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Abstract—An original approach to the solution of the nonlinear
Schrödinger equation (NLSE) is pursued in this paper, following
the regular perturbation (RP) method. Such an iterative method
provides a closed-form approximation of the received field and is
thus appealing for devising nonlinear equalization/compensation
techniques for optical transmission systems operating in the non-
linear regime. It is shown that, when the nonlinearity is due to the
Kerr effect alone, the order RP solution coincides with the order
2 + 1 Volterra series solution proposed by Brandt-Pearce and
co-workers. The RP method thus provides a computationally ef-
ficient way of evaluating the Volterra kernels, with a complexity
comparable to that of the split-step Fourier method (SSFM). Nu-
merical results on 10 Gb/s single-channel terrestrial transmission
systems employing common dispersion maps show that the sim-
plest third-order Volterra series solution is applicable only in the
weakly nonlinear propagation regime, for peak transmitted power
well below 5 dBm. However, the insight in the nonlinear propa-
gation phenomenon provided by the RP method suggests an en-
hanced regular perturbation (ERP) method, which allows the first-
order ERP solution to be fairly accurate for terrestrial dispersion-
mapped systems up to launched peak powers of 10 dBm.

Index Terms—Nonlinear systems, optical fiber communication,
optical Kerr effect, optical propagation in nonlinear media.

I. INTRODUCTION

M OST OF the research in long-haul terrestrial and subma-
rine optical communication links today concentrates on

the design and optimization of the dispersion-mapped optical
fiber channel rather than the optimization of the receiver and of
the modulation format. This fact has progressively increased the
cultural gap between the classical communications community
and the optical communications community.

The analysis of the long-haul optical channel starts from the
nonlinear Schrödinger equation (NLSE) describing the field
propagation in a single-mode optical fiber. Its direct numer-
ical solution by the split-step Fourier method (SSFM) [1], as
implemented in most commercially available software pack-
ages, is the key design tool available to the communications
engineer. The guidelines for the design are learned most often
from simplified versions of the NLSE for which an approx-
imate analytical solution is available. Linearization around a
working point is the technique that has most often been suc-
cessfully employed for the study of nonlinear effects, as in the
case of the study of parametric gain [2]–[4] and cross-phase
modulation [5], [6]. Even in the study of dispersion-managed
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solitons, linearization occurs around an analytical waveform
close to the actual solution, according to the variational prin-
ciple [7], [8].

Linearization is used because the NLSE generally does not
admit an analytical solution when both the nonlinear term and
chromatic dispersion are taken into account. Notable excep-
tions include the search of the eigenfunctions of the NLSE, for
which the exact solution is obtained by the inverse scattering
method in the form of classical solitons [1], and the treatment
of nonreturn-to-zero (NRZ) pulses when the chromatic disper-
sion is extremely small, for which a solution is obtained by the
dam-breaking approximation [9]. Other studies that go beyond
linearization include the application of perturbation theory to
the search of the eigenfunctions of the multidimensional NLSE
in the field of molecular physics [10].

Recently, Brandt-Pearce and co-workers have tackled the
NLSE using a Volterra series approach [11], [12], pioneering
the introduction in the long-haul optical transmission world of
a well-established tool in nonlinear system theory and laying
the ground for a possible renewed interest of the traditional
communications community into optical communications. The
value of such pioneering work is that it makes it possible to
adapt known communication theory results, such as equaliza-
tion techniques for nonlinear channels [13], for application to
the nonlinear optical channel. However, the numerical findings
in [11] and [12] are quite discouraging when applied to typical
long-haul dispersion-mapped optical links, with large nonlinear
cumulated phase: too many Volterra kernels are needed in the
series expansion in order to obtain a good approximation of
the output field for typical power levels in terrestrial systems,
so that the authors in [12] were forced to use extremely low
transmitted peak power levels. The main concern here is on
computational complexity: a Volterra kernel of orderentails a
multiple integral of order in the frequency domain, so that the
computational complexity of the Volterra expansion quickly
exceeds that of the direct SSF computation.

This paper stems from the thesis work of Paolo Serena [14],
who studied the approximate solution of the NLSE by the reg-
ular perturbation (RP) method [15]. Such method, summarized
in Section II of this paper, provides a recursive closed-form so-
lution that provides good insight into the nature of the nonlinear
distortion and a computationally efficient numerical evaluation
method.

During such thesis work, we observed the close similarity of
the first-order RP solution to the Volterra series solution trun-
cated to the third kernel, as given in [11] and [12]. Motivated by

0733-8724/02$17.00 © 2002 IEEE



VANNUCCI et al.: THE RP METHOD: A NEW TOOL FOR THE NONLINEAR SCHRÖDINGER EQUATION 1103

such observation, we further verified that such coincidence car-
ries over to the fifth-order kernel. Such findings are presented
in Section III of the paper. We then found a way to prove by
induction that the order RP solution coincides with the order

Volterra series solution, for any integer. Appendix II
contains the details of the proof.

In summary, we realized that the RP recursive solution co-
incides with the Volterra expansion and is thus a computation-
ally efficient way of evaluating the Volterra kernels by avoiding
multiple integrations. The conditions for convergence of the RP
series expansion can also be used to prove convergence of the
Volterra series expansion.

We must emphasize that the RP method does provide a gain
in computational efficiency compared with the direct Volterra
kernels evaluation, but not compared with the SSFM, which still
provides the most computationally efficient approach. However,
the RP method and the SSFM have comparable complexities, as
discussed in Section IV of this paper.

Section IV tackles the issue of whether there exists a finite
lumped-element block-diagram description of the nonlinear
fiber, starting from its finite-order Volterra solution. Unfortu-
nately, a negative answer is obtained from known theorems
on nonlinear system theory. However, the recursive nature of
the RP solution bears a similarity with the SSFM, and we
found a simple connection between the two methods, which
provides a good understanding of the approximations entailed
by the RP expansion up to a given order, as well as an ap-
proximate block-diagram description of the nonlinear fiber,
and an efficient computational algorithm for the terms of the
RP solution.

In Section V of this paper, we apply the RP method to a
typical 10 Gb/s single-channel dispersion-mapped 5100 km
terrestrial system and quantify the approximation error, ex-
pressed as the normalized mean-squared difference, over the
whole transmission period, with respect to the “true” split-step
Fourier (SSF) solution. We find that a first-order RP expansion
(i.e., a third-order Volterra expansion) provides an acceptable
level of accuracy up to peak transmitted powers of a few dBm,
the accuracy being worse for maps whose transmission fiber
has lower dispersion. In other words, the method cannot be
used with typical values of peak transmitted power around 9
dBm. Switching to a second-order RP solution, i.e., fifth-order
Volterra solution, improves accuracy, but the fifth-order kernel
is too cumbersome to treat for any analytical computation of
practical use.

Fortunately, there is a simple trick that allows a first-order
RP solution to hold up to power levels of interest in terrestrial
systems. We call this the enhanced regular perturbation (ERP)
method, presented in Section VI of this paper. The idea is bor-
rowed from the variational principle: because it is known that the
phase of the received field will swing around the average cumu-
lated nonlinear phase, a change of variable is made to eliminate
such average nonlinear phase before applying the RP method.
The results show that such a first-order ERP method gives an ac-
curate output field description for the most common dispersion
maps up to peak powers of about 10 dBm, the accuracy varying
according to the in-line residual dispersion.

Finally, Section VII of this paper contains the conclusions.

II. RP SOLUTION OF THE NLSE

The propagation of the optical field complex envelope
[ ] in a single-mode optical fiber is described by the NLSE
[1] as follows:

(1)

where we adopt the electrical engineers sign convention for the
Fourier transform, and where[ ] is the power attenuation
per unit length, is the th coefficient of the
frequency expansion of the propagation constant at

, and [ ] is the nonlinear coefficient. Equation (1)
considers only Kerr nonlinearity and group velocity dispersion
(GVD). The Raman effect is neglected here, as well as higher
order chromatic dispersion terms, although the analysis and the
results can be extended to cope with such terms as well.

We now apply the RP method, described in Appendix I, to
the above equation. It is easy to recognize in (1) the structure
of (36), where is the only
nonlinear term of the NLSE and the propagation
equation in the linear regime, whose solution is well known.
Prior to introducing the RP series expansion for the optical field
envelope, the NLSE can be further simplified, as customary, by
introducing a normalized field referred to the retarded
time frame , being that is the group
velocity of the field. and differ by an attenuation factor that
depends on the lengthof the fiber, as follows:

(2)

The simplified NLSE then reads

(3)

Let us now express the field in a power series of

(4)

and insert the latter in (3): for a real,

(5)
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Equating the terms that multiply equal powers ofon both
sides, we get a system of recursive linear differential equations,
the th being

(6)

where, consistently with (38), the last term includes the contri-
butions to the field with , which are known from
previous iterations.

In order to get an analytical approximation of the optical field,
in most cases of practical interest it is sufficient to solve such
iterative equations only for . If the input field is

, the initial condition for is ,
while the higher order contributions to the field have zero initial
values: . For , the linear
solution in the frequency domain is

(7)

For , the only contribution to the triple summation in
(6) comes from , and the equation to solve is

(8)

Taking Fourier transforms and integrating with respect to, we
get the solution

(9)

where the integrals extend from to . For , the
equation is

(10)

which, expressed in the frequency domain and integrated with
respect to , yields the solution

(11)

It is now necessary to insert the expression of into
(9) in order to get an explicit dependence of on the
input field; this must be done also for , inserting (7) and
(9) into (11). After some algebra, we get (12) and (13) shown at
the bottom of the page. The second-order RP approximation to
the output normalized optical field is then

(14)

and we note that the GVD term appears in all
terms. The great value of (7), (12), and (13) is that they provide
a closed-form approximation of the output field. Such equations
will be related to the Volterra series solution of the NLSE in the
next section of this paper.

(12)

(13)
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III. RELATION TO THE VOLTERRA SERIESAPPROACH

An approximate analytical solution to the NLSE has already
been studied in the literature through the use of Volterra series
[11]. To briefly summarize the results of this method, the NLSE
(1) must be rewritten in the frequency domain, using the re-
tarded and attenuated1 optical field
as follows:

(15)

where we set and

. One then postulates a solution
in the form of a truncated Volterra series. The fifth-order
solution reads

(16)

where are the Volterra kernels. Even order terms
of the series must be identically zero due to the absence of
second-order nonlinearities in the NLSE. Plugging (16) in both
sides of (15), terms of first, third and fifth order appear on both
sides, while terms of seventh and ninth order appear only on the
right-hand side (RHS). It is then apparent that an expression in

1Here the notation of [11] is kept for the purpose of comparison.

the form of (16) will never be an exact solution of the NLSE.
More precisely, one can show that a polynomial equation such
as (15) will never admit an exact solution expressed, through the
initial conditions, as a polynomial of finite order. Nevertheless,
in the assumption of a sufficiently small input field, we can
neglect higher order terms and equate the terms of first, third
and fifth order, and then get a set of differential equations for
the Volterra kernels [11, eqs. (7)–(9)] that must be solved with
initial conditions , and

[11], as per (16). The general
solution for the first-order kernel [11, eq. (10)] can be applied
to our case through the definitions of and as follows:

(17)

which coincides with the linear fiber frequency response. For the
third-order kernel, the general solution [11, eq. (11)] specializes
to this case as follows:

(18)

Note that for large fiber length, the exponential term in the
numerator in (18) can be neglected with respect to 1. Also, for
large GVD fibers, one could be tempted to drop theterm in
the denominator, as done, e.g., in [16] in the analysis of the
efficiency of four-wave mixing. However, dealing with signals
with a continuous spectrum, cannot in general be neglected
for all significant frequency bands of the signal.

The general solution for the fifth-order kernel, reported in [11,
eqs. (12) and (13)], specializes to this case, as shown in (19) at
the bottom of the page. Instead of directly applying [11, eqs. (12)
and (13)] to this case, the following changes of thevariables

(19)
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have been introduced in deriving (19): in the last term of both
cited equations, is swapped with , and a circular left shift
is applied to the sequence . Such changes do not
affect the overall result of the quadruple integral in (16).

One can now directly check that the fifth-order Volterra so-
lution (16) coincides with the second-order RP solution of the
last section. In fact, one can verify that the integral in the square
brackets of (12) coincides with the term in square brackets of
(18), and that the double integrals in the square brackets of (13)
coincide with the expression in the large square brackets of (19).
The actual output optical field found through the RP method dif-
fers from the expression (14) by an attenuation term ,
by which must be multiplied, according to (2). Thus, it
is easily seen that the linear terms (attenuation and GVD) and
the terms in appearing in (17)–(19) are also present in the RP
solution and that the two solutions coincide.

In Appendix II, it is proven by induction that the two methods
yield the same solution to any order. Such coincidence is note-
worthy, because the RP method seeks a solution in the form of
a power series of, whereas the Volterra series is a generalized
Taylor power series of the input field. Such coincidence is remi-
niscent of the coincidence of the RP method with the functional
iteration method cited in [15, note 5, p. 531]. Once the coin-
cidence of the two solutions is established, the convergence of
the infinite Volterra series to the exact solution of the NLSE is
equivalent to the convergence of the infinite RP series: known
convergence conditions for one method can be used to prove
convergence for the other.

IV. RELATION TO THE SPLIT-STEP FOURIER METHOD: A
PARALLEL FIBER MODEL

The Volterra series approach is a powerful tool for modeling
nonlinear systems. For a lumped-elements system, the Volterra
kernels can be derived from its block diagram, as has been done
for nonlinear radio links [17], [18], where a memoryless non-
linear amplifier is sandwiched between linear filters. The re-
verse problem is nontrivial: given the Volterra kernels of the
previous section, is there a finite lumped-elements system de-
scribed by those kernels, i.e., having the same input–output re-
lationship? In order to answer this question, we resorted to non-
linear systemsrealization theory. Based on the results illustrated
in [19], it is possible to prove that the kernels derived for the
nonlinear fiber are not suitable for modeling abilinear system,
i.e., one with a finite block diagram, because, for instance, the
denominator of the third-order kernel in (18) is not factorizable
in the product of three functions, each depending on a single
variable , and thus, in the terminology of [19], is not a

recognizablefunction. However, we will provide below an infi-
nite block diagram schematic of the nonlinear fiber by working
on the RP solution.

The first advantage of the RP solution with respect to the
Volterra solution is its computational simplicity. In fact, the eval-
uation of the optical field through the truncated Volterra series is
extremely computationally expensive, the third- and fifth-order
kernels requiring the evaluation of double and quadruple inte-
grals in the frequency domain, respectively. We wish to now
show that the RP method has the complexity of a single integra-
tion in the spatial coordinate. Let us rewrite the equations in
(7), (9) and (11) reintroducing the attenuation terms, thus using
attenuated optical fields instead of and sub-
stituting the convolutions in with the Fourier transform of
products in the time domain, shown in (20)–(22) at the bottom
of the page where denotes the Fourier transform. The above
terms can be computed by a simple algorithm: a cycle that scans
the fiber in finite steps from to , storing and up-
dating the result of the integrals in (21) and (22) in two scalar
variables. At each step, the linear contribution is com-
puted from (20) and the integral in (21) is updated, using direct
and inverse Fourier transforms to switch between time and fre-
quency domains, to yield an updated . Similarly, using
(22), also can be updated at the same step.

The algorithm just described bears a strong resemblance with
the SSFM, both because it scans the fiber along its length and
because of its intensive use of Fourier transforms. Despite such
similarity, the present algorithm does not aim at directly solving
the NLSE, but only at computing the RP solution of second
order, and it can in principle be extended to higher orders. Thus,
to establish the accuracy of the solution, both thestep sizeused
to scan the fiber length, as in the SSFM, and the order of the RP
method are important parameters.

Let be the transfer function
of a linear fiber of length . Equation (21) can be written as

(23)

where a linear filtering with a fiber of length is applied
in the integrand, and the terms appearing in the Fourier trans-
form are, according to (20), , i.e.,
the result of filtering the input field with a linear fiber of length
, complementary to . A discretization of the integral in

(23), with step , suggests that the resulting field
can be thought of as the output of the

block diagram depicted in Fig. 1.

(20)

(21)

(22)
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Fig. 1. A parallel fiber model derived from the first-order RP method.

Fig. 2. A serial fiber model derived from the SSFM.

Let us now recall the strategy adopted by the SSFM to solve
the NLSE. The fiber is split in slices of size. The linear fil-
tering and nonlinear distortion effects are successively applied
at each step by considering the linear and nonlinear contribu-
tions to the NLSE separately. At position , one can first
apply the linear operator to obtain an updated field

(24)

and then the nonlinear operator to get the output field

(25)

where the last line includes a first-order expansion of the expo-
nential, valid for . From a system perspective, the suc-
cessive application of (24) and (25) results in the schematic of
Fig. 2.

Referring to Fig. 2, the input field can travel along different
paths to reach the output. At each step, it can be either solely lin-
early filtered, when passing through the upper branches, or fil-
tered and nonlinearly distorted, when passing through the lower
branches. Thus, the output field consists of the sum of many
contributions, each associated to a unique path through a con-
catenation of linear and nonlinear blocks. The top branch of
Fig. 1 represents the linearly filtered output field , cor-
responding to the path of all upper branches of Fig. 2. It is also
easy to see that each remaining branch in Fig. 1 corresponds
to a path in Fig. 2 composed of all linear blocks, except for

a single “descent” to a nonlinear block at coordinate .
Similarly, referring to (22), it can be proven that the second
term of the RP method (coinciding with the term
including the fifth-order Volterra kernel) includes the contri-
bution of paths composed of a concatenation of linear blocks,
except for a double “descent” to the nonlinear blocks at two
generic coordinates along the fiber. The proof follows. Suppose
that at coordinate there has been exactly one descent
to a lower branch, at a previous stage . Thus, the field

consists of a linear field
and of the manyone-stepnonlinearly distorted fields that build
up , as per (23). Therefore, at the second descent to a
lower branch, at stage , the output of the nonlinear branch
in Fig. 2 is

(26)

By comparison with the Fourier terms in (21) and (22), it can be
realized that the first term in (26) will contribute to
and the second will contribute to . The remaining
terms will contribute to and .

Extending this reasoning, one can see that the application of
the order- RP method results from the SSFM with a lineariza-
tion of the exponential self-phase term (25), when the nonlinear
distortion included in the NLSE is applied at blocks only of
the fiber, and terms in , with , are neglected. Since

is a term of the third power of the input field, the four
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terms in (26) will also contribute to the Volterra series terms
including kernels of third, fifth, seventh and ninth order, respec-
tively.

V. SIMULATION RESULTS

To test the accuracy of the computational models illustrated
above, the optical field output from four different transmission
systems is evaluated by considering a typical 5100 km ter-
restrial link, composed of five cascaded spans, each consisting
of 100 km of transmission fiber (TF), followed by a dual-stage
noiseless amplifier. A compensating fiber (CF) is sandwiched
between the two amplifiers of each dual stage, and its length
(common to all spans) is allowed to vary so that the residual
dispersion per span can be managed as a free system pa-
rameter. The gain of the dual-stage amplifier recovers all the
span losses, so that the power launched in each TF equals the
(peak) transmitted power . The input to the compensating
fiber has a fixed peak power level equal to3 dBm, in order to
avoid nonlinearity in the CF. The TF and CF are chosen among
the fiber types of standardsingle-mode fiber(SMF),dispersion
compensating fiber(DCF), large effective area fiber(LEAF),
andnonzero dispersion shifted fibers(NDSF) with positive dis-
persion (NDSF ) or negative dispersion (NDSF), in order
to realize one of the following dispersion maps: i) SMF/DCF;
ii) LEAF/DCF; iii) NDSF /DCF; iv) NDSF /SMF. The values
of the parameters of interest, for the different fiber types, are re-
ported in Table I.

The accuracy of the RP approximation with respect to the
“true” solution obtained by the SSFM is evaluated by thenor-
malized square deviation(NSD) [11], defined as

NSD

(27)

where the integrals extend to the whole transmission period,
and is the field evaluated using the SSFM. is the
field evaluated using thefirst-order RP method:

. and are calculated from (20) and
(23), and is updated at each span. Such approximation cor-
responds to a third-order Volterra solution, as discussed in Sec-
tion III of this paper. The input field is a 10 Gb/s chirpless NRZ
signal modulated by a pseudorandom bit sequence (PRBS) of
length 64 b, filtered by a Gaussian filter with one-sided band-
width equal to GHz, where is the bit rate.

For evaluating , the commercial software
BroadNeD2 was used for the simulation of optical transmission
systems; for computing , we developed our own
Matlab code. Such code implements the algorithm described
in Section IV of this paper, using a step size km
for performing the integral in (23) and using 1024-points
Fourier transforms. A slight modification of such code was
also used in deriving the results shown in Section VI. As for

2BroadNeD, BNeD Broadband Network Design, Inc., Berlin, Germany, and
the Massachusetts Institute of Technology, Cambridge.

TABLE I
PARAMETERS OFINTEREST FOR THEFIBER TYPESEMPLOYED IN THE FOUR

TESTEDDISPERSIONMAPS. ATTENUATION �, DISPERSIOND (MEASURED AT

1550 nm WAVELENGTH,) AND NONLINEAR COEFFICIENT

the computational complexity of the RP method, the run times
for computing are 30% longer than those for computing

on the same machine. We must note, however, that
Matlab is an interpreted, rather than compiled, language and
that the source code was not optimized.

The NSD can be interpreted as the relative time-averaged
power of the error field associated with the RP method. In
Fig. 3(a)–(d), we plot the NSD computed for the four dispersion
maps described previously, versus both the residual dispersion
per span and the peak transmitted power . is
varied in the range (100, 300) [ps/nm/span] (except for the
NDSF /DCF dispersion map, where, even with a zero-length
compensation fiber, cannot reach the upper limit), while

lies in the range (5, 17) [dBm]. Using such power levels,
we can check the validity of the RP approximation in the
moderately to highly nonlinear propagation regimes, where
such approximation eventually fails to predict the output field
correctly, as evidenced by the “explosion” of the NSD in Fig. 3
for large powers. From the same figure, it is apparent that a
first-order RP method yields a relative error power below 1%
only in the moderately nonlinear regime, where is less
than 5 to 8 [dBm], depending on the dispersion map. As is
well known, nonlinear effects are enhanced—and thus NSD is
larger—in low-dispersion transmission fibers, such as NDSF.

To give the reader a feeling of the meaning of the NSD values
in Fig. 3, Fig. 4 reports the received power waveforms at the
link output both with the RP and the SSFMs for
[ps/nm/span] and [dBm]: such operating points are
marked with a filled circle in Fig. 3. The power profiles of
Fig. 4(a)–(d) are plotted in the same 16-b time frame, and the
corresponding NSD is marked in the figure.

The RP method does not entail systematic errors be-
cause simulations with a very low transmitted power such
as 10 [W] provide excellent accuracy (NSD ).
However, we note from Fig. 4 that although the RP method
seems to well predict the shape of the output field power, it
overestimates the output power levels, especially on wider
pulses, corresponding to the transmission of consecutive
marks. Such overestimation is enhanced for low-dispersion
NDSF transmission fibers, notwithstanding the accuracy of the
predicted output power shape. These results are consistent with
the observation in [11] that the Volterra series approximation
is not suitable for modeling fiber nonlinearities for large pulse
widths, and we provide a thorough explanation of this fact in
the following section of this paper.
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Fig. 3. Logarithmic plot of NSD versus input peak powerP and
residual dispersion per spanD , for a 5� 100-km dispersion-managed link.
Dispersion maps with dual-stage amplification. (a) SMF/DCF. (b) LEAF/DCF.
(c) NDSF+/DCF. (d) NDSF�/SMF.

VI. THE ENHANCED RP METHOD

Consider, as a limiting case, the transmission of a field
over a zero-dispersion fiber. Using (20)–(22), the

second-order RP method yields the solution

(28)

where is the fiber effective length. We
recognize in (28) the Taylor series expansion, to second order
in , of the exact solution for the output field:

(29)

Because nonlinear distortion acts only as a self-phase modu-
lation term in (29), the output power is ; such
value is overestimated by (28), the relative error growing with
the fifth power of the instantaneous field.

One way to mitigate this discrepancy is to postulate, as com-
monly done in the perturbative analysis of parametric gain [3],
a solution of the NLSE of the form

(30)

where is the peak input power, which factors out the non-
linear cumulated phase from the solution.3 The NLSE can be
recast for the field (including the fiber attenuation) as

(31)

3During the revision of the present paper, we became aware that an alternative
approach was taken in [20] to address the same problem.

Fig. 4. Output power obtained from SSF (dashed line) and RP (solid line)
methods for the same dispersion maps of Fig. 3(a)–(d). The point of operation
isD = 100 [ps/nm/span],P = 8 [dBm].

This equation can still be solved through the RP method: calcu-
lations similar to those performed in Sections II and IV of this
paper provide the first three terms for the RP approximation to

(32)

(33)

(34)

with coinciding with , from (30). The
global approximation to the output field is found by plugging

in
(30): we will call such solution theenhanced RP(ERP) method.

In the case , the second-order ERP method from (30)
and (32)–(34) yields

(35)

Comparing (35) with (29), it is easily seen how the ERP ap-
proximation is close to the exact solution, both in magnitude
and phase, when the input field magnitude approaches its peak
level .

Fig. 5 shows, in the same frame of reference of Fig. 3, the
NSD evaluated by applying the ERP method. It is seen that
a significant reduction of the NSD is obtained for all maps.
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Fig. 5. Logarithmic plot of NSD versus input peak powerP and residual
dispersion per spanD , using the ERP method. Same systems as in Fig. 3.

TABLE II
PRECISIONGAIN NSD =NSD ACHIEVED BY THE ERPMETHOD, FOR

D = 0 AND P = 5, 8, 11 [dBm]. DISPERSIONMAPS AS INFIGS. 3 AND 5

Despite the fact that for the ERP method there still exists a
threshold above which the NSD “explodes,” a plot of
NSD NSD (not reported here) has the same qualita-
tive features of Figs. 5 and 3, showing that suchprecision
gain increases with . We report the numerical values of
NSD NSD in Table II for all the examined dispersion
maps; we consider the peak transmitted power values
5, 8, 11 [dBm] as significant for the ERP method and disregard
the minor variations along the axis.

It is evident from Fig. 5 that the power threshold for the reli-
able application of the RP method is extended, and, as we can vi-
sually check in Fig. 6, transmitted fields with [dBm]
are accurately reproduced at the fiber output, thus proving the
applicability of the ERP method at power levels of practical in-
terest in terrestrial systems. Comparing Fig. 6 to Fig. 4, we note
how the output power level is correctly forecast, even in the pres-
ence of long sequences of “1” bits, thus avoiding the mismatch
explained in the previous section.

VII. CONCLUSION

A new approach to the solution of the NLSE has been pursued
through the RP method. Based on a power series expansion of
the optical field as a function of the fiber nonlinear coefficient

, such method iteratively provides a closed-form expression
for each th term—proportional to —which approximates the
field at the fiber output. The approximate solution provided by
the RP method has been compared to the Volterra series transfer
function method, and, though the latter is based on a different

Fig. 6. Output power obtained from SSF (dashed line) and ERP (solid line)
methods for the dispersion maps of Fig. 5(a)–(d). The point of operation isD =

100 [ps/nm/span],P = 11 [dBm].

approach, we proved the coincidence of the two approximate
solutions. A comparison with the SSFM has proven useful to es-
timate the degree of approximation involved in the RP method
and to devise a new system model for the optical fiber. Such
model is the sum of parallel branches, each branch being a cas-
cade of a filter-polynomial nonlinearity-filter block.

The importance of the RP and Volterra methods is to pro-
vide closed-form approximations of the output field, thus giving
an analytical insight in the nonlinear propagation phenomenon
and paving the way for the development of nonlinear compen-
sation/equalization techniques.

An algorithmic implementation of the RP method has been
discussed, which has a complexity comparable to that of the
widely used SSFM. A numerical comparison between these two
methods shows that the optical field output from a 5100-km
terrestrial link, with several dispersion-managed maps, is cor-
rectly evaluated by a first-order RP method only at low trans-
mitted peak powers below 5 [dBm]. ERP, an enhancement of
the RP method, has been discussed and simulation results eval-
uated. The enhancement correctly accounts for the average non-
linear cumulated phase, thus providing a good degree of approx-
imation in the moderately nonlinear propagation regime, with
transmitted peak powers up to 10 [dBm], for all the examined
dispersion-managed links.

After the submission of this work, two recent papers by Tang
were published about the capacity of nonlinear dispersion-free
optical channels [21], [22]. Unpublished work by the same au-
thor [22] demonstrates that much higher channel capacity can
be achieved introducing fiber dispersion. However, the author
notes that “extension of this work to a multispan dispersive fiber
involves extremely complicated calculation of Volterra series
and multidimensional integral.” In view of our results, it is then
plausible that the RP method can greatly simplify the numer-
ical evaluation of the channel capacity in dispersive fiber links,
within given power limits. In addition, as an object of future re-
search, the better accuracy of the ERP method could serve to
extend such results to larger transmitted powers.
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APPENDIX I
THE RP METHOD

Suppose we are given a differential equation of the form

(36)

where is a linear functional while is a general dif-
ferential operator, linear or not, anda constant parameter. It
often happens that the equation , including only the
linear term, has a closed-form solution , whereas the orig-
inal equation (36) does not. It is intuitive that, if the parameter
is small enough, the solution of (36) will not be much different
from . Let be the solution of (36), coinciding with

for . For , one can always express the solution
through a power series in:

(37)

where , for , are the unknowns to be found.
This approach, known as theregular perturbation (RP)

method (see, e.g., [15]), is suitable when the parameter
is small, so that the series in (37), under certain regularity
conditions for , converges rapidly to the true solution of
(36). The unknowns can be found by inserting (37) into (36)
and then equating all terms multiplying the same powers of:
This way, a system of linear differential equations is obtained,
the th being

(38)

where both and the first functions, appearing in
the argument of , are known and we must solve for
only. The initial conditions for are applied to only,
setting the initial conditions to zero for every term with

.

APPENDIX II
COINCIDENCE OF THEVOLTERRA AND RP SOLUTIONS

In this Appendix, we prove by induction that the RP and
Volterra series solutions of the NLSE (15) coincide to any order
if is proportional to and is not, as in the present case.
This is also true when the Raman effect is included, in which
case we have

, where is a normalized third-order response
function, and sets the relative strengths of the Kerr
and Raman interactions [23]. Such property does not hold, e.g.,
after the change of variable in the NLSE that leads to the ERP
method, in which case contains a term proportional to.

Consider the NLSE expressed in the form (15). The general
expression of the Volterra series solution, truncated to the order

, which includes odd-order kernels only, is

(39)

where

(40)

The general order-RP solution is formally simple to write:

(41)

For the evaluation of the last kernel in (39), , we must
plug (39) in the NLSE (15) and equate terms of the same order,
i.e. those entailing -multiple integrals,

(42)

where and relate to as in (40). The same re-
lation holds between and ,
respectively. Switching to the evaluation of theth term

of the RP solution, we plug (41) in the NLSE (15)
and equate the corresponding terms, i.e., those multiplying.
Now, if is proportional to and is not, as in our case,
we get

(43)

In Section III of this paper, we analytically checked the coinci-
dence of the first three terms of the Volterra and RP solutions.
Now, assume that the corresponding terms of the solutions (39)
and (41) coincide up to the order , i.e., that

(44)
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for all . Then, because the double integrals including
in the RHS of (42) and (43) involve only indices

not exceeding , they coincide by virtue of (44). Two ex-
pressions for such double integrals can then be obtained from
(42) and (43) and equated to give

(45)

Dividing both sides by , we can integrate the
differential equation (45) to obtain

(46)

since, as the initial condition at , both functions under
derivative are equal to zero, for . A further division of (46)
by proves that (44) holds for as well.

REFERENCES

[1] G. P. Agrawal,Nonlinear Fiber Optics, 2nd ed. New York: Academic,
1995.

[2] M. Karlsson, “Modulational instability in lossy optical fibers,”J. Opt.
Soc. Amer. B Opt. Phys., vol. 12, pp. 2071–2077, Nov. 1995.

[3] A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “New
analytical results on fiber parametric gain and its effects on ASE noise,”
IEEE Photon. Technol. Lett., vol. 9, pp. 535–537, Apr. 1997.

[4] C. Lorattanasane and K. Kikuchi, “Parametric instability of optical am-
plifier noise in long-distance optical transmission systems,”IEEE J.
Quantum Electron., vol. 33, pp. 1068–1074, July 1997.

[5] A. V. T. Cartaxo, “Cross-phase modulation in intensity modulation direct
detection WDM systems with multiple optical amplifiers and dispersion
compensators,”J. Lightwave Technol., vol. 17, pp. 178–190, Feb. 1999.

[6] G. Bellotti, M. Varani, C. Francia, and A. Bononi, “Intensity distor-
tion induced by cross-phase modulation and chromatic dispersion in op-
tical-fiber transmissions with dispersion compensation,”IEEE Photon.
Technol. Lett., vol. 10, pp. 1745–1747, Dec. 1998.

[7] S. K. Turitsyn and E. G. Shapiro, “Variational approach to the design
of optical communication systems with dispersion management,”Opt.
Fiber Technol., vol. 4, pp. 151–188, 1998.

[8] H. Sugahara, H. Kato, T. Inoue, A. Maruta, and Y. Kodama, “Optimal
dispersion management for a wavelength division multiplexed optical
soliton transmission system,”J. Lightwave Technol., vol. 17, pp.
1547–1559, Sept. 1999.

[9] Y. Kodama and S. Wabnitz, “Analytical theory of guiding center nonre-
turn to zero and return to zero signal transmission in normally dispersive
nonlinear optical fibers,”Opt. Lett., vol. 20, pp. 2291–2293, Nov. 1995.

[10] P. R. Surján and J. Ángyán, “Perturbation theory for nonlinear time-
independent Schrödinger equations,”Phys. Rev. A Gen. Phys., vol. 28,
pp. 45–48, July 1983.

[11] K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer
function of single-mode fibers,”J. Lightwave Technol., vol. 15, pp.
2232–2241, Dec. 1997.

[12] , “Volterra series approach for optimizing fiber optic communica-
tions system design,”J. Lightwave Technol., vol. 16, pp. 2046–2055,
Nov. 1998.

[13] S. Benedetto, E. Biglieri, and V. Castellani,Digital Transmission
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1987, pp. 564–574.

[14] P. Serena, “Studio teorico dell’interazione tra dispersione cromatica ed
effetti non lineari nei sistemi in fibra ottica,” Laurea thesis, Università
degli studi di Parma, Parma, Italy, 1999.

[15] D. Zwillinger, Handbook of Differential Equations. Boston: Aca-
demic, 1989, pp. 528–531.

[16] M. Eiselt, “Limits on WDM systems due to four-wave mixing: A sta-
tistical approach,”J. Lightwave Technol., vol. 17, pp. 2261–2267, Nov.
1999.

[17] S. Benedetto, E. Biglieri, and R. Daffara, “Modeling and performance
evaluation of nonlinear satellite links—A Volterra series approach,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, pp. 494–507, July
1979.

[18] A. Vannucci and R. Raheli, “Optimal sequence detection based on over-
sampling for bandlimited nonlinear channels,” inProc. IEEE Intern.
Conf. Commun. (ICC ’98), Atlanta, GA, June 1998, pp. 417–421.

[19] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Ap-
proach. Baltimore, MD: The Johns Hopkins Univ. Press, 1981, p.
148.

[20] B. Xu and M. Brandt-Pearce, “Modified Volterra series transfer function
method,”IEEE Photon. Technol. Lett., vol. 14, pp. 47–49, Jan. 2002.

[21] J. Tang, “The Shannon channel capacity of dispersion-free nonlinear op-
tical fiber transmission,”J. Lightwave Technol., vol. 19, pp. 1104–1109,
Aug. 2001.

[22] , “The multispan effects of Kerr nonlinearity and amplifier noises
on Shannon channel capacity of a dispersion-free nonlinear optical
fiber,” J. Lightwave Technol., vol. 19, pp. 1110–1115, Aug. 2001.

[23] K. J. Blow and D. Wood, “Theoretical description of transient stimulated
Raman scattering in optical fibers,”IEEE J. Quantum Electron., vol. 25,
pp. 2665–2673, Dec. 1989.

Armando Vannucci (S’95–M’01) was born in Frosi-
none, Italy, in 1968. He received the degree in elec-
tronics engineering cum laude from the University of
Roma "La Sapienza," Italy, and the Ph.D. degree in in-
formation engineering from the Università di Parma,
Parma, Italy in 1993 and 1998, respectively.

Until 1995, he was with the INFO-COM Depart-
ment, University of Roma, conducting research ac-
tivity in the field of acoustic phonetics. Since 1995,
he is with the Dipartimento di Ingegneria dell’Infor-
mazione, Università di Parma. From 1995 to 1998,

his research activity was in the field of nonlinear radio channels. Since 1999,
his research interests are in the field of optical transmission and optical commu-
nication systems.

Paolo Serena(S’02) was born in Piacenza, Italy,
in 1973. He received the degree in electronic
engineering from the Università di Parma, Parma,
Italy, in 1999 and has been working toward the
Ph.D. degree at the university since January 2000.
His main research interests include modulation
instability, nonlinear propagation in optical fibers,
and polarization mode dispersion.

Alberto Bononi received the degree in electronics
engineering from the University of Pisa, Pisa, Italy, in
1988, and the M.A. and Ph.D degrees in electrical en-
gineering from Princeton University, Princeton, NJ,
in 1992 and 1994, respectively.

In 1990, he worked at GEC-Marconi Hirst
Research Centre in Wembley, U.K., on a Marconi
S.p.A. project on coherent optical systems. From
1994 to 1996, he was an Assistant Professor in the
Electrical and Computer Engineering Department,
SUNY Buffalo, NY, teaching courses in electric

circuits and optical networks. In the Summer of 1997 and 1999, he was a
Visiting Faculty at the Departement de Genie Electrique, Université Laval, QC,
Canada, conducting research on fiber amplifiers. At present, he is an Associate
Professor of Telecommunications at the School of Engineering,Università di
Parma, Parma, Italy. He teaches courses in probability theory and stochastic
processes, telecommunications networks, and optical communications. His
present research interests include system design and performance analysis of
high-speed all-optical networks, nonlinear fiber transmission for wavelength
division multiplexing (WDM) systems, linear and nonlinear polarization mode
dispersion, and transient gain dynamics in doped-fiber and Raman amplifiers.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


