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ABSTRACT

Numerical simulations of semiconductor optical amplifiers (SOA) often are time consuming. Making simplifying
assumptions, we obtain a fast model based on the reservoir, representing the total number of useful carriers. In
this paper, we explain how this model is developed and how the gain is parameterized. We demonstrate that the
scattering losses, dropped in the derivation of the reservoir model, can be re-introduced by applying a simple
transformation to the gain coefficient. In this way, the accuracy of the model is greatly increased, but its level
of complexity remains low.

Keywords: Semiconductor optical amplifier (SOA), numerical model, gain parameterization, optical communi-
cations

1. INTRODUCTION

Semiconductor optical amplifiers (SOA) are considered important components for the next generation of optical
networks. They can be used in a wide variety of applications, including optical switching and wavelength
conversion using or cross-gain modulation1, 2 (XGM). Other applications include signal reshaping and noise
cleaning of on-off keying (OOK) signals.3 The latter application has been demonstrated for optical communication
systems using multiplexed spectrum-sliced sources (SSWDM) at bit rates under 10 Gb/s which are applicable
to metropolitan area networks.4

Keeping in mind our objective of evaluating the performance of systems at relatively low bit rates, it is reasonable
to neglect the effects of ultrafast phenomena in the numerical SOA models. The intraband phenomena such as
spectral hole burning (SHB) and carrier heating (CH) operating in the femtosecond range5 are neglected, and
the model accounts only for the gain dynamics of the SOA.

The available numerical SOA models can be divided in two categories: 1) space-resolved, numerically intensive
models and 2) analytical, simplified models developed to facilitate performance analysis. In this paper, we discuss
a detailed space-resolved model, presented by Connelly,6 taking into account facet reflectivity as well as forward
and backward propagating amplified spontaneous emission (ASE). This model is based on a set of coupled partial
differential equations (PDE) that must be solved simultaneously. To carry out extensive Monte-Carlo simulations
for statistical signal analysis and bit-error rate (BER) estimation, accurate space-resolved models are ruled out
because of the prohibitively long simulation times.

To enable such simulations, we discuss some simplifying assumptions that can be made to reduce the complexity
of the space-resolved model. This model is based on a quantity called the reservoir, which is the total number of
carriers in the SOA. The approximations used in the derivation ultimately lead to a single ordinary differential
equation (ODE). Although the simplified reservoir model obtained with these simplifications gives a coarser fit
with experimental data than the space-resolved model, the execution time required for numerical simulations
is greatly reduced. The improvement in calculation time is significant, allowing for extensive Monte-Carlo
simulations of the BER. More than just execution speed, the reservoir model also has another interesting feature.
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It is amenable to a block diagram representation, which could lead to a mathematically elegant stochastic
performance analysis similar to the one done by Saleh et al.7 on single-channel saturated SOAs.

The reservoir model does not however contain a description of the SOA gain based on its physical properties
(temperature, material, gap energy, etc.). Here, we propose a way to parameterize the reservoir model using
the gain description based on semiconductor physics. The impact of the scattering losses is discussed and we
show that it is possible to include these losses either 1) directly in the gain coefficient description or 2) by
adding lumped losses. The numerical simulation results obtained with these techniques are then compared with
experimental data.

2. SPACE-RESOLVED MODEL

In this section, we choose a wideband numerical SOA model proposed by Connelly6 as a starting point to develop
a faster model. The detailed space-resolved model is based on the numerical solution of a set of coupled PDEs.
These equations describe 1) the temporal and spatial variations of carrier density n(z, t) and 2) the photon flux
for both forward (+) and backward (-) propagating spectral components of signal and ASE. It is important to
note that the carrier density n(z, t) in this model is already averaged over the cross-section of the amplifier,
meaning that the our space-resolved model does not consider variation of the carrier density on the x and y axes.
Furthermore, the space-resolved model does not consider the electric fields of the signals. It only considers the
respective signal’s power and thus neglects the phase from the start.

2.1. Rate Equation

The first differential equation describing the behavior of the SOA is the rate equation, which is common to all
signals and ASE components. According to Connelly,6 the rate equation can be expressed as

∂n(z, t)

∂t
=

Ibias

qWdL
− R(n) − Γ

A

Nsig∑

k=1

gmat(λk, n)
[
Q+

k + Q−

k

] −
NASE∑

j=1

fASE(λj , n) (1)

where Qk is the number of photons at wavelength λk, Ibias the bias current applied on the gain region, q the
electron charge, L the length, A = Wd the rectangular cross-section of the active region and Γ the confinement
factor. The index k is used for the wavelengths of signals while j is used for ASE wavelengths. The gain
coefficient gmat(λk, n) is described in Section 4.1. The term R(n) represents the spontaneous recombinations
and is a polynomial function of the carrier density,6 that can be approximated as n/τ . The depletion of the
carriers induced by the ASE, represented by fASE(λ, n), is given by

fASE(λj , n(z)) =
2Γ

A
gmat(λj , n(z))

[
Q+

j (z) + Q−

j (z)
]

. (2)

The factor of 2 in (2) accounts for the two possible orthogonal polarisations of the ASE components. The rate
equation must be solved for each one of the Nz slices along the z axis of the SOA (see Figure 1). A global
solution is achieved when all slices are in equilibrium, meaning that the photon fluxes coming in and going out
of each slice lead to a stable carrier density inside each and every slice. The number of photons used in (1) is
related to the optical power by

Q±

k =
∣∣E±

k

∣∣2 λk

hc
= P±

k

λk

hc
(3)

where h is Planck’s constant. The optical frequency ν is related to the wavelength by λ = c/ν where c is the
speed of light. Note that using (1), we neglect the pulsation of the carrier density due to beating among spectral
components that is responsible for FWM and cross-phase modulation (XPM) in SOAs.1
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2.2. Propagation Equation

The second part of the set of coupled PDEs in the space-resolved model is formed by the propagation equations,
representing the evolution of the photo fluxes along the amplifier’s propagation axis z. The propagation equation
of each signal component must be solved simultaneously with the rate equation presented in Section 2.1. For
each of the Nsig signals entering the SOA, the number of photons evolves along the propagation according to

∂Q±

k (z)

∂z
= ±

[
Γgmat(λk, z) − α(n)

]
Q±

k (z) . (4)

The term α(n(z)) represents the scattering losses and is described in Section 4.3. The propagation equation for
ASE components is different, since new photons are generated by spontaneous electron-hole recombinations at
every SOA slice. Thus, the propagation equation for the ASE components is

∂Q±

j (z)

∂z
= ±

[
Γgmat(λj , z) − α(n)

]
Q±

j (z) + Rsp(λj , z) (5)

where the term Rsp(λj , z) was added in (5) to represent the spontaneous emission at λj . The steady-state
solution is obtained by adjusting the carrier density on each section of the SOA, using the algorithm presented
by Connelly.6 A representation of the steady-state algorithm is shown in the upper part of Figure 1. A time-
varying numerical solution to the coupled PDEs is obtained based on the assumption that the carrier density
n(z, t) remains constant within a time step, as explained by Mathlouthi et al.8
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Figure 1. Graphical representation of the numerical algorithms used for the space-resolved and reservoir models

3. RESERVOIR MODEL

3.1. Derivation of the Reservoir Model

We now present the derivation of a fast and efficient SOA model called the reservoir model. In this derivation,
we assume a travelling-wave amplifier (zero facet reflectivity) meaning that all spectral components travel in the
same direction. We begin by rewriting the rate equation of the space-resolved model

∂n(z, t)

∂t
=

Ibias

qV
− R (n) − Γ

A

Nsig∑

k=1

gmat(λk, n)Qk(z, t) − 4Γ

A

NASE∑

j=1

gmat(λj , n)Qj(z, t) (6)
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where the forward ASE photon flux is assumed to be twice that of (2) to keep the same level of saturation caused
by the ASE power inside the amplifier. It is a simplified way to consider the effect of propagation on the ASE
components. The difference in the modeling of the propagation in both models is represented graphically in
Figure 1. The upper part of this figure shows the space-resolved model and the lower part the reservoir model,
where all photon fluxes are oriented from z = 0 to z = L. To increase the calculation speed, we choose to remove
the spatial resolution on the carrier density n(z, t) by integrating the rate equation. The space resolution can be
reintroduced if necessary under certain assumptions.8 Note that the reservoir can describe both forward and
reverse propagating signals, but only ASE in one direction. We start by defining a new variable

r(t) ≡ A

∫ L

0

n(z, t) dz (7)

called the reservoir and representing the total number of carriers in the amplifier. By integrating (6) over the
amplifier’s length and multiplying by the cross-section A, we obtain

dr(t)

dt
=

Ibias

q
− r(t)

τ
−

Nsig∑

k=1

∫ L

0

Γgmat(λk, n(z))Qk(z, t) dz − 4

NASE∑

j=1

∫ L

0

Γgmat(λj , n(z))Qj(z, t) dz . (8)

The ASE contribution, the last term on the right hand side of (8), is neglected for the time being. The first
summation term on the right hand side can be expressed more elegantly by integrating the propagation equation,
considering again photons propagating in one direction. In these conditions, the photon number Qk is replaced
by its equivalent power Pk using (3) and the integration of (4) yields

∫ L

0

Γgmat(λk, n)Qk(z, t) dz =
[
P out

k (t) − P in
k (t)

]
+

∫ L

0

Pk(z, t)α(n) dz (9)

where the optical power at the input of the amplifier (z = 0) is given by P in(t) and the power at the output
(z = L) is given by P out(t). As suggested by Agrawal,9 we assume that the gain is typically much greater
than the losses in an amplifier and that the loss term α(n) can be neglected in the propagation equation. The
approximation involved in dropping this term will be discussed in Section 4.3. The reservoir equation (without
the ASE and scattering losses contributions) then becomes

dr(t)

dt
=

Ibias

q
− r(t)

τ
−

Nsig∑

k=1

λk

hc

[
P out

k (t) − P in
k (t)

]
. (10)

In order to facilitate an analytic integration of (9), we assume that the gain coefficient can be approximated by
gmat

∼= σk(n − η0,k) and the global gain G ≡ Pout/Pin is then expressed by

G(λk, n) ∼= exp

(
Γ

∫ L

0

σk(n − η0,k) dz)

)
(11)

∼= exp
(
Γ

σk

A
(r − ALη0,k)

)
(12)

where ALη0,k ≡ r0,k represents the reservoir at transparency at wavelength λk. By definition of the reservoir at
transparency, gmat(λk, η0,k) = 0. The term σk/A represents the slope of the gain coefficient as a function of the
reservoir r. Using this approximation of the gain coefficient and neglecting ASE, the reservoir equation can be
expressed as

dr(t)

dt
=

Ibias

q
− r(t)

τ
−

Nsig∑

k=1

λk

hc
P in

k (t)
[
exp

(
Γ

σk

A
(r − r0,k)

)
− 1

]
(13)

Based on the ordinary differential equation (13) only, the reservoir model allows for a much faster numerical
solution than the space-resolved model. The propagation equations have been integrated into the rate equation
and the output power is given by

P out
k (t) = P in

k (t) exp
[
Γ

σk

A
(r(t) − r0,k)

]
(14)
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The linearized gain coefficients σk and η0,k can be modified to take into account the scattering losses neglected
in (9). The procedure is explained in Section 4.2 and the numerical results are presented in Sections 5.1 to
5.3. In the derivation of the reservoir model, the ASE term in (8) was put aside. Taking into account the ASE
contribution (specific to the reservoir ODE) will lead to the complete reservoir dynamic equation8

dr(t)

dt
=

Ibias

q
− r

τ
−

Nsig∑

k=1

λk

hc

[
P out

k (t) − P in
k (t)

] −
NASE∑

j=1

ηsp,j [Gj(r) − 1 − ln(Gj(r))] . (15)

The reservoir model derivation presented in this section reduces the space-resolved model to a punctual model,
i.e. without spacial resolution. However, it is possible trade complexity for precision by dividing the amplifier
in a cascade of smaller amplifiers. The original SOA of length L is divided in Nz slices and each of these slices
then has its own reservoir. The output of one slice then becomes the input of the next one, still assuming that
all spectral components travel in the same direction. This cascade of smaller SOA is presented in Figure 1.

3.2. Experimental Validation of the Model

In this section, we explain how we can verify that our reservoir model captures the important signal performance
characteristics provided by the space-resolved model and matches measurements of our physical SOA. To do so,
we define three figures of merit that cover both the static and dynamic regimes. These figures of merit are

• the gain saturation curve G(Pin) at λ = 1560 nm where the gain is maximum (static),

• the gain spectrum G(λ) at a fixed input power Pin = −27 dBm where the SOA is not saturated (static),

• the shape P (t) of an amplified optical pulse at the output of the SOA (dynamic).

The numerical results for the reservoir model for each figure were compared with the corresponding experimental
data obtained with our commercial Optospeed SOA (model 1550MRI X1500) biased at 500 mA. To measure the
gain saturation and the gain spectrum, we used a tunable CW laser Agilent (model 8164A) at the input of the
SOA and measured the output power with a calibrated Ando OSA (model AQ6317B). The gain was calculated
according to the techniques described by Derickson et al .10

The optically amplified pulse shape, or the response of the SOA to a square wave, was obtained using the same
tunable laser at 1560 nm. The light source was modulated by a pseudo-random sequence of length 27−1 at 1 Gb/s
using a Mach-Zender modulator. The average power at the input was fixed at -18 dBm with an extinction ratio
around 10 dB. No optical filter was used before photo-detection to include the effects of ASE. The power of the
amplified pulse in time domain was detected by an Agilent photo-receiver (model 11982A) and acquired using
an Agilent sampling oscilloscope (model 86100A). The experimental procedures are described by Mathlouthi et

al.8 in greater details.

4. GAIN PARAMETERIZATION

In the previous section, the gain coefficient gmat(λ, n) was supposed linear for each wavelength. However, we
did not explain how the parameters σ(λ) and η0(λ) could be obtained. We present first a technique discussed
by Connelly6 to obtain the value of gmat(λ, n). Then we explain how to extract the parameters of the linear fit
σ(λ) and η0(λ) and how to use them within the reservoir model.
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4.1. Gain Coefficient

From the basic properties of the active region’s material and the physics of semiconductors, an expression for
the gain coefficient can be obtained. It is based on the probability of a photon of wavelength λk stimulating
an electron-hole recombination in the active region. It is thus based on the probability of finding an electron
in the conduction band fc(λ) and a hole on the valence band fv(λ). The model also considers the impact of
the temperature and the injection current on the Fermi levels, and the gap energy between the two bands is
corrected using the relation

Eg(n) = Eg0 − qKgn
1/3 (16)

where Eg0 is the gap energy at zero injected carriers, and Kg is the bandgap shrinkage coefficient having a value
of 0.1 · 10−10 eV·m for our Optospeed SOA. With this relation, it is possible to obtain the following expression6

gmat(λ, n) =
λ2

4
√

2π3/2n2
1τ

(
2memhh

h(me + mhh)

)3/2 (
c

λ
− Eg(n)

h

)1/2 [
fc(λ) − fv(λ)

]
. (17)

where n1 is the refractive index of the active region, τ the radiative lifetime of the carriers, ν the optical frequency,
h the Planck’s constant, me the effective mass of an electron and mhh the effective mass of a heavy hole. This gain
coefficient gmat(λ, n) can be decomposed in two different parts: a pure gain coefficient g′mat and an absorption
coefficient g′′mat related to the gain coefficient by gmat = g′mat − g′′mat. The pure gain plays an important role
in the ASE description of the reservoir model.8 The coefficient g′mat can also be assumed linear, but it has a
reservoir at transparency r1 slightly different from that of the gain coefficient gmat.

4.2. Linearization of the gain coefficient

The gain coefficient gmat(λ, n) obtained with (17) and shown in Figure 2 is non-linear when considering n from 0
to ∞, which contradict the basic reservoir hypotheses. To respect the initial assumptions of the reservoir model,
the gain coefficient must be linear at each wavelength.

The space-resolved model is used to determine the range of achievable values of n over which the gain coefficient
is linearized. The limiting values nmin and nmax are obtained by seeking the minimum or maximum of the
carrier density distribution n(z, t) obtained with two optical input powers of 0 dBm and -40 dBm respectively.
The gain coefficient is then linearized between nmin and nmax. In figure 3, we demonstrate that the gain can be
approximated by a straight line with a small error, on a span much larger than the region limited by nmin and
nmax. The slope of the gain coefficient as a function of n at wavelength λk is called σ(λ). The carrier density at
transparency (when gmat = 0) is given by η0(λ).

4.3. The Scattering Losses Revisited

The numerical simulation results obtained with the space-resolved model are in good agreement with experi-
mental data as was previously demonstrated.6, 8 Thus, we assume that our space-resolved model is adequately
parameterized and that it describes well the behavior of our commercial Optospeed SOA.

However, employing the description of the gain coefficient from the space-resolved model with the reservoir model
does not give equally good results. The gain is largely overestimated, especially for small optical input powers.
The loss term α(n) dropped in the derivation of the reservoir model is mainly responsible for this disagreement.
Keeping the same gain coefficient while neglecting the losses has the obvious effect of overestimating the gain
G(λ, n).

To properly describe the gain (both static and dynamic) of the SOA, we study two different methods. The
first one subtracts the α(n) term from the gain before any linear assumption. The second method uses the
gain gmat(λ, n) with the same parameterization, but introduces discrete propagation losses between each section
(slice) of the amplifier. Both methods reduce the gain, but their effect on the gain spectrum is quite different.
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Figure 2. Non-linear gain coefficient gmat(λ, n)

4.3.1. Method 1: Adjusting the Gain Coefficient

The first method proposed to consider the losses α(n), without adding terms to the reservoir ODE in (15), is to
subtract the carrier-dependent loss term from the gain coefficient gmat using the following transformation:

gres(λ, n) = gmat(λ, n) − α(n)

Γ
. (18)

According to previous investigations,6, 8 the scattering losses can be adequately modeled using a linear relation
with the carrier density

α(n) ∼= K0 + ΓK1 n . (19)

By operating on gmat(λ, n) with (18), we reduce the gain coefficient and thus overall gain G(λ, n) of the amplifier.
The new gain coefficient, called gres(λ, n), is also linearized and it’s slope a(λ) and carrier density at transparency
n0(λ) are obtained according to the method described in Section 4.2. We then use the parameters ak and n0,k

instead of σk and η0,k to numerically solve (15).

The transformation of the gain has an important physical signification. It can be interpreted as a mathematical
method to reintroduce the scattered carriers back in the active region of the amplifier. By doing so, we reduce the
gain observed by the spectral components (signals and ASE) and we overestimate the value of the reservoir. An
equivalent reservoir equation, containing an additional term in α(n) can be derived using the procedure presented
in Section 3.1. The results obtained with this technique applied to vertically-clamped SOAs are discussed by
Salsi et al.11

4.3.2. Method 2: Adding Lumped Losses

Another technique to reintroduce in an efficient way the scattering losses dropped from the propagation equations
(4) and (5) is to add discretely spaced losses along the propagation axis. At the end of every section (slice) of the
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amplifier, the power of each of the Nsig signals and each of the NASE ASE components is calculated according
to the value of the reservoir in slice i as in (14). Since the output of slice i becomes the input of slice i + 1, we
write

P̃ in
i+1 = P̃ out

i e−αsL/Nz (20)

where the length of each slice is given by L/Nz. This procedure reduces the overall gain of the amplifier
independently of the signals wavelengths of the carrier density inside the amplifier. In our simulation, the value
αsL = 1 was used. At the input and output facets, an extra coefficient cadd was used in addition to the ordinary
coupling coefficients cin and cout. As proposed by Obermann,2 the effective input power P̃in (at z = 0) and

effective output power P̃out (at z = L) are respectively

P̃ in(t) =
cin

cadd
P in(t) (21)

P̃ out(t) =
[
cout cadd e−αsL/Nz

]
P out(t) (22)

where the coefficient cadd is defined as

cadd = e−0.32αsL/Nz . (23)

Using this method, it is possible to improve the description of the overall gain obtained with the reservoir model.
The difference between this method and the first one presented is its effect in the spectral content of the signal.
The lumped losses e−αsL are the same for every wavelength.

The difference between these two methods can be seen in Figure 4. Operating on the gain with (18) affects the
slope and carier density at transparency in different ways. The slope σ(λ) of the gain coefficient gmat(λ, n) differs
from the slope of gres(λ, n) by a factor K1. However, the difference in the carrier densities at transparency for
gmat(λ, n) and gres(λ, n) changes dramatically with the wavelength. As can be seen in Figure 4, the change from
η0 to n0 increase the spectral curvature, the variation of the carrier density as a function of the wavelength.
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5. SIMULATION RESULTS

As discussed in Section 4.3, the gain of the amplifier obtained by using the reservoir model with the gain
coefficient gmat(λ, n) is overestimated. The previous Section also describes two different methods to obtain a
more realistic gain description and a better match between simulation results and experimental data. As we
show in this section the spectral content is greatly affected by the choice of the method.

5.1. Gain Saturation

The first figure of merit chosen to compare methods 1 and 2 is the gain saturation G(λ = 1560 nm, Pin) at the
signal’s wavelength. In our case, the fiber-to-fiber gain (including input and output coupling losses) at 1560 nm
is unaffected by the choice of the gain coefficient. Both gmat(λ, n) and gres(λ, n) give good results as shown in
Figure 5. By introducing lumped losses (method 2) while being able to vary the αs factor allows us to obtain a
good match with experimental data.

5.2. Gain Spectrum

The second figure of merit used to compare both method 1 from Section 4.3.1 and method 2 from section 4.3.2 is
the overall gain spectrum G(λ). On the one hand, the overall gain spectrum obtained by using the reservoir model
with the transformed gain coefficient gres(λ, n) (method 1) is correctly positioned and shows a good agreement
with experimental data. On the other hand, the gain spectrum obtained using the lumped losses (method 2) is
shifted toward the longer wavelengths, as shown in Figure 5.

5.3. Pulse

The third figure of merit adopted to compare methods 1 and 2 is the shape of an amplified optical pulse. As
was demonstrated in Section 5.1, the gain spectrum obtained using method 2 is shifted in wavelength. However,
a shifted gain spectrum also has the adverse effect of overestimating the ASE power at the output of the SOA.
From Figure 5 we see that the gain spectrum is much larger than the experimental values for wavelengths longer
than 1560 nm, where there is no signal. The ASE generated at these wavelengths is too powerful (in simulations)
and saturates the SOA, making it difficult to adequately model the dynamic regime.

Figure 6 shows the pulses obtained using methods 1 and 2. The pulse obtained with the lumped losses method
shows a constant offset from the experimental data. The offset is due to the extra ASE generated in the SOA. The
inset of Figure 6 shows the level of ASE generated by the SOA. The upper curve in the inset is the ASE power
obtained with the lumped loss method while the lower curve is the ASE power obtained with the transformation
of the gain given by (18).
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Figure 5. Gain saturation and gain spectrum obtained with the reservoir model using two different methods to reintroduce
scattering losses. The results were obtained using the reservoir algorithm with 5 slices.
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Figure 6. Amplified optical pulse obtained using both techniques of Sections 4.3.1 and 4.3.2. The inset shows the
temporal evolution of the ASE power at the output of the SOA during the amplification of the pulse (same scale as the
main figure).

6. CONCLUSION

A fast and efficient state-variable model called the reservoir model was discussed and compared with a more
complete space-resolved model. To develop the reservoir model, an important term representing the scattering
losses was dropped, and we show that adequate modeling cannot be achieved without it. We examine the gain
and discuss two methods to adapt it in order to respect the fundamental hypotheses of the reservoir model. The
first method slightly transforms the gain by subtracting the scattering losses directly from the gain coefficient
while the second method uses the gain coefficient as it is, but introduces lumped losses along the amplifier’s

Proc. of SPIE Vol. 6343  634342-10



length. We show that the first method gives a good prediction of the gain spectrum, but that the second does
not. The transformation proposed in the first method allow the use of the fast reservoir model and still obtain
satisfactory results.
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