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Abstract—We consider the problem of estimating corre-
lated Gaussian samples in (correlated) impulsive noise, through
message-passing algorithms. This is a meaningful theoretical
framework to model signal transmission on power-line commu-
nication systems. Due to the mixture of Gaussian variables (the
samples) and Bernoulli variables (the impulsive noise switches),
the complexity of messages increases exponentially with the
number of samples. By adopting a Parallel Iterative Scheduling,
with properly constrained messages, it turns out that each
iteration of the proposed algorithm is equivalent to the parallel
run of a classical Kalman Smoother and a binary sequence
detection through the BCJR algorithm. Results demonstrate the
effectiveness of the receiver along with its performance, in terms
of mean square estimation error.

Index Terms—Factor graphs; Impulsive noise; Variational
Bayesian inference.

I. INTRODUCTION

Environments subject to electromagnetic interference
(EMI), like power substations or any sensing device or network
in the vicinity of an EMI source, generate noise whose power
strongly fluctuates in time. Such impulsive noise induces
observation errors that affect the acquisition of a sequence of
data samples. This occurs in power-line communication (PLC)
systems, both for the detection of discrete symbols [1], and in
sensing applications for the estimation of Gaussian sources [2].
Impulsive interference in PLC, e.g., due to switching devices
or to (dis)connection of loads from mains, occurs in bursts,
so that noise samples are correlated, resulting in a Markov-
Middleton model [3]. A simplified two-state Markov process
is adopted in [4], in the context of digital communications,
where the discrete symbols are correlated through a code, as
well as in [5], for the estimation of a memoryless Gaussian
source. In this work, we extend the approach of [5] to a much
more general and complicated scenario.

We adopt the same noise model with memory as [4], [5], 
while assuming a correlated Gaussian source for the samples 
of interest, which is, e.g., an accurate representation of the 
signal distribution in multicarrier systems, used in PLC or 
in asynchronous digital subscriber lines [2]. Besides bursty 
impulsive noise, we also consider memory in the observed 
signal sequence, through a simple autoregressive model. The 
resulting estimation problem is modelled with factor graphs 
(FGs), in an attempt to solve it with the sum-product algorithm 
(SPA) [6], a message passing algorithm the reader is assumed 
to be familiar with. Our main objective is thus the design of
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an optimal receiver for the correlated gaussian samples on a
PLC system affected by bursty impulsive noise.

In the present case of mixed discrete (the impulsive noise
switches) and continuous (signal) variables, the direct applica-
tion of the SPA involves messages with exponentially growing
complexity, so that we must resort to approximate variational
inference techniques. Whenever either the noise sequence or
the signal sequence is memoryless, the present problem degen-
erates into two classical estimation problems with known exact
solutions (namely, the Kalman smoother [7] and the BCJR
algorithm [8], [5]), that are—in terms of FGs and involved
messages—the mirror image of each other. Exploiting this
symmetry and by a proper merging of the two subproblems,
we propose an algorithm, called parallel iterative scheduling,
to approximate the optimal solution, based on hard decisions
on the impulsive noise state.

II. SYSTEM MODEL

We refer to the channel model sketched in Fig. 1. We
observe a frame of K samples {yk}, expressed as

yk = sk + nGk + ikn
I
k (k = 0, 1, ...,K − 1) (1)

where the signal sequence s and the two noise sequences nG

and nI are independent of each other; the noise sequences are
made of real Gaussian independent and identically distributed
(i.i.d.) samples while the signal samples are obtained by
filtering a real white Gaussian noise process w with zero
mean value. Hence, wk ∼ N (0, σ2

w), nGk ∼ N (0, σ2
G), and

nIk ∼ N (0, σ2
B − σ2

G), all of them being i.i.d. sequences. For
the sake of simplicity, we analyze an autoregressive model of
order one (AR(1))

sk = a1sk−1 + wk (2)

i.e., sk is obtained from wk through a simple single-pole
infinite impulse response (IIR) digital filter, with |a1| < 1. Its
mean value and variance are thus: ηs = 0; σ2

s = σ2
w/(1−a21).

Since it is the signal variance (compared to that of additive
noise) that determines the performance of a linear estimator,
we shall take the variance of sk as a reference, and consider
the driving white noise as wk ∼ N (0, (1− a21)σ2

s).
The sequence i is a two-state Markov process with binary

values ik ∈ {0, 1} associated, respectively, with a “good”
channel condition (G), with only background noise nG present,
or a “bad” one (B), with both background and impulsive noise
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Figure 1. Channel model affected by Gaussian background noise nG and
impulsive noise nI , that is switched by the two-state Markov process ik .

nI . The sum of background plus impulsive noise corresponds
to a noise sequence nBk = nGk + nIk ∼ N (0, σ2

B), if ik = 1,
whose variance is the sum of σ2

G and σ2
I = σ2

B − σ2
G =

(R− 1)σ2
G, where we define the ratio R

4
= σ2

B/σ
2
G > 1 (with

σ2
B often much larger than the background noise variance σ2

G).
The Markov process is characterized by the [2×2] one-step

transition probabities matrix Π with entries πr,c = P{ik+1 =
c − 1 | ik = r − 1}, (r, c ∈ {1, 2}). The probability that
the channel is in the “bad” condition, pB = P{ik = 1} =
γπ12, where γ = (π12 + π21)

−1 quantifies the memory of
the Markov process [4]. In fact, the average duration of 1’s
sequences is TB = γ/pG, whereas it would be TB = 1/pG
for a memoryless process.

III. FACTOR GRAPH AND MESSAGE PASSING

The solution of the aforementioned estimation problem
through message passing algorithms (Sum Product, Belief
Propagation or others [6]) requires the expression of the
joint probability distribution function1 of the signal samples
s = {sk} and parameters i = {ik} to be estimated given the
observed samples y = {yk}, so that their marginals can be
employed for the minimum mean square error (MMSE) or
maximum a posteriori (MAP) estimation.

Disregarding the joint pdf p(y) of the observations, which
is a constant term, we seek to estimate the marginals of

p(s, i | y) ∝ p(s, i,y) = p(y | s, i)p(s)P (i) (3)

=

[
K−1∏
k=1

p(yk | sk, ik)p(sk | sk−1)P (ik|ik−1)

]
·p(y0 | s0, i0)p(s0)P (i0)

factorized as above thanks to the independence of signal (s)
and impulsive noise (i). The FG that represents the joint
probability distribution function is thus made of K−1 identical
stages, each modelling one of the factors of the product in
(3), where the variable nodes sk and ik are connected by
the factor nodes representing the pdf/pmf in (3). In Fig. 2,
we highlight the k-th stage to show the labels of the factor-
to-variable node messages that travel on the FG edges. The
stages are connected through a double chain of factor nodes:
on the bottom line, the one-step transition probabilities of the
Markov process, P (ik | ik−1) = π(ik−1+1),(ik+1) and on the

1We use the notation P (·) to identify a probability mass function (pmf) of
a discrete random variable and p(·) to denote a probability density function
(pdf). We use the term probability distribution function to denote a continuous
pdf with some discrete probability masses. For a probability distribution
function, we still use the symbol p(.).

top line, the conditional pdfs of the AR(1) process, directly
obtained from the system model (2),

p(sk | sk−1) = g
(
sk − a1sk−1, (1− a21)σ2

s

)
, (4)

where g(x− η, σ2) is the standard Gaussian pdf with mean η
and variance σ2. As for the 0-th stage, the factor node

P (i0) = pGδ(i0) + pBδ(i0 − 1) (5)

sets the a-priori pmf of the initial value for the binary variable
i0. In the same way,

p(s0) = g(s0, σ
2
s) (6)

is initialized at its stationary Gaussian distribution. The con-
ditional pdfs of the observed samples are again Gaussian:

p(yk | sk, ik) = g(yk − sk, σ2
G + ikσ

2
I ) (7)

with mean equal to the conditioning sk and variance dictated
by the channel condition: σ2

n,k = σ2
G + ikσ

2
I ∈ {σ2

G, σ
2
B},

depending on the impulsive noise switch at time k.
The messages in Fig. 2 have subscripts “u,d,f,b” denoting

their (up, down, forward, backward) directions. According to
the rules of the SPA [6], the variable-to-factor node messages
are simply the product of the incoming messages arriving at
the (sender) variable node from all of its neighbouring factor-
nodes except the (destination) one to which the message is
addressed. For these reasons, we did not label the variable-to-
factor node messages in Fig. 2 and consider them implicitly
in the factor-to-variable node messages detailed hereafter.

The forward and backward travelling messages, in the top
part of the FG are:

pf (sk) =

ˆ
pf (sk−1)pu(sk−1)p(sk | sk−1)dsk−1 (8)

pb(sk) =

ˆ
pb(sk+1)pu(sk+1)p(sk+1 | sk)dsk+1 (9)

where k = 1, ...,K − 1 in (8) and, for the purpose of
initialization, pf (s0) = p(s0) is the initial message to node
s0, while k = K − 2, ..., 0 in (9) and pb(sK−1) = 1 is the
identity message to the last node.

The messages travelling on the bottom line of the FG
are conceptually similar, except that they involve discrete
(binary) probabilities, hence the saturation with respect to the
previous (forward) or subsequent (backward) variable node is
performed as a binary sum:

Pf (ik) =
∑
ik−1

Pf (ik−1)Pd(ik−1)P (ik | ik−1) (10)

Pb(ik) =
∑
ik+1

Pb(ik+1)Pd(ik+1)P (ik+1 | ik) (11)

where k = 1, ...,K − 1 in (10), with the initial condition
Pf (i0) = P (i0) in (5) modelling the stationary unconditional
pmf of the impulsive noise switch, while k = K − 2, ..., 0
in (11), with initial condition Pb(iK−1) = 1, modelling the
absence of future samples to rely upon. Both update equations
use the entries πij (i, j,= 1, 2) of the one-step transition
matrix.

The ’vertical’ message Pd(ik) is computed by multiplying
the messages in (8) and (9) (as forwarded by variable node
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Figure 2. FG modelling the joint probability distribution function p(s, i | y). The k-th stage is highlighted along with messages sent from factor nodes to
variable nodes. The initial (k = 0) stage is driven by messages coinciding with the priors, Pf (i0) = P (i0) and pf (s0) = p(s0) , while the last (k = K−1)
stage is terminated without a transition factor node, hence Pb(iK−1) = pb(sK−1) = 1.

sk) by (7), and then integrating (i.e., “summing”), according
to the SPA, to saturate with respect to all the variables (sk
only, in this case) except that of interest (ik); we have thus

Pd(ik) =

ˆ
pf (sk)pb(sk)p(yk | sk, ik)dsk . (12)

The message pu(sk), directed (upwards) towards sk, entails
a saturation with respect to ik, hence a (binary) summation
instead of an integral (being ik a Bernoulli variable):

pu(sk) =
∑
ik

Pf (ik)Pb(ik)p(yk | sk, ik) . (13)

IV. PARALLEL ITERATIVE SCHEDULING

As intuitive, being the present problem “fed” by Gaussian
pdfs, namely those in (4) and (7), and by the binary variables
ik, the messages passed along the FG edges are represented
by Gaussian mixtures. For instance, pu(sk) in (13) is a linear
combination of two Gaussian pdfs, with given (identical) mean
and (different) variance, with coefficients corresponding to a
pmf Pu(ik) = Pf (ik)Pb(ik). The problem is that we need to
propagate pu(sk) to the upper part of the FG, through (8) and
(9), where the number of components in the mixture doubles at
each step of the forward/backward iteration, starting from the
single Gaussian p(s0). Note that the growth in the number of
Gaussian components of the mixture (in this case a doubling
of their number), at each step, is not due to the presence of
cycles in the FG; rather, it simply depends on the presence
of discrete variables. In our case, if the Bernoulli variables
ik were all independent of each other, hence did not form a
Markov chain, their variable nodes in the FG of Fig. 2 would
be only connected to the factor nodes p(yk | sk, ik) of the
observed samples and would send them messages containing
their prior (Bernoulli) distribution. The FG would thus be free
of cycles but still the messages pu(sk) would be a Gaussian
mixture as in (13), weighted by the prior probabilities of ik,
thus implying the proliferation of Gaussian components in
the mixture messages propagating along the chain of variable
nodes sk in the upper part of the FG. The only chance to
avoid such a rapid increase in the message complexity is to
assume that the variables ik are deterministic, so that each
pu(sk) consists of a single Gaussian.

Driven by this observation, we adopt a parallel itera-
tive scheduling (PISch) for the iterative message passing
operations, where the FG is divided in two—upper and
lower—halves that operate in parallel, exchanging their own
messages ’horizontally’ ((8),(9) and (10),(11)), and sending
’vertical’ messages (12),(13) to the other half only after com-
pleting a forward/backward pass. In particular, the messages
(13), passed from the lower to the upper half of the graph,
should account for the estimated (Bernoulli) pmfs of individual
impulsive noise switches ik, which would start the generation
of Gaussian mixtures with increasing complexity, as discussed
above. One rough way to overcome the problem is to take a
hard decision on ik = m (m ∈ {0, 1}), hence to estimate
its pmf as a deterministic P̃ (ik) = δ(ik −m), which reduces
each possible mixture to a simple Gaussian message. Such a
constraint implies that the messages passed in the opposite
direction, i.e., towards the lower FG half, are simple Gaussian
estimates of the pdfs of individual signal samples, p̃(sk)
(that can be stored and passed, e.g., through their mean and
variance).

A. The upper half of the FG: noise with known variance

If we assume that the variance of the noise affecting the
observations is deterministic, the random variables ik disap-
pear and the FG of Fig. 2 reduces to a cycle-free graph, of
which one stage is reported in Fig. 3, that models the joint
distribution of samples sk conditioned on the observations yk,
so that

p(s | y) ∝ p(s,y) = p(y | s)p(s) (14)

=
[∏K−1

k=1 p(yk | sk)p(sk | sk−1)
]
p(y0 | s0)p(s0)

is clearly a simplified version of (3). In particular, the observed
samples are expressed as yk = sk+nk, for k = 0, 1, ...,K−1,
where the noise sequence is made of zero-mean Gaussian
samples, nk ∼ N (0, σ2

n,k) whose (known) variance can be
different, from sample to sample, so that the random sequence
n is not stationary. The signal samples are still those expressed
in the AR(1) model in (2). Hence, the transition probabilities
of the factor nodes appearing in the upper part of Fig. 3
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Figure 3. One of the connected stages of the FG modelling the joint pdf p(s |
y) of AR(1) correlated Gaussian samples in AWGN with known variance.
This model coincides with the Kalman filtering/smoothing problem.

coincide with (4), while the expression of the factor nodes
for the observed samples is

p(yk | sk) = g(yk − sk, σ2
n,k) = pu(sk) (15)

so that the upwards message pu(sk) is a single Gaussian.
In this scenario, the expressions for the forward/backward
travelling messages can be dramatically simplified by noting
that all of the pdfs appearing in (8),(9) are Gaussian.

As a matter of fact, the assumption of additive Gaussian
noise with known variance per sample changes the nature
of the system in (1), so that the problem degenerates into
the estimation of correlated Gaussian samples (sk) in the
presence of (possibly non-stationary) additive white Gaussian
noise (AWGN) with known statistics, which is the classical
problem of Kalman filtering/smoothing [7]. Thus, the opera-
tions performed by the SPA on the cycle-free FG in Fig. 3
implement its algorithmic steps [6], whose final result is a
Gaussian estimate with conditional variance σ̂2

k and mean η̂k.
The performance of a Kalman smoother with perfect chan-

nel state information on impulsive noise is the best that can
be achieved, for given noise statistics, hence we shall employ
its MSE, as an experimental lower bound in the results that
follow (see Figs. 5 and 6).

B. The lower half of the FG: independent signal samples

If we assume that a1 = 0 in (2), the signal samples sk are
uncorrelated, hence each sample is statistically independent
of the others. In particular, since p(sk | sk−1) = p(sk)
coincides with the prior pdf of the k-th sample, the factor
nodes of the upper line in Fig. 2 are only connected to the
following variable node. Each stage of the FG thus reduces
to the structure sketched in Fig. 4, where there are no more
forward/backward messages to/from sk, so that the FG is free
of cycles and the message sent from factor node p(sk), now
labelled

pd(sk) = g(sk − ηs,k, σ2
s,k) = p(sk) (16)

simply coincides with the prior Gaussian distribution of sk.
In (16), we account for possibly different mean and variance
for each sample, while in the case of a stationary sequence,
as generated by (2), it is simply (ηs,k, σ

2
s,k) = (0, σ2

w).
Following the “down” direction, the above message (forwarded
by variable node sk) is multiplied by the factor p(yk | sk, ik) in
(7), whose variance σ2

n,k = σ2
G+ikσ

2
I ∈ {σ2

G, σ
2
B} depends on

the impulsive noise switch at time k. The product is integrated
(i.e., summed, according to the SPA), to saturate with respect
to sk to get a convolution of Gaussian pdfs.

Figure 4. One of the connected stages of the overall FG modelling the joint
probability distribution function p(s, i | y) in the case of independent samples
sk . The initial (k = 0) stage is driven by Pf (i0) = P (i0) while the last
(k = K − 1) stage is terminated without a transition factor node, hence
Pb(iK−1) = 1.

The upper and lower half of the FG are the mirror image
of each other. Despite the variables sk are continuous and ik
are discrete, the probabilistic meaning of Pf (ik) and Pb(ik)
is in fact similar to that of pf (sk) and pb(sk): Pf (ik) =
p(ik, y0, ..., yk−1) and Pb(ik) = p(yk+1, ..., yK−1 | ik), so
that their update equations (10),(11) implement filtering and
prediction steps, similar to those of a Kalman smoother in Sec.
IV-A.

In particular, the filtering step for the forward message
produces Pf (ik)Pd(ik) = p(ik, y0, ..., yk) (due to the inde-
pendence of yk on past observations, given ik); this quantity
coincides with the probabilities defined as “α” in [8], whereas
Pb(ik) coincide with the “β” probabilities in [8]. As a matter
of fact—as it is already known [6]—both the initial condi-
tions and the update rules are such that the SPA applied to
the present cycle-free FG implements the well-known BCJR
algorithm [5], where ik are the symbols to be “decoded”. At
the final, completion step, of the BCJR algorithm, the “α”
and “β” are multiplied to yield the posterior estimate of ik.
This is the same operation that completes the SPA, where all
incoming messages to node ik are mutiplied to yield

P (ik) = P (ik | y) ∝ p(ik,y) (17)
= p(ik, y0, ..., yk)p(yk+1, ...yK−1 | ik)

= Pf (ik)Pd(ik)Pb(ik) = P̃ (ik)

(being future symbols (yk+1, ..., yK−1) independent of past
and present ones, given ik), where the marginal pmf
of ik is a normalized version of P̃ (ik), i.e., P (ik) =

P̃ (ik)
(∑

ik
P̃ (ik)

)−1
.

C. Symbol estimates from soft channel state estimates

The stages in Fig. 4 are connected only through the bottom
line in Fig. 2, that models the Markov chain ik, so that
the FG is free of cycles. Its message-passing procedure thus
terminates in a single forward+backward pass, converging at
the conditional marginal probabilities (17). At this point, the
posterior distribution of sk can be estimated, which is our
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ultimate goal. To this aim, Pu(ik) = Pf (ik)Pb(ik) is sent
upwards to compute the message in (13),

pu(sk) =
∑
ik

p(yk | sk, ik)Pu(ik)

=
∑
ik

p(yk | sk, ik,y\yk)p(ik,y\yk)

= p(yk,y\yk | sk) = p(y | sk)

which is multiplied by the message travelling in the opposite
direction on the same edge, that is the prior pdf pd(sk) in (16),
to get the posterior estimate

p(sk | y) ∝ p(sk,y) = p(y | sk)p(sk) = pu(sk)pd(sk) (18)
=
[
Pu(ik = G)g(sk − yk, σ2

G)

+ Pu(ik = B)g(sk − yk, σ2
B)
]
g(sk − ηs,k, σ2

s,k).

This is (as much as pu(sk)) a binary Gaussian mixture,
weighted by the probabilities Pu(ik). In (18) and hereafter,
we use {G,B} for the values of the impulsive noise switch
ik, instead of {0, 1}, for uniformity of notation.

The mean value of (18) is the MMSE estimate

ŝk = E [sk | y] (19)

while the MSE of this estimator

σ̂2
k = E[(sk − ŝk)2 | y] = E[s2k | y]− ŝ2k (20)

can be computed from the conditional variance of (18). Eq.
(19) expresses the same result as in [2, eq. (8)], there obtained
in the case of Middleton’s class-A impulsive noise.

Fig. 5 shows the MSE performance of the estimate (19),
obtained from the lower FG half, as applied to independent
signal samples sk (label “LO noSI (ind. samples)”) observed
in correlated impulsive noise (γ = 100, pB = 0.1, R = 100).
Its performance is very close to that of an ideal estimator,
derived assuming perfect CSI on ik. This demonstrates that
the estimate P̃ (ik) of the channel state, resulting from the
BCJR algorithm applied to the FG in Fig. 4, is extremely
accurate. If the same estimator is applied to correlated (a1 =
0.9) signal samples, with the same noise statistics, instead,
its performance (curve labelled “LO noSI (AR1 samples)”)
significantly degrades.

In order to account for the signal samples’ correlation,
a more reliable estimate of their distribution—compared to
the prior distribution in (16)—should be provided by the
factor nodes p(sk). To that purpose, we can use the estimates
provided by the upper FG half discussed in Sec. IV-A, i.e., the
Gaussian pdfs estimated by Kalman Smoothing. Since the up-
per FG half needs itself to have some channel state information
on the variables ik, we assume here an ideal perfect CSI. Fig. 5
shows the great performance enhancement provided by such a
setup with estimated Signal Information (curves labelled “LO
est.SI (AR1 samples”). For completeness, we applied the same
strategy when the signal samples are independent (a1 = 0).
In this case (curve labelled “LO est.SI (ind. samples)”), Fig.
5 shows no improvements with respect to the absence of
Signal Information, clearly due to the fact that there is no side

-30 -20 -10 0 10 20 30

SNR [dB]

10 -3

10 -2

10 -1

1

M
S

E

LO noSI (ind. samples)

LO noSI (AR1 samples)

LO est.SI (ind. samples)

LO est.SI (AR1 samples)

K.Smoother w/CSI

Figure 5. MSE of the estimate in (19) as applied to: independent signal
samples (a1 = 0) or AR(1) correlated samples (a1 = 0.9) with unit variance
(σ2

s = 1) in correlated impulsive noise (γ = 100, pB = 0.1, R = 100).
Estimates with no prior signal information (label “noSI”) are compared with
those using estimated signal information (label “estSI”), provided by the upper
FG half with perfect CSI. 102 frames of 103 samples have been considered,
for each SNR value. The experimental lower bound in the case of AR(1)
correlated samples (Kalman smoother with CSI, discussed in Sec. IV-A) is
reported for comparison.

information to gain: since the signal samples are independent,
the prior pdf (16) already describes them faithfully and can
only be approximated by the noisy estimates of the upper FG
half (hence a slight degradation of performance).

V. SIMULATION RESULTS

Fig. 6 shows the MSE of the signal estimate obtained by
the Parallel Iterative Scheduling (PISch) algorithm described
above. We considered the following system parameters: for the
AR(1) signal samples, a1 = 0.9 and σ2

s = 1; for correlated
noise, we set γ = 100, pB = 0.1, and R = 100.

In particular, the two halves of the FG (upper+lower) are run
in parallel and, after each iteration, exchange their estimates
for the Gaussians p̃(sk) and a hard decision, i.e., a single
Dirac, for P̃ (ik). At the first iteration, P̃ (ik) is set to the
prior pmf P (i0) in (5), for any ik (as if they formed an
i.i.d. sequence), so that all factor nodes in (7) use the same
(average) noise variance σ2

n,k = σ2
n = (1− pB)σ2

G + pBσ
2
B =

σ2
G ((1− pB) + pBR); similarly, p̃(sk) is initialized, for any
sk, with the prior pdf (6) of s0 (as if the signal samples were
uncorrelated). The upper and lower halves of the FG complete
a forward/backward pass, then send messages to the other half
along the vertical edges.

In order to check convergence, the MSE in Fig. 6 is
evaluated and plotted for two different signal estimates. Both
are the expectation of the estimated marginal p̃(sk | y) ∝
pu(sk)pd(sk), that is produced on the vertical edge connected
to the variable node sk, but the product of messages is
calculated in two ways, right after completing the message
passing procedure on each of the two FG halves. For the
curves labelled “LO” (or “UP”), in figures, the upwards
message pnu(sk) (or the downwards pnd (sk)), produced at the
present iteration n by the lower (or upper) half of the FG,
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Figure 6. MSE for the estimate of AR(1) correlated signal samples (a1 =
0.9), provided by the Parallel Iterative Scheduling algorithm, at convergence.
Parameters’ values as in Fig. 5. The experimental lower bound (Kalman
smoother with CSI, discussed in Sec. IV-A) is reported for comparison. 102
frames of 103 samples each have been considered, for each SNR value.

is multiplied by the downwards message pn−1d (sk) (or the
upwards pn−1u (sk)) of the previous iteration (n− 1).

Since, for the PISch algorithm, a hard decision on ik fixes
the noise variance, the “UP” estimate is directly provided by
the upper half of the FG as the result of a Kalman Smoother,
with noise variance dictated by the estimated ik; while the
“LO” estimate is (19), as derived as a result of lower half of the
FG. The two curves in Fig. 6 practically coincide after three
iterations, meaning that the iterative algorithm has stabilized
at convergence. We numerically checked that, even after 10
iterations, the MSE curves did not change appreciably.

As seen in Fig. 6, the performance of PISch tends to
follow a waterfall shape, i.e., a sequence of breakpoints where
the slope changes (a similar behavior is observed in Fig.
5, when a1 = 0). This is not a numerical artifact, as one
may conjecture, but rather an intrinsic feature of a two-states
system, like the one implied by the hard decisions of PISch.
A theoretical justification for this behavior can be given, but
is outside of the scope of the present work.

As seen in the figure, the results of the PISch algorithm
significantly deviate from those of a Kalman Smoother with
perfect CSI, discussed in Sec. IV-A, which acts as an exper-
imental lower bound, since it implements an optimal ’genie
aided’ estimator that knows the noise statistics at each time
epoch. The maximum deviation is around 5 dB, at intermediate
SNR values.

The problem is that the simple PISch algorithm relies on
’hard messages’, i.e., on hard decisions on the impulsive noise
swithes ik. A more sophisticated algorithm, such as Expecta-
tion Propagation [9], would instead rely on a Gaussian pro-
jection of the (mixture) messages containing soft information
on the channel state, with an expected enhanced performance,
in terms of MSE. Typically, the benefits of exchanging soft
information are especially evident at moderate-to-high SNR
values, where the performance of PISch, in Fig. 6, converges
onto the above metioned ’waterfall’ shape.

Investigation on more complicated and performing algo-
rithms is left to future developments. It is however interesting
to note that the apparently heuristic approach of PISch can
be viewed in a perspective similar to that of EP, i.e., as a
divergence-based approximation of messages. In fact, despite
employing different metrics from the KL divergence adopted
by EP, the Gaussian mixture message pu(sk) is approximated,
in the PISch algorithm, with only one of its components,
hence with a simple Gaussian message g(sk), chosen to be the
one with the largest value of Pu(ik), hence with the largest
mass, as per (13). As discussed in [10], the selection of the
component with largest mass in a mixture pu corresponds to
approximating the mixture with a Gaussian g that minimizes
the α-Divergence Dα(pu‖g) with α → −∞, that is the
’exclusive’ or ’zero-forcing’ α-Divergence.

VI. CONCLUSIONS

The estimation of a correlated Gaussian sequence affected
by bursty impulsive noise, considered in this work, is a
meaningful theoretical framework to analyze multicarrier sig-
nal transmission on power-line communication systems. The
design of a receiver based on message-passing algorithms, im-
plementing varational inference techniques, entails messages
with exponentially increasing complexity, for which approx-
imate solutions are demanded. By identifying the ’critical
messages’, we implemented a simple and novel algorithm for
its approximate solution. Complexity reduction is achieved by
taking a hard decision on the impulsive noise state, which leads
to suboptimal performance, as expected. An extension to more
computationally demanding algorithms, such as Expectation
Propagation, is thus foreseen as future work, in the attempt of
achieving a performance closer to optimality.

REFERENCES

[1] D. Fertonani and G. Colavolpe, “A Robust Metric for Soft-Output
Detection in the Presence of Class-A Noise”, IEEE Trans. Commun.,
vol. 57, no. 1, pp. 36-40, Jan. 2009.

[2] P. Banelli, “Bayesian Estimation of a Gaussian Source in Middleton’s
Class-A Impulsive Noise”, IEEE Signal Proc. Lett., vol. 20, no. 10, pp.
956-959, Oct. 2013.

[3] G. Ndo, F. Labeau, and M. Kassouf, “A Markov-Middleton Model for
Bursty Impulsive Noise: Modeling and Receiver Design”, IEEE Trans.
Power Del., vol. 28, no. 4, pp. 2317-2325, Oct. 2013.

[4] D. Fertonani and G. Colavolpe, “On Reliable Communications over
Channels Impaired by Bursty Impulse Noise”, IEEE Trans. Commun.,
vol. 57, no. 7, pp. 2024-2030, July 2009.

[5] S. Alam, G. Kaddoum, and B. L. Agba, “Bayesian MMSE Estimation
of a Gaussian Source in the Presence of Bursty Impulsive Noise”, IEEE
Comm. Lett., vol. 22, no. 9, pp. 1846-1849, Sep. 2018.

[6] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and
the Sum-Product Algorithm”, IEEE Trans. Inform. Theory, vol. 47, no.
2, pp. 498-519, Feb. 2001.

[7] J. R. Movellan, “Discrete Time Kalman Filters and Smoothers”, MPLab
Tutorials, Univ. of California, San Diego (USA), 2011.

[8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ”Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate”, IEEE Trans. Inform.
Theory, vol. 20, no. 2 , pp. 284-287, Mar. 1974.

[9] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning, MIT Press, 2006. ISBN: 026218253X, http://www.
gaussianprocess.org/gpml/

[10] T. Minka, “Divergence measures and message passing”, Tech. Report,
Microsoft Research Ltd., Cambridge (UK), Jan. 2005.

65

2019 IEEE International Symposium on Power Line Communications and its Applications (ISPLC)


