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Abstract-Using a union bound on the error probabil- 
ity of optimal receivers for nonlinear channels, this work 
points out important factors affecting the error perfor- 
mance in the simple case of M-ary Pulse Amplitude 
Modulation (M-PAM) with no intersymbol interference 
and unlimited transmission bandwidth. Performance is 
compared to that obtainable when the nonlinear de- 
vice is perfectly linearized under a peak power con- 
straint. Considered nonlinearities include third-order 
polynomials and soft-limiters. Simulation results are in 
good agreement with the derived theoretical bounds. 
The analysis suggests that margins for improved per- 
formance exist, with respect to the performance ob- 
tainable by perfect linearization, when the cardinality 
of the signal set is not large (e.g., 4- or 8-PAM) and the 
nonlinearity is not severely saturated. 

I. INTRODUCTION 

T has been shown through a brute force approach I that performance degradation in dispersive non- 
linear channels can be almost completely recovered 
through appropriate receiver design [l]. Optimal 
receivers for such channels have been proposed by 
Mesiya, Mc Lane and Campbell [2], for Phase Shift 
Keying (PSK) modulation formats, and van Etten and 
van Vugt [3], for general linearly modulated signals. 
The first paper showed that the power loss with re- 
spect t o  an equal-power linear channel can be kept 
within about a dB, whereas the latter showed that in 
the case of binary signaling error performance under- 
goes an improvement when Inter-Symbol Interference 
(ISI) is allowed on the nonlinear channel. 

The aim of the present work is t o  compare the error 
performance obtainable on nonlinear channels t o  that 
achievable on the linear channel which results from a 
perfect analog predistortion of the nonlinear device, 
typically a high power amplifier. In order t o  gain an 
in depth view of the factors affecting performance, we 
will limit our attention to  the simple case in which the 
nonlinear device has no AM/PM distortion and the 
bandwidth of the physical channel is large enough to 
avoid intersymbol interference. Moreover, a monodi- 
mensional signaling scheme, namely multilevel PAM, 
will be taken into account. 

First we will consider cubic nonlinearities; upper 
and lower bounds to  the symbol error probability will 
be derived for the considered channel with various de- 
grees of distortion. Since cubic characteristics do not 
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cause large saturating effects on the transmitted sig- 
nal, we will also consider a soft-limiting device, with 
various degrees of the Input Back-Off ( B O )  relative 
to the saturating operation point. The derived bounds 
will be shown to be in good agreement with simulation 
results. The effects of constellation density and trans- 
mission filter response will also be addressed. 

The simplifying assumptions made on the channel 
model could be relaxed by allowing IS1 caused by a lim- 
ited channel bandwidth; however, the in-depth specu- 
lations made in section 111-B on the present case would 
no longer be feasible and one should resort to numer- 
ical calculations [4]. 

11. SYSTEM MODEL AND OPTIMAL RECEIVER 
PERFORMANCE 

Fig. 1 sketches the baseband equivalent of a non- 
linear system in which the information symbols {a,} 
generate, through a transmission filter with impulse 
response p ( t ) ,  a linearly modulated signal 

r(t)  = a,p(t - nT) 
n 

which is fed to  a bandpass memoryless nonlinear am- 
plifying device whose transfer characteristic entails 
AM/AM and AM/PM distortion. Denoting by F[.] 
and a[.] these distortion characteristics, the baseband 
equivalent signal y ( t )  at the output of the amplifier 
has expression 

This signal is further fed to a channel with impulse 
response h(t)  which outputs a signal that  will be de- 
noted by z'(a,t) to underline its dependence on the 
symbol sequence a. Additive White Gaussian Noise 
(AWGN) n(t) is added a t  the output of the channel. 
The receiver processes the observed signal in order to 
perform Maximum Likelihood (ML) detection of the 
transmitted sequence. 

It is well known [5] that  the probability of detecting 
a sequence 6 different from the actual transmitted se- 
quence a can be upper bounded by the pairwise error 
probability as* 

(3) 
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Fig. 1. Baseband equivalent of a n’onlinear system with AWGN. 

where NO is the one-sided power spectral density of 
n(t) and 

is the Euclidean square distance between the two 
sequences (the integral extends over an  interval 
TO including the entire transmission). Resort- 
ing t o  the classical concept of error event begin- 
ning at discrete time n, an  error sequence e = 
{. . . 0, 0, e,, e,+l,. . . , en+D-&, 0, 0, . . .} can be associ- 
ated to  any such error event, where D is the duration 
and L is the channel memory. Thus, the probability 
that an error event starts at time n, E = U{.}, can 
be expressed as 

A 

e 

where the set A(e) contains all the transmitted se- 
quences a, with a-priori probability &‘{a}, for which 
a = a + e is an allowable information sequence. Equa- 
tions (3) and (5) can be combined to  give a union 
bound on the error probability. For high signal to  noise 
ratio, we can further simplify this bound by including 
only the dominant terms which involve the minimum 
distance 

The simplified approximate bound then reads 

P { E }  -? Q [“-I P{a E A ( e ) }  (7) 
eEEmin d m  

where Emin is the set of all possible error events with 
minimum distance starting at time n (including all 
those error sequences e for which there exist some al- 
lowable sequences a which minimize, together with e, 
the above defined distance); P { a  E A(e)} is the prob- 
ability that,  for a given error sequence, the generic 
sequence a is such that a + e is allowable. 

The minimization of equation (6) is difficult since 
not only one must find a suitable expression for the 
received (noise-free) signal z’(a, t ) ,  but also d(a+ e, a) 
depends on both the error sequence e and the trans- 
mitted sequence a. In the case of linear channels, the 
square distance is actually independent of the trans- 
mitted sequence and has expression 

which corresponds to  the energy associated with the 
transmission of the error sequence ( . I ( . )  has of course 
a different expression in the two cases). 

Following this general approach, the minimum dis- 
tance (6) could be numerically evaluated for given 
channel parameters [4]. In the following, we will in- 
troduce some simplifications and restrict the analysis 
to  single-term sequences in order to  point out the fac- 
tors that  influence the value of dmin as compared t o  
the corresponding value obtained for smin in the linear 
case. 

111. ERROR PERFORMANCE BOUNDS FOR CUBIC 
NONLINEARITIES 

A .  The distortion parameter E 

In this section, it will be assumed that the nonlin- 
ear transfer characteristic of the amplifying device is a 
third order real polynomial. In terms of the bandpass 
signals u(t)  and v ( t )  at the input and output of the 
nonlinear device, respectively, we have 

where the coefficients 7i are assumed to  be real. Under 
this assumption, it can be shown [€I] that  the nonlinear 
device has no AM/PM distortion and the AM/AM 
function relating the baseband equivalent of u( t )  and 
w ( t ) ,  denoted as z( t )  and y ( t )  in fig. 1, respectively, is 
such that equation (2) becomes 

in which a second order term would not appear, even 
if it  was present in (9), due to the bandpass nature of 
the nonlinearity. 

Let us further assume that the modulation format 
is a multilevel PAM with symbols belonging t o  the 
normalized interval [-1; 11 and the impulse response of 
the transmission filter is real, with maximum absolute 
amplitude A M ,  and confined to  a duration T of one 
symbol. These assumptions are summarized in the 
following equations * 

Under these assumptions, it  is easy to  see that the 
dynamic range of the baseband modulated PAM sig- 
nal z ( t )  that  enters the amplifier is confined to  the in- 
terval [-AM, AM] .  If the characteristic (10) was per- 
fectly linearized in order to  obtain the same output 
level when the input takes on its peak level AM, one 
would obtain a linear amplifier with gain a1, with a1 

obeying the following equality 
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Fig. 2. Cubic AM/AM characteristics for various values of C. 

The linear amplifier can be thought of as obtained from 
a variety of cubic curves, all reaching the same level 
C Y ~ A M  when their input takes on the peak value A M .  
It is useful to define a parameter 

which will be referred to  as the distortion factor, in 
order to express the coefficients 71 and 7 3  as a function 
of ( and A M .  From the last two equations we can 
rewrite (IO) as 

1 4' 2 3 ( t )  (16) y ( t )  = a1 ---z(t) - 01 -- 1 - E  1-4' A& 

where the modulus 1.1 has been omitted since the signal 
z ( t )  is real. 

Fig. 2 shows, on normalized axes, the AM/AM 
transfer characteristics (16) of cubic nonlinear devices 
for positive values of the input signal 2. Curves are 
plotted for the limiting values of the distortion pa- 
rameter (. The dashed line shows the linear transfer 
characteristic, with unit gain in the normalized scale, 
obtainable through linearization of the device under 
a peak power constraint. It is easily seen from this 
figure that the distortion factor identifies cubic curves 
with increasing saturating effect as it goes from zero 
(the cubic degenerates into the dashedline) to  k. We 
restrict our attention to values in the interval 10, $1, as 
stated in (15), so that all the curves reach the same 
peak value when z takes on its maximum value A M .  

B. Performance on wideband channels 

The signal y ( t )  at the output of the cubic device has 
a broader spectrum than z( t ) .  If the physical chan- 
nel h(t) has flat frequency response in the bandwidth 
of y ( t ) ,  the corresponding block can be omitted from 
fig. 1. In this case, the noiseless signal z'(a, t )  entering 
the receiver coincides with y ( t )  and can be written as 

- --- a' ' x a i p 3 ( t - i T )  (17) 
4 A L l - E  

where the triple summation that would stem from the 
term z3( t )  in (16) can be reduced to a single one us- 
ing our assumption that transmission pulses associated 
with different symbols are nonoverlapping. Note that 
the assumption of finite duration for p ( t )  would re- 
quire an infinite bandwidth for the physical channel: 
in the numerical results, we will employ a large finite 
bandwidth, yielding an approximately finite duration 
for p ( t ) .  

Equations (8) and (4) define, in the linearized and 
nonlinear case, the square distances to be minimized. 
By proper manipulation, the integrals in (8) and (4) 
can be "sliced" in the summation of nonoverlapping 
terms, each corresponding to  a single transmitted sym- 
bol. Since the terms to be added are all non negative, 
the search for the minimum can be restricted to a sin- 
gle symbol period in which a symbol a is transmitted 
and a symbol a + e is detected by the receiver. Hence, 
the minimum square distance in the two cases is 

' (e3 + 3e2a+ 3ea2)p3( t )  3 a1 
4 A L 1 - 6  

---- 

The above reasoning is intuitively sound if one thinks 
that, because of the assumptions made, the signal ob- 
served by the optimal receiver is free of IS1 and the 
receiver follows a symbol-by-symbol decision rule com- 
puting the distance between sequences as a sum of 
distances between corresponding symbols of these se- 
quences. Since in our case the channel is memoryless, 
single symbol errors dominate the probability of error 
event. 

The minimization in (18) is trivially performed by 
choosing e, = -&, i.e., with minimum absolute 
value (recall the normalization (11) of the symbol set). 
This corresponds to considering symbol errors that oc- 
cur between two adjacent symbols. In order to mini- 
mize (20), note that the first factor in the integrand is 
minimized for e = e,,, and the term in square brackets 
defines an elliptical paraboloid in the (a ,  e) plane with 
a single absolute minimum, reaching its maximum on 
the border of the allowable domain defined by the re- 
lations 

a E [-1,1] (20) 
e E [ - l -a , l -a ]  (21) 

(which assure that both U + e and a belong to the 
symbol set). The minimum is reached in the symmet- 
rical points (a ,e)  = (1,O) and (a ,e )  = (-l,O), with 
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Fig. 3. Error performance for cubic channel (4-PAM). 

an equal value of 3. If 5 4,  these points are those 
which minimize the whole integrand and, thus, the 
square distance. Of course e = 0 is not an allowable 
error symbol; hence, the couples minimizing the dis- 
tance are (aM,e,), ( - u ~ ,  -e,), ( - a ~  - e,,e,) and 
( a ~  + em,  -e,) where UM = 1 is the symbol with 
maximum absolute value. These couples are obtained 
by considering only those errors that  occur when the 
largest symbol is transmitted and its “closest” neigh- 
bouring symbol is estimated by the receiver or vice- 
versa. 

A comparison of the two expressions for skin and 
dkin shows that the integrand of the latter includes 
two factors, the first being the integrand which defines 
skin. Note that the condition 

would cause the integrand in d k i n  t o  be larger than the 
corresponding integrand in skin for any t ,  resulting in 
an improved performance in the nonlinear channel as 
compared t o  the linearized one. Although condition 
(22) is usually not verified, it intuitively suggests that  
transmission pulses p ( t )  close to  their peak value for 
their whole duration are penalizing for the nonlinear 
channel. As an example, if the term in square brack- 
ets in (22) is larger than $, for a rectangular pulse 
p ( t )  = AM of duration equal to  the symbol interval, 
condition (22) is verified with a reversed sign (>), im- 
plying d,in < s,in and a better performance for the 
linearized channel. The statement above has been nu- 
merically verified through simulation for four different 
transmission pulses p ( t ) .  

Rewriting (7) for the nonlinear channel yields the 

1 o-2 I 1 I 
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Fig. 4. Error performance for cubic channel (8-PAM). 

following upper bound on the symbol error probability 

and a similar bound, with s,in in place of d,in, for 
the linearized channel; the set Emin consists now of the 
error symbols fe,. The above expression corresponds 
to  assuming an equal pairwise error probability, with 
associated distance d,;,, for any transmitted symbol 
a for which a+e is an allowable symbol; i.e. a uniform 
error property applies. Although this property holds 
true for the case of linear channels, it does not in the 
case of nonlinear channels. 

We could further simplify the bound for the non- 
linear channel by considering, for any e E Emin, only 
those allowable symbols which minimize, together with 
e ,  the distance (20).  In this case, there are only 
two symbols to  be considered, instead of ( M  - l), 
for each term of the summation in (23) (a = UM 

or a = - a ~  - e,, for e = Se,, and similarly for 
e = -e,) and we obtain 

P { E }  5 zQ 4 [*] 
m 

This is of course a lower bound since, referring t o  the 
summations in ( 5 ) ,  all the terms have been disregarded 
except four. In other words, all possible errors associ- 
ated with symbols other than the four symbols which 
minimize the distance, are assumed to  have a zero 
probability of error. We can expect that when the 
distortion parameter E approaches zero, i.e., the sys- 
tem is almost linear, the upper bound (23) is closer to 
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Fig. 5. Error performance for soft-limiting channel (4-PAM). 

actual performance, whereas for more saturating de- 
vices the dominating errors occur only for the farthest 
symbols of the symbol set, bringing the actual perfor- 
mance close to  the lower bound (24). 

IV. SOFT-LIMITING NONLINEARITIES 

Cubic nonlinearities do not cause severe saturating 
effects, even for large values of the previously intro- 
duced distortion parameter. In order to evaluate the 
effects of sharper nonlinearities on error performance, 
in this section we will consider the same system model 
and assumptions of the previous section but we will 
replace the nonlinear device in fig. 1 with one having 
an input-output characteristic F[.]  modeled as a soft- 
limiter: 

In order to allow various degrees of nonlinear distor- 
tion for this type of nonlinear function, we introduce 
an Input Back-Off ( B O )  factor, denoted as b, which 
may be considered as a linear attenuation applied to 
the signal z ( t )  entering the nonlinearity. If b = 1 there 
is no attenuation and, since z ( t )  has a peak value of 
A M ,  the amplifier is used only in its linear region; if 
b < 1, z ( t )  is amplified with various degrees of satu- 
ration, depending on b. The expression for z'(a, t )  in 
this case becomes 

having used the assumption that transmission pulses 
associated with different symbols do not overlap. The 
optimal receiver estimates the transmitted sequence 

8-PAM-LOW + 

I I I I I 

2.0 1.0 0.5 0.3 0.25 
b 

Fig. 6. Error performance for soft-limiting channel (8-PAM). 

in a symbol-by-symbol fashion and the minimum dis- 
tance can be again found between two sequences differ- 
ing in one symbol only. This minimum distance may 
be expressed as follows 

(27) 
In this case, the minimization of the above expression 
is in general not analytically feasible, but it is intu- 
itive that the minimum square distance is reached for 
a = U M  and e = e,. This can be proved since the 
derivative of the integral in (27), with respect to e, 
is zero for e = 0 (for which amin = 0) and the inte- 
gral itself is continuous with e, whereas, for a fixed e, 
the integral is monotonically decreasing for increasing 
values of 1.1. 

Thus the same upper and lower bounds of equations 
(23) and (24) apply to the case of a soft-limiting non- 
linearity, with amin computed numerically. 

V. NUMERICAL RESULTS 

Computer simulation has been performed in both 
the previously introduced nonlinear channels. In the 
simulated systems, pulse p ( t )  has been chosen to  have 
a strictly bandlimited transfer function, corresponding 
to the first lobe of a sinc2( $) function. The bandwidth 
B is chosen to be equal to times the signaling fre- 
quency so that,  for a cubic nonlinearity, the two-side 
bandwidth of y(t) is $; hence, y ( t )  can be represented 
by 16 samples per symbol period. In both cases, cubic 
or soft-limiting nonlinearity, a channel filter h( t )  has 
been employed with an ideal low-pass transfer func- 
tion with bandwidth equal to 16 times the signaling 
frequency; this introduces no linear distortion on y( t )  
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in the case of cubic devices. In the case of soft-limiting 
devices, z’(a,t) is strictly bandlimited by h(t) ,  as nec- 
essary for simulation purposes; hence suboptimal per- 
formance must be expected with respect to  the theo- 
retical results. 

The bounds in (23) and (24) have been numerically 
evaluated, with channel parameters chosen as outlined. 
Figures 3 and 4 show the previously derived upper and 
lower bounds along with the simulated Symbol Error 
Probability (SEP) versus the distortion parameter C;, 
with C; varying between 0 and $, for a third order chan- 
nel and a 4-PAM and 8-PAM symbol set, respectively. 
The noise power spectral density NO has been chosen 
t o  obtain a constant SEP of on the linearized 
channel. In the case of 4-PAM, a constant improve- 
ment is observed for increasing distortion, with SEP 
improvements up to  an order of magnitude. For 8- 
PAM there is an optimal value for the distortion pa- 
rameter C;, but performance is roughly constant. Note 
how, for increasing values of the symbol set cardinal- 
ity M ,  the two bounds tend to  split apart; this is ev- 
ident from the expressions (23) and (24) of the upper 
and lower bounds. The system is linear for C; = 0: sim- 
ulated performance and the upper bound coincide at  
this point, as expected. 

Figures 5 and 6 show the previously derived upper 
and lower bounds, along with the simulated SEP ver- 
sus the LBO parameter b, for a soft-limiting channel 
with the same signal sets and the same choice for NO 
as in the previous case. On the horizontal axis, the 
scale for b is chosen so as t o  have a linearly increas- 
ing value for the gain i, from left to  right. As ex- 
pected, when b > 1 the device is employed in its linear 
region and the simulated performance has a typical 
&(.) shape, perfectly overlapped with the upper bound 
(which is accurate since the uniform error property ap- 
plies). The lower bounds were plotted only for b 5 1 
since they only apply when the amplifier is saturated. 
In the case of 8-PAM, there is a sudden performance 
degradation, however, the SEP remains within an or- 
der of magnitude even for small values of b. In 
the 4-PAM case, there is an optimal value for b cor- 
responding to  a small amount of distortion, whereas 
for b = 0.5, half of the employed dynamic range of the 
amplifier is completely saturated and performance is 
comparable t o  that of the linearized channel ( 

In all the figures, simulated curves tend to  approach 
the lower bounds, even for small amounts of saturation 
of the nonlinear device: this means that symbol errors 
tend to  concentrate on the outmost symbols of the set 
when the system becomes nonlinear. 

VI.  CONCLUSIONS 

made for the cubic channel, which is more analyti- 
cally tractable. Some factors affecting the performance 
have been identified, such as the impulse response of 
the transmission filter, the signal set cardinality and 
the degree of saturation of the nonlinearity. A lower 
bound including only those errors occurring on the 4 
outmost symbols of the set has been introduced and 
its consistency verified through simulation. 

Given a nonlinear channel of the considered types, 
for a “sparse” signal set such as 4-PAM, performance 
may be appreciably improved, with respect t o  that  
achievable through perfect linearization under a peak 
power constraint, by allowing nonlinear distortion, 
possibly selecting a proper back-off value. In fact, this 
causes an increased received mean-power which par- 
tially compensates for the receiver reduced capabil- 
ity to  distinguish between saturated pulses associated 
with different symbols. 

For signal sets with larger cardinality (&PAM), per- 
formance degradation is observed when the nonlinear- 
ity is severely saturated, whereas for cubic devices with 
small saturating effects the nonlinear distortion may 
be completely recovered by an optimal receiver. Sim- 
ulations and bounds have also been obtained for a 16- 
PAM signal set, with results quantitatively similar to  
those of the %PAM case. 
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