integer set {O;o - 1). Under these conditions, it is al- 
ways possible to  reconstruct the noiseless component of the 
received signal s ( t )  from the observed samples; hence, they 
constitute a sufficient statistics for the estimation of the in- 
formation sequence. The described receiver filter is one of 
the possibilities suggested by the general approach described 
in [6] to  obtain a sufficient statistics, which gives advantages 
in receiver implementation since it yields uncorrelated noise 
samples. 

By proper algebraic manipulation, the observed samples 
can be expressed in the following form 

L 

n=O 
L L L  

(7) . X X X pEiq,ju+v,[u+q ak-iak-ja;-l+ Wka+q 
i=o j=o z=o 

where we have defined the following parameters 

which can be regarded as oversampled first-order and third- 
order channel dispersion parameters. Their value can be 
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computed through the expressions ( 5 )  and (6). These equa- 
tions do not need any modification to account for the re- 
ceiver filter because of the assumption that its frequency 
response is flat in the bandwidth of interest; if this is not 
the case, the function h(t)  should be modified to include 
the cascade of both channel and receiver filters and the re- 
ceiver should take into account this distortion in the sub- 
sequent processing. Parameter L in (7) is defined as the 
number of symbol periods in which the value of the first 
and third order time-continuous impulse responses, here as- 
sumed causal, is not negligible; thus, it defines the disper- 
sion length of the equivalent time-discrete nonlinear chan- 
nel. Under the assumption of system filters with strictly 
finite duration, L is exactly the duration of the linear chan- 
nel impulse response which would result if the nonlinear 
device was removed or perfectly predistorted. In fact, if the 
integrand in ( 5 )  is zero for t > LT, also the integrand in 
(6) is zero for any ti > LT. If the physical channel is ideal 
or moderately frequency-selective, the actual time-discrete 
dispersion length of the linearized channel may be less than 
L,  but under the assumption of severe frequency selectiv- 
ity, the dispersion length of the first-order and third-order 
time-discrete channel parameters (8) and (9) may actually 
coincide. The above statements have been numerically ver- 
ified for various channel and transmitter configurations and 
the summation limits in (7) are thus justified. 

Since the quantities W k a + q  are uncorrelated Gaussian 
noise samples, the observations { ~ k ~ + ~ } ,  denoted by a vec- 
tor z, have a multivariate Gaussian distribution with mean 
value zf and uncorrelated elements, all with the same vari- 
ance ui corresponding to  the variance of the noise samples. 
The elements z;,+~ of the mean vector zf trivially corre- 
spond to the noiseless part of the observed samples (7). Es- 
timation of the transmitted sequence under the ML criterion 
requires finding the sequence i = {&}, among all the pos- 
sible transmitted sequences a = {ak},  which maximizes the 
probability density function p(zla) of the observed vector z 
conditioned on the transmission of the particular sequence a. 
The maximization of the Gaussian probability density func- 
tion p(zla) is equivalent to the minimization of the absolute 
value of its exponent. Thus, if a finite-length transmitted 
sequence extends over N + 1 symbols, the MLSE decision 
rule becomes 

A 

A 

Since the noiseless samples Z ~ , + ~ ( U ~ - ~  - .  a,) only de- 
pend on a finite sequence of symbols (see (7)), it is possible 
to express the sequence metric (10) to be minimized in a 
recursive form. We define the partial sequence metric 

recursively updatable through the incremental branch met- 
rics 

a-1 

q=o 

a 
defined on a classical trellis diagram whose states p, = 
(u,-L . . . u,.-l) coincide with the content of the discrete 
channel memory. The trellis branches, or similarly the 
state transitions (p, --+ p , + ~ ) ,  specify the set of symbols 
(a,-~...a,) and the u reference samples z;,,+~ at the n- 
th  symbol period. The minimization in (10) can thus be 
conveniently performed by means of the well-known Viterbi 
algorithm with M L  states implemented through a Viterbi 
processor (VP in fig. 2) whose branch metric unit computes 
the quantities in (12). 

IV. PERFORMANCE BOUNDS FOR AN OPTIMAL RECEIVER 

In order to determine the performance of the proposed re- 
ceiver, we can resort to the classical concept of error event: 
an error event begins at discrete time n whenever the re- 
ceiver detects a sequence i = a + e  different from the actual 
transmitted sequence a and the error sequence e entails a 
finite number D(e) - L of consecutive nonzero symbols, the 
first being in the n-th position; this causes D(e) wrong tran- 
sitions in the trellis. It can be shown that, for the proposed 
receiver, or in general an optimal one, the probability that 
the path metric of the wrong sequence a + e  is less than that 
of the actual sequence a can be expressed as 

P{A(a) 5 A(a)} = Q - [ d%)] 

where A(a) denotes the metric of sequence a, 9 is the power 
spectral density of the real (or imaginary) part of the noise 
n(t), assumed complex Gaussian, and we have defined the 
following Euclidean distance in the signal space between ob- 
served sequences 

" k n  q=o 

(14) 

the dependence on the transmitted sequence is shown and 
the integral extends over the entire transmission period TO. 
The first equality in (14) is directly derived from the decision 
rule of the described receiver, whereas the second equality 
states that the distance can be viewed also in the time- 
continuous domain as the energy of the difference between 
the noiseless signals conveying the two sequences. The lat- 
ter expression obviously coincides with the usual definition 
of signal distance found in the existing literature (e.g. [ 5 ] ) .  
The second equality in (14) holds since the signals .z'(a,t) 
are sampled at their Nyquist rate. Despite the possibly large 
bandwidth of the receiver filter, it is only NO which influ- 
ences the probability in (13) and not the variance rt. 
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Distance spectrum for the nonlinear channel considered in 

The pairwise error probability (PEP) P(a + ela) of esti- 
mating a + e when a is transmitted can be upper bounded 
by (13). Thus we can express an error event E through a 
union over all the possible error sequences e starting at time 
n and then derive the following union bound 

Fig. 3. 
section V. 

where A(e) is the set of all possible transmitted sequences 
compatible with e, Le., a E A(e) if all the symbols of a + e 
belong to  the signal set. 

Unfortunately, in nonlinear channels the uniform error 
property does not hold since the distance (14) does not de- 
pend on the error sequence only, as it does for linear chan- 
nels. We could now search for the minimum distance dmin 
between sequences by minimizing (14) with respect to  both 
sequences (a,.): this can be done through an algorithm 
first used by Saxena [5], [ll]. The resulting truncated up- 
per bound is 

in which U(dm;,) is the set of error sequences which min- 
imize the distance for some a. Unfortunately, this bound 
does not account for realistic performance since there may 
be a large number of other sequence couples giving rise to  
pairwise errors having distance slightly larger than dmin; 
these couples cannot be neglected, in general, and the right 
hand side of (16) is only an asymptotic lower bound of 
P{E} .  The probability P{a E A(e)} is trivially the ra- 
tio between the number of sequences compatible with e and 
the total number of sequences; the search can be obviously 
confined to  sequences of length equal t o  the duration D(e) 
of the error event. 

A distance spec t rum N ( d )  is defined as the number of 
sequence pairs with distance d as a function of d. For a 
linear channel, there are only a few distance values, corre- 
sponding to  respective error sequences; among these, the 
one associated with dmin dominates the probability P { E }  
since the distance values differ significantly. As shown in 
the next section, for the nonlinear channel there is a sort of 
spreading e$ect which generates a large number of distance 
values for a given error sequence and different transmitted 
sequences. The distance spectrum N ( d )  can be used as a 
weight function by rewriting the truncated upper bound (15) 

2000000 I d .=0.629 1 

d 
Fig. 4. Distance spectrum for the linearized channel considered in 

as a summation over the distance d extending from dmin to  
some value d,,, for which the contributions of the terms 
Q[.] become negligible: 

section V. 

where N is the total number of unordered sequence pairs of 
given length. 

V. NUMERICAL RESULTS 

For the purpose of simulation, a simple nonlinear channel 
with the structure of fig. 1 has been considered. The trans- 
mitter filter has a raised-cosine transfer function P(f) with 
roll-off equal to  0.7. A third-order nonlinearity is assumed, 
with amplitude and phase distortion as shown in fig. 5. 
Both h(t)  and ~ ( t )  are ideal bandpass filters with bandwidth 
$, and consequently an oversampling factor (r = 2 is em- 
ployed. The information symbols belong to  a 16-QAM con- 
stellation. These system choices led to  a dispersion length 
L of 2 symbol periods with a resulting trellis diagram with 
256 states. 

Figures 3 and 4 show the distance spectrum for the de- 
scribed nonlinear channel and the linear channel obtained, 
from the latter, by perfect predistortion of the NL device, 
respectively. It is evident that  the distance spectrum for 
the nonlinear channel undergoes a spreading effect, as men- 
tioned in the last section. 

Since it has been noted by inspection that in this channel 
the error sequence pairs with distance close to  dmin always 
involve a single nonzero error symbol, the probability P { E }  
of an error event is assumed to  coincide with the symbol 
error rate (SER). The error events dominating the SER have 
a duration D(e) = 3. 

6 shows the simulated SER versus the inverse of 
No along with the previously introduced truncated upper 
bound (UB) (17) and asymptotical lower bound (16). From 
a pragmatic point of view, the signal t o  noise ratio 2% is 

tion of the nonlinearity that maintains the same energy per 
transmitted bit is impossible without the aid of some sup- 
plemental high-power device. The abscissa & used in fig. 
6 is proportional to  the peak-power to  noise-power ratio. 

From the figure, it is clearly seen that  the approximation 
in (16), by means of dmin only, is of little significance at the 
error rates of interest. The truncated UB was derived with 
the following approximations: only error events with length 

Fig. 

not a significant value for our comparison since a predistor- No 
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Fig. 5. AM/AM and AM/PM for the cubic nonlinearity considered in 
the simulation; dashed lines show the ideally predistorted transfer 
characteristics. 

3 and distance in the range [dmin;dma=] were considered; 
the filters considered for the calculation of distances are of 
strictly finite duration, thus disregarding the “tail effects” of 
the actual finite bandwidth filters employed in the channel. 

The same analysis has been performed for a linear channel 
obtained by a perfect analog predistorsion of the nonlinear- 
ity up to the maximum peak-power level of the input-output 
characteristic, as shown in fig. 5 .  The truncated UB and the 
lower bound are hardly distinguishable in this case, because 
of the significance of the minimum distance parameter for 
linear channels. 

A gain margin of roughly 2.5 dB is shown at a SER of 
this gain eventually reduces a t  lower error rates but is 

still greater than zero for SERs greater than where 
the truncated UBs for the two considered channels even- 
tually cross. It is implicit in the assumption of equal peak- 
power that the average transmitted energy per bit is greater 
in the nonlinear channel than in the predistorted one. In 
fact, this is the reason for the gain shown. 

VI. CONCLUSIONS 

In this paper a new optimal receiver structure, based on 
oversampling, which performs MLSD over nonlinear time- 
dispersive channels has been introduced. It includes a 
Viterbi processor employing branch metrics (12). If the 
physical channel entails significant IS1 effects, the state- 
complexity of the VP is not increased by the presence of 
the nonlinear device. 

A truncated upper bound and an asymptotical lower 
bound have been derived for an optimal receiver. The lit- 
tle practical significance of the minimum Euclidean distance 
between sequences for a nonlinear channel has been demon- 
strated. In order to derive tighter approximations of the 
actual symbol error rate the use of a distance spectrum is 
required. 

Simulations have been performed to compare the error 
performance of the proposed receiver to that of an optimal 
MLSD receiver for the perfectly linearized channel under 
a peak-power constraint. The accuracy of the theoretical 
analysis has been verified. A gain margin of more than 2 
dB has been shown for the proposed receiver with respect to 
an optimal receiver employed on the predistorted channel, 
for values of SER of practical interest. 

- L Truncated UB - L: simulations 
io-’ L: Lower d,,, bound 

- NL: Truncated UB - NL: simulations 
- - NL: Lower d,,, bound 

/ 
IU 

10.0 12.0 14.0 16.0 18.0 20.0 22.0 
l/No [dB] 

Fig. 6. Error performance and analytic approximations for cubic (NL) 

The results show that it is not always convenient to  adopt 
analog predistortion of high-power nonlinear devices but 
rather to exploit fully the available power through the use of 
an enhanced receiver which takes into account the nonlinear 
effects. 

and predistorted (L) channel. 
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