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Abstract—Expectation Propagation (EP) and Transparent
Propagation (TP) are employed in iterative estimation of corre-
lated Gaussian samples in the presence of bursty impulsive noise,
modeled as Markov Middleton class A. The proposed estimation
strategy is based on a message-passing approach in which
a Kalman Smoother and a Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm work in parallel. Due to the correlation between signal
samples and correlation of channel states, the corresponding
factor graph includes cycles. Therefore, the message passing
approach should be implemented iteratively. Furthermore, the
presence of Gaussian observations, continuous random variables,
and impulsive noise states, discrete random variables, produces
Gaussian mixtures. We utilize the variational inference tech-
niques such as EP and TP to approximate the Gaussian mixtures
and to avoid exponentially increasing complexity of messages.
The performance of EP and TP based estimators are evaluated
by using computer simulations. The results show a considerable
improvement in performance brought about by the estimation
strategy.

Index Terms—BCJR; Expectation Propagation; impulsive
noise; Kalman Smoother; Transparent Propagation

I. INTRODUCTION

Smart grid brings about an efficient power management
system based on the feedbacks provided by consumer sensors.
In a grid, communication between sensors and smart meters
can be accomplished through a variety of environments. Power
line communications (PLC), as the backbone of smart grids,
attract attention of both industry and academia. The received
signal at the output of PLC channels can be represented as
the summation of correlated Gaussian signal, and impulsive
noise, which is modelled as Markov Middleton class A [1].

This model has three advantages. First, Gaussian samples
can be considered to represent multicarrier modulated signals
(e.g., OFDM) [2]. Second, correlation among Gaussian sam-
ples varies signal statistics sample by sample [3]. Finally, the
model also makes it possible to implement intelligent signal
processing techniques [4]–[6]. Although the suitability of the
Middleton class A noise model for impulsive noise of PLC
channels was well investigated in [7], the Markov Middleton
is still a more general model for bursty impulsive noise than
the other ones [8].

A Bayesian minimum mean square error (MMSE) estima-
tion strategy was proposed in [9] to estimate independent
Gaussian samples in the Markov-Gaussian scenario where
the channel states were detected by using a Bahl-Cocke-
Jelinek-Raviv (BCJR) algorithm. The work later expanded to
a more general scenario ones [4]. The joint estimation of
the correlated Gaussian samples and detection of the channel
states was obtained through a factor graph based approach in
which a Kalman smoother and a BCJR work in parallel [4].
The same approach was employed in the Markov Middleton
scenario [5].

Approximation of Gaussian mixtures, which are generated
due to the presence of continuous Gaussian observations and
discrete channel states, were proposed through a variety of
techniques. The hard decision is the simplest method in which
the mixture is approximated by one of its component with the
highest weight [4], [5]. This technique was further replaced by
Expectation propagation (EP) and its simplest version Trans-
parent propagation (TP) [6]. These algorithms approximate
each Gaussian mixture to a single Gaussian distribution by
minimizing the Kullback-Leibler divergence.

The main objective of this work is to employ EP and TP
techniques, as alternatives to hard decision, in iterative signal
estimation in the presence of bursty impulsive noise, modeled
as Markov Middleton class A. To this end, we use the same
system model as in [5] and we adopt the same estimation
strategy as in [6]. Since the 2-state noise scenario is fully
analyzed in [6], we focus our attention to higher noise states,
i.e., 4-state noise model.

II. SYSTEM MODEL AND FACTOR GRAPH

We briefly review the model, introduce the factor graph
representation of the estimation strategy, and compute the
corresponding messages, according to the well-known sum-
product algorithm.

We consider a sequence of Gaussian samples {sk}K−1
k=0

obtained by using a single pole Infinite Impulse Response
(IIR) digital filter, forming an autoregressive model of order
one (AR(1))

sk = a1sk−1 + ωk (1)
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TABLE I
THE SUM-PRODUCT MESSAGES FOR THE FACTOR GRAPH DEPICTED IN

FIG. 1 (SUBSCRIPTS DENOTE MESSAGE DIRECTION).

pf (sk) =
∫

pf (sk−1)pu(sk−1)p(sk | sk−1)dsk−1)

Pf (ik) =
∑
ik−1

P (ik | ik−1)Pf (ik−1)Pd(ik−1))

(k = 1, · · · ,K − 1)

pb(sk) =
∫

pb(sk+1)pu(sk+1)p(sk+1 | sk)dsk+1

Pb(ik) =
∑
ik+1

P (ik+1 | ik)Pb(ik+1)Pd(ik+1)

(k = K − 2, · · · , 0)
pu(sk) =

∑
ik

Pf (ik)Pb(ik)p(yk | sk, ik)

Pd(ik) =
∫

pf (sk)pb(sk)p(yk | sk, ik)dsk
(k = 0, · · · ,K − 1)

in which the feeding sequence is white Gaussian, ωk ∼
N (0, (1−a2

1)σ2
s) where σ2

s is the variance of the signal sample.
The noisy observations {yk}K−1

k=0 are obtained by observing
the signal samples through a channel impaired by impulsive
noise

yk = sk + nk (k = 0, 1, · · · ,K − 1) (2)

where nk is a noise random variable whose statistics follow
the Middleton class A model

p(nk) =

∞∑
i=0

pi√
2πσ2

i

exp

{
− n2

k

2σ2
i

}
(3)

in which σ2
i = (1 + i

AΓ )σ2
0 where A is the impulsive index, Γ

describes the power of impulsive noise [1], σ2
0 is the variance

of the background Gaussian noise, and pi = e−AAi

i! follows
the Poisson distribution and represents the probability of being
in the i-th noise state. It should be noted that when i impulsive
events occur at the same time, the noise sample seen by
the receiver has a zero-mean Gaussian distribution with the
largest variance σ2

i [1]. In order to take into account the noise
memory, probability density function (pdf) of noise should be
truncated to a finite number of terms, i.e., finite number of
sources of interference

p(nk) =

M−1∑
i=0

p′i√
2πσ2

i

exp

{
− n2

k

2σ2
i

}
, p′i =

pi∑M−1
j=0 pj

(4)

This memory truncation allows us to consider Markovianity
between the noise samples by defining the noise transition
matrix as follows

P =


x+ (1− x)p′0 (1− x)p′1 · · · (1− x)p′M−1
(1− x)p′0 x+ (1− x)p′1 · · · (1− x)p′M−1

...
...

...
...

(1− x)p′0 (1− x)p′1 · · · x+ (1− x)p′M−1


(5)

where x, a number between 0 and 1, is the probability of re-
maining in the same state. It is known as correlation parameter
and determines the noise burst duration. As x increases, the
duration of impulsive events increases. The average duration
of an impulsive event can be defined as

Ti =
1

(1− x)(1− p′i)
(6)

An implementation of the MMSE or the maximum a
posteriori (MAP) estimation strategy can be obtained through
factorizing the joint probability of continuous signal samples
s = {sk} and discrete channel states i = {ik} given the
observation samples y = {yk} and applying the sum-product
algorithm to the corresponding factor graph, that is represented
in Fig. 1 and is in a one-to-one correspondence with the
following joint posterior distribution:

p(s, i | y) ∝ p(y | s, i)p(s)P (i)

=

[
K−1∏
k=1

p(yk | sk, ik)p(sk | sk−1)P (ik | ik−1)

]
p(y0 | s0, i0)p(s0)P (i0)

(7)

According to (1) , (2) and (5), one can conclude that

p(sk | sk−1) = g(sk − a1sk−1, (1− a2
1)σ2

s) (8)

p(yk | sk, ik) = g(yk − sk, σ2
i,k) (9)

P (ik | ik−1) = P (ik−1 + 1, ik + 1) (10)

where g(x − η, γ2) is the standard Gaussian pdf with given
mean η and variance γ2. The arguments of matrix P in (10)
represent row and column indices. Fig. 1 shows a portion
of the corresponding factor graph. The resulting sum-product
messages are summarized in table I. The initial conditions are:
P (i0) =

∑M−1
n=0 p

′
nδ(i0 − n),p(s0) = g(s0, σ

2
s), p(sK−1) = 1,

and P (iK−1) = 1.

III. EXPECTATION PROPAGATION

EP is a message-passing algorithm to perform approximate
variational inference [10]. It works by minimizing the Kull-
backLeibler divergence over a distribution family. Suppose
p(x) is a distribution mixture. We are going to approximate
it by q(x) belonging to the chosen family F . The optimal
approximating q(x) is formally expressed by the following
projection operator.

proj[p(x)] = arg min
q∈F

KL (p(x)||q(x)) (11)

in which

KL (p(x)||q(x)) =

∫
p(x) log

p(x)

q(x)
dx+

∫
(p(x)− q(x)) dx

(12)
In the case of exponential family, i.e. q(x) =

exp(
∑

j Gj(x)vj) in which vj are the so called natural
parameters of the distribution and Gj(x) are the features of
the family, the projection operator simply reduces to matching
the expectation of the features (hence the name ”Expectation
Propagation”) of p(x) with those of q(x). Now, we are able
to derive EP for the family of Gaussian pdfs whose features,
Gj(x), are defined by {1, x, x2}. Let p(x) be a weighted sum
of Gaussian distributions,

p(x) =
∑
i

αig(x− µi, σ
2
i ) (13)
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Fig. 1. A portion of the factor graph from (7).

where αi is the weight of i-th Gaussian distribution and∑
i αi = 1. The projection of the Gaussian mixture p(x) into

a single Gaussian pdf q(x) = g(x−µ, σ2) can be obtained by
matching their moments as follows

µ = Eq[x] = Ep[x] =
∑
i

αiµi (14)

σ2 + µ2 = Eq[x2] = Ep[x2] =
∑
i

αi(σ
2
i + µ2

i ) (15)

Therefore,

σ2 = Eq[(x− µ)2] =
∑
i

αi(σ
2
i + µ2

i )−

∣∣∣∣∣∑
i

αiµi

∣∣∣∣∣
2

(16)

IV. ITERATIVE ESTIMATION STRATEGY

As evident from Fig. 1, the factor graph has cycles; there-
fore, the message passing algorithm should be implemented
iteratively. From the factor graph structure, the upper part of
the factor graph estimates the correlated signal samples while
the lower part of the graph is responsible of detecting the
channel states. As a result, a parallel iterative schedule could
be employed in which two halves of the graph work in parallel
and they exchange their messages at every iteration [4].

Another important issue arising in this context is the pres-
ence of Gaussian mixtures as the messages (pdfs) passed along
the factor graph edges, whose complexity increases exponen-
tially at every time step. In particular, the messages passed
between continuous distributions (sk), Gaussian observations
(yk), and discrete random variables (the impulsive noise states,
(ik)), generates Gaussian mixtures at every vertical edge of
the factor graph. One way to tackle this problem is to apply
hard decisions to every Gaussian mixture such that the mixture
is approximated by its Gaussian component with the highest
weight [4], [5]. This simple approach extensively reduces the

overall complexity at the expense of losing some information
about channel states, decreasing the estimation accuracy.

Another approach is based on approximating every Gaussian
mixture with a single Gaussian pdf minimizing the Kullback-
Leibler divergence. This method can be categorized into two
techniques: EP, proposed by Minka in [10], and TP, introduced
by Vannucci et al. in [6]. Here, we use the same system
model and estimation strategy as in [5] and we employ EP
and TP techniques to reduce the complexity of messages. More
precisely, we extend the work in [6], which is limited to the
2-state noise model, to a more realistic multilevel impulsive
noise scenario.

To elaborate the estimation strategy in details, we should
consider the equations of Tab. I and the corresponding mes-
sages on the factor graph. The pmf Pd(ik) has M different
values, each in one-to-one correspondence with a different
noise variance. Consequently, the messages at the bottom line
of the graph could be computed by performing a M -step
forward and backward recursions, forming a BCJR algorithm
[9].

From another point of view, pu(sk) is a mixture of M
Gaussian distributions, each with its own weight and variance.
If we approximate pu(sk) with a single Gaussian pdf whose
variance is not specified, since the noise is not stationary,
all messages at the top line of the graph are Gaussian, thus
reducing the computation of the ”horizontal” messages (i.e.,
those sent forward and backward, with f and b subscripts)
to the operation of a traditional Kalman smoother. At ev-
ery iteration, the Kalman smoother provides the message
pd(sk) = pf (sk)pb(sk) and the BCJR computes the weights
of components of observations, i.e., Pu(ik) = Pf (ik)Pb(ik).

Based on sum-product rules, the marginal pdf of sk can be
obtained by multiplicating all of the incoming messages to the
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Fig. 2. MSE vs. SNR performance curves.

variable node sk, which implies that

p(sk|y) = pf (sk)pb(sk)pu(sk) = pd(sk)pu(sk) (17)

in which pd(sk) as a product of two Gaussian messages is
Gaussian and pu(sk) is a Gaussian mixture. As a result,
p(sk|y) is a Gaussian mixture. The mixture is then projected
into a Gaussian pdf using EP.

p̃(sk|y) = proj[pd(sk)pu(sk)] = g(sk − ŝk, σ̂2
k) (18)

where ŝk is the signal estimate provided by EP. What remains
is to compute pu(sk) for the next iteration of the Kalman
smoother. To this end, Gaussian division should be performed.

pEP
u (sk) =

p̃(sk|y)

pd(sk)
(19)

This strategy is unstable. In situations where the variance of
the denominator is larger than the variance of the numerator,
improper distributions with negative variance are obtained
and message rejection procedure should be performed [6].
A simpler and stable approach is the direct projection of
the message pu(sk) into the Gaussian family, called TP [6].
The lack of Gaussian division makes this strategy completely
stable.

pTP
u (sk) = proj[pd(sk)pu(sk)] (20)

In this case, the final estimation of signal samples can be
obtained by

p̃(sk|y) = pd(sk)pTP
u (sk) (21)

V. NUMERICAL RESULTS

Fig. 2 shows the mean squared error (MSE) versus signal
to noise ratio (SNR) for signal estimation in impulsive noise.
The noise is modeled by a 4-state Markov Middleton class A.
In order to simulate the bursty impulsive noise, a high value
for correlation parameter x is considered. We use the same

noise parameters as in [1]. We set x = 0.98, A = 0.2, 0.8,
and Γ = 0.01, for impulsive noise. We consider a1 = 0.9 and
σ2
s = 1, for the AR(1) signal samples. 100 frames of 1000

samples each were transmitted for each SNR value.
The curve labeled “Genie Aided Kalman Smoother” is the

lower bound for the performance in which Kalman smoother
has exact knowledge of noise variances. The curve labeled
“Parallel Iterative Schedule” is obtained using the proposed
estimation strategy in [5] where Gaussian mixtures are ap-
proximated by hard decisions. The curves labeled by “TP” and
“EP” address the estimation strategy in which approximation
of Gaussian mixtures are performed by TP and EP, respec-
tively. The final estimation is obtained after four iterations,
denoted by “It.4” in the figures. Complete convergence is
in fact observed after four iterations, after which the curves
remain stable.

The comparison between simulation results at A = 0.2
and A = 0.8 reveals that as the value of A increases, i.e.,
the average number of active interferers increases, a worse
estimation performance is obtained. It is evident that TP
and EP based estimators perform close to the lower bound
while the performance of the hard decision based estimator is
degraded around the SNRs where the signal and the noise have
almost equal power, i.e., where the signal estimate is neither
dominated by noise, nor it is close to a noiseless scenario.

VI. CONCLUSION

This work addressed a factor graph based approach to es-
timate correlated Gaussian samples in bursty impulsive noise,
in which the main limitation is the presence of Gaussian mix-
tures. Hence, this limitation has been overcome by employing
EP and TP algorithms. It has been shown that the performances
of EP and TP algorithms are close to the performance of
the optimal strategy. It is worth noting that, unlike EP which
is not necessarily stable, TP is inherently stable with lower
complexity.

REFERENCES

[1] G. Ndo, F. Labeau, and M. Kassouf, “A Markov-Middleton Model for
Bursty Impulsive Noise: Modeling and Receiver Design,” IEEE Trans.
Power Del., vol. 28, no. 4, pp. 2317-2325, Oct. 2013.

[2] P. Banelli and S. Cacopardi, “Theoretical analysis and performance of
OFDM signals in nonlinear AWGN channels,” IEEE Trans. Comm., vol.
48, no. 3, pp. 430-441, Mar. 2000.

[3] G. Doblinger, “Smoothing of noisy AR signals using an adaptive Kalman
filter,” 9th European Signal Processing Conference (EUSIPCO 1998),
Rhodes, Greece, 1998, pp. 1-4.

[4] A. Vannucci, G. Colavolpe, R. Pecori, and L. Veltri, “Estimation of
a Gaussian Source with Memory in Bursty Impulsive Noise,” 2019
IEEE International Symposium on Power Line Communications and its
Applications (ISPLC 2019), Prague, Czech Republic, Apr. 2019, pp. 1-6.

[5] A. Mirbadin, E. Kiani, A. Vannucci, and G. Colavolpe, “Estimation
of Gaussian Processes in Markov-Middleton Impulsive Noise,” 2019
1st Global Power, Energy and Communication Conference (GPECOM),
Nevsehir, Turkey, 2019, pp. 68-73.

[6] A. Vannucci, G. Colavolpe, and L. Veltri, “Estimation of Correlated
Gaussian Samples in Impulsive Noise,” IEEE Communications Letters,
vol. 24, no. 1, pp. 103-107, Jan. 2020.

[7] J. A. Cortes, A. Sanz, P. Estopinan, and J. I. Garcia, “On the suitability of
the Middleton class A noise model for narrowband PLC,” 2016 Interna-
tional Symposium on Power Line Communications and its Applications
(ISPLC), Bottrop, 2016, pp. 58-63.

178



[8] T. Shongwe, A. J. H. Vinck, and H. C. Ferreira, “A Study on Impulse
Noise and Its Models,” SAIEE Africa Research Journal, vol. 106, no. 3,
pp. 119-131, Sept. 2015.

[9] M. S. Alam, G. Kaddoum, and B. L. Agba, “Bayesian MMSE Estimation
of a Gaussian Source in the Presence of Bursty Impulsive Noise,” IEEE
Communications Letters, vol. 22, no. 9, pp. 1846-1849, Sept. 2018.

[10] T. Minka, “Divergence measures and message passing,” Tech. Report,
MSR-TR-2005-173, Microsoft Research Ltd., Cambridge (UK), Jan.
2005.

179


