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We characterize the performance of a nonlinear lossless polarizer, an all-optical fiber-based device that allows for
the control of the state of polarization of an optical signal. The device relies on the lossless polarization attraction
generated by the nonlinear interaction between the controlled signal and a controlling pump. Choosing a counter-
propagating pump, we quantify its performance by introducing the degree of attraction (DOA), which highlights
the trade-off between the average attraction of the signal polarization and the unavoidable degradation of its degree
of polarization (DOP).We investigate, by numerical simulations, the dependence of the DOA on the injected power
and on the fiber length, thus providing the design guidelines to reach the desired performance. We find that an
effective attraction can occur even for strongly unbalanced signal and pump power levels, and that fibers longer
than a few kilometers yield only a marginal improvement of the DOA. © 2013 Optical Society of America
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All-optical devices; (230.4320) Nonlinear optical devices.
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1. INTRODUCTION
Controlling the state of polarization (SOP) of an arbitrarily
polarized optical signal is a fundamental task, both for optical
signal processing applications and for optical communication
systems. Recent works [1–6] have identified the lossless
polarization attraction (LPA) as a promising solution to per-
form an all-optical control of signal polarization. LPA is
a Kerr-based phenomenon, generated by the nonlinear cross-
polarization modulation (XpolM) interaction between a
(possibly depolarized) optical signal and a fully polarized
continuous wave (CW) pump beam. Whatever the input signal
polarization, the output signal polarization is attracted toward
the pump polarization, without any loss of power, due
to polarization rotation. The first experimental demonstration
of LPA occurring between signals at telecommunication
wavelengths was obtained by injecting counter-propagating
beams with large power (tens of Watt) into a short (2 m) iso-
tropic fiber [1]. Afterward, LPA was experimentally observed
between signals with moderate power (hundreds of milli-
Watt), counter-propagating in a long (20 km) birefringent
telecom fiber [2]. Exploiting the LPA phenomenon, an all-
optical fiber-based device, called nonlinear lossless polarizer
(NLP), can be realized that allows an all-optical control of the
signal polarization. Several research groups have produced
both theoretical [3–5] and numerical analyses [6–8], eventu-
ally leading to practical applications showing the potentials
of the NLP [9–11].

In addition to LPA, which is the focus of our investigation,
other all-optical polarization stabilization approaches have
being recently studied, that are mainly based on Raman am-
plification [12–17]. In [18] and [19], instead, the polarization

pulling of the field relies on stimulated Brillouin scattering
and on photo-refractivity, respectively.

All the works in [1–10] focus on the LPA generated by
means of a counter-propagating pump beam (i.e., injected into
the opposite fiber end, with respect to the signal). With this
configuration, complete attraction is only an asymptotic con-
dition, since the transient time of LPA is in the microsecond
scale [6], hence the attraction of the mean signal SOP occurs
at the expense of its degree of polarization (DOP), which
degrades partially [6–8]. Using a co-propagating pump beam
(i.e., injected into the same fiber end as the signal), the tran-
sient of LPA can be dramatically reduced [20–22]. The reason
is that, within the copropagating configuration, the transient
time depends not only on the strength of the nonlinear polari-
zation interactions, i.e., on power, but also on the extra degree
of freedom provided by the relative pump–signal propagation
speed [22], i.e., on the walk-off delay. As a consequence, the
response of the NLP can be optimized, acting on the walk-off
delay, by tuning the pump wavelength [22]. However, such
a technique can be exploited up to a limited extent, since the
optimal pump wavelength depends on the signal duration [22].
Hence, to control the SOP of “long” signals (e.g., bit-packets
in the microsecond scale), the pump should be placed at un-
practical distant wavelengths. Thus, the counter-propagating
configuration for the NLP is still the most practical choice in
a packet switched scenario (e.g., the Ethernet network),
where the duration of signals (bit-packets) can reach the
microsecond scale, i.e., the same order of magnitude as the
transient time of LPA.

In this paper, we refer to the latter scenario and analyze the
performance of a counter-propagating NLP. Since the relative
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propagation speed between pump and signal is fixed and rela-
tivistic (i.e., equal to the speed of light), the main design
parameters for the NLP are just the injected pump and signal
power and the nonlinear fiber length. We thus characterize the
LPA phenomenon as a function of both power and fiber
length, providing the design guidelines to select their values
so that the NLP achieves the desired performance. To tackle
this problem in a sound way, we first introduce the degree
of attraction (DOA) [7], then we quantify it by simulation,
resorting to a recently introduced counter-propagation
algorithm [8].

2. HOW TO MEASURE THE EFFECTIVENESS
OF POLARIZATION ATTRACTION
In order to measure the performance of a NLP device, we need
to evaluate the similarity between the polarization of two
optical fields, with time-varying amplitude, phase, and polari-
zation. Let the real Stokes vectors s⃗p�t� � s0p�t�ŝp�t� and
s⃗s�t� � s0s�t�ŝs�t� represent the optical fields of the pump
and signal, respectively, where the scalar quantities s0p�t�
and s0s�t� are the instantaneous field intensities, while the unit
magnitude Stokes vectors ŝp�t� and ŝs�t� represent the instan-
taneous field SOPs. We define the degree of attraction (DOA)
as the maximum normalized cross-correlation between the
Stokes vectors of the two interacting signals [7]

DOA≜max
τ

�hs⃗p�t� τ� · s⃗s�t�i
hs0p�t� τ�s0s�t�i

�
; (1)

where the dot stands for scalar product and the angular brack-
ets denote time-averaging, i.e., h·i � �1∕T� RT ·dt, extended
over the whole signal duration T . Since τ is a time offset
between pump and signal, accounting for their mutual delay,
we assume in the following, without loss of generality, that
the optimal τ � 0. The DOA is a ratio of time-averages, hence
T simplifies in Eq. (1) and hs0�t�i can be seen as the energy of
a signal with instantaneous intensity s0�t� (collected over T).
Factoring out the Stokes vector magnitudes, DOA can be
written as

DOA �
�
s0p�t�s0s�t�
hs0p�t�s0s�t�i

ŝp�t� · ŝs�t�
�
� hw�t� cos�φ�t��i; (2)

where we defined φ�t� � arccos�ŝp�t� · ŝs�t�� as the angle
between pump and signal SOPs, while w�t� � s0p�t�s0s�t�∕
hs0p�t�s0s�t�i is a positive and normalized (hw�t�i � 1) “weight
function,” representing the time distribution of the joint
signal intensities. Thus, the DOA physically represents
the time-average of the angle φ�t� between the instantane-
ous signal SOPs, weighted by their joint intensity. By
definition, DOA ∈ �−1; 1� and the extrema correspond to con-
stantly orthogonal [ŝs�t� � −ŝp�t�] or constantly parallel
[ŝs�t� � ŝp�t�] signal SOPs. The latter condition yields DOA �
1 and identifies the case of an ideal polarization attraction.

The above definition of DOA, first introduced in [7,10],
stems from classical communication theory. In other works,
the effectiveness of polarization attraction is quantified in dif-
ferent ways: the fraction of signal energy co-polarized with the
attracting pump is measured in [1], while the DOP is adopted
in [9,21,22]. All these quantities are closely related to each
other, as we show next.

A. Completely Polarized CW Pump
Due to the transient behavior of LPA [6], the SOP and intensity
of the attracting pump should be stable in time. Indeed, all the
literature on LPA assumes a completely polarized CW pump
[2,4,6–9], so that the Stokes vector of the pump is time-
independent, s⃗p � s0pŝp, and Eq. (2) consequently simplifies

DOA � hs⃗s�t�i
hs0s�t�i

· ŝp � DOPs × MSA: (3)

In Eq. (3), we used the standard definition [23] of the time-
averaged DOP of the signal (as pointed out by the subscript),
DOPs � ‖hs⃗s�t�i‖∕h‖s⃗s�t�‖i, and introduced the mean SOP
attraction

MSA � hs⃗s�t�i
‖hs⃗s�t�i‖

· ŝp � m̂s · ŝp � cos�χ�: (4)

The MSA has a simple geometrical meaning: since hs⃗s�t�i is the
mean signal Stokes vector, χ is the angular distance between
the attracting (constant) pump SOP ŝp and the mean (power-
averaged) signal SOP m̂s. The factorization in Eq. (3) is a con-
ceptually remarkable result, since it highlights the trade-off
inherent in the LPA process, where an originally completely
polarized signal becomes depolarized (i.e., its DOPs de-
creases) as its average SOP m̂s moves closer to the pump
SOP ŝp [6,8]. Hence, an effective attraction occurs only
if the increase in MSA is larger than the DOPs decrease.
Supposing that the input signal is completely polarized, i.e.,
s⃗s�t� � s0s�t�ŝs, the initial DOA, evaluated before LPA takes
place, from Eq. (3) is DOAin � ŝs · ŝp � cos�χin�, where χin
is the angle between the input signal and pump SOPs, in
Stokes space.

Besides its geometrical interpretation, the DOA also has a
precise physical meaning. It is supposed to filter the signal
through an ideal polarizer, aligned with the pump SOP. The
energy output from such a filter can be expressed, in terms
of Stokes vectors, as �1∕2�Ths0s�t� � s⃗s�t� · ŝpi (again, T is
the averaging period) [23], compared with the input signal
energy Ths0s�t�i. Hence, from Eq. (3), the ratio of signal ener-
gies detected after and before filtering is ρ � �1∕2��1� DOA�.
The quantity ρ can be measured, and was used in [1] to exper-
imentally quantify the amount of LPA.

B. Input Signals with Random SOP
Referring to a practical application of the NLP, while the
pump SOP at the input of the device can be controlled freely,
the hypothesis of an input signal with a deterministic SOP is
unrealistic, e.g., due to the polarization impairments brought
about by the optical link where the signal propagates. Conse-
quently, the SOP of the signal at the NLP input, hence its
angular distance χin from the input pump SOP, and the
corresponding DOA value at the NLP output, are random
variables. Thus, we consider a random input signal SOP
(uniformly distributed on the Poincaré sphere), and evaluate
the NLP performance by (statistically) averaging the DOA
with respect to the signal SOP realizations

DOA � E
� hs⃗s�t�i
hs0s�t�i

· ŝp

�
� E�hs⃗s�t�i�

hs0s�t�i
· ŝp; (5)
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where E�·� represents statistical averaging, while hs0s�t�i and
ŝp are independent of the input signal SOP.

Note the relationship between DOA in Eq. (5) and the
(time- and statistically averaged) definition of the degree
of polarization, as applied to nonergodic signals: DOP �
‖E�hs⃗s�t�i�‖∕hs0s�t�i. In particular, the authors in [21] show
that DOA and DOP coincide when LPA occurs within
a fiber with a small PMD coefficient, such as, e.g., DPMD �
0.05 ps∕km1∕2 (a value typical of modern fibers). In this case,
it is thus DOA ∈ �0; 1�, although negative values are allowed
for the unaveraged DOA ∈ �−1; 1�.

3. SYSTEM SETUP
We simulated a counter-propagating NLP composed by
a nonlinear, nonzero dispersion-shifted fiber (NZ-DSF), with
Kerr coefficient γ � 1.99 W−1 km−1 and attenuation α �
0.2 dB∕km, and a fully polarized (CW) pump laser, with power
Pp � s0p, as shown in Fig. 1. The randomly birefringent
fiber, with length L km, has a PMD coefficient DPMD �
0.05 ps∕km1∕2, so that propagation is governed by the Mana-
kov equation [4,24]. Hence, the Kerr effect is isotropic on the
Poincaré sphere and polarization attraction occurs toward
any fixed pump SOP [4,8], here chosen as linear horizontal,
i.e., ŝp � ŝ1 is the first Stokes axis.

We assumed that the input signal consists of a single inten-
sity-modulated pulse, with duration 1 μs and power Ps � s0s,
placed at the fiber zero-dispersion wavelength (zdw). Indeed,
such a pulse represents an OOK-modulated bit packet (e.g.,
104 bits at 10 Gbit∕s). In fact, as we verified numerically,
results do not change when introducing intensity modulation
onto the pulse, at fixed mean power [7,10].

As far as the signal propagates at the zdw, chromatic
dispersion has no effect on counter-propagating LPA (as
opposed to co-propagating LPA [20–22]), hence a different
fiber type can be used, provided that DPMD is small enough
to ensure propagation in the Manakov limit [20]. Highly non-
linear fibers are desirable, in the design of a NLP, since power
acts on LPA directly through γ.

As highlighted by the box in Fig. 1, the DOA was measured,
according to Eq. (3), based on the output signal and on the
input pump SOP ŝp (dashed line in Fig. 1). We assumed that
the changes in signal polarization are either due to a switch of
the input bit-packet (pulse) or they are brought about by the
birefringence and PMD of the preceding optical link, hence
are slowly varying, on a time scale longer than the pulse
period. We thus assumed a completely polarized input signal,
s⃗ins �t� � sin0s�t�ŝins , where ŝins is constant over the whole dura-
tion, and lies at an angular distance χin (on the Poincaré
sphere) from the input pump SOP.

Counter-propagation was solved by the iterative SCAOS
algorithm [8], implemented within the open-source optical
simulator Optilux [25]. Thanks to its efficiency and speed,
we could analyze the dynamics of LPA in detail (see Section 6),
by varying system parameters. As a drawback, SCAOS should
be applied to signals with limited duration (a few μs), propa-
gating in fibers with limited length (a few tens of kilometers),
otherwise its convergence may slow significantly.

4. ROLE OF FIBER LENGTH
Being LPA driven by the nonlinear XpolM induced by the
pump, one can expect that its effect is proportional to the
nonlinear phase rotation (NPR) ϕNL � γPLeff �rad�, where P
is the power and Leff � �1 − exp�−αL��∕α is the effective fiber
length. The NPR ϕNL is a physical parameter that quantifies
the strength of the nonlinear Kerr interaction. It is thus natural
to analyze how the effectiveness of LPA depends on power
and fiber length.

Figure 2 shows the contour plots of the DOA [Fig. 2(a)] and
of its factors, defined in Eq. (3), DOPs and MSA [Figs. 2(b) and
2(c), respectively], as a function of both power and effective
length. Results were obtained by launching the same power
for pump and signal (Pp � Ps � P), while the maximum value
Leff � 13 km, in the figures, corresponds to a physical fiber
length L � 20 km, beyond which the nonlinear effects have
decayed significantly. As explained in Section 2, results
depend on the launched signal polarization, and in particular
on the angular distance χin between pump and signal SOPs.
Here, we chose the linear horizontal and vertical polarization
components of the input signal s⃗ins �t� with a random phase
offset and with equal power, which determines an angle
χin � 90° between ŝins and the linear horizontal pump polariza-
tion ŝp (not depending on the phase offset).

The equilateral hyperbola plotted onto the DOA contours
in Fig. 2(a) with a solid magenta line highlights the locus of
points with constant ϕNL. We see that DOA is not directly
proportional to ϕNL, thus denying the intuitive hypothesis
formulated above. For a fixed ϕNL, LPA is more effective when
powerful signals propagate in a short fiber. Geometrically,
the DOA contours tend to “flatten,” as a function of the effec-
tive length, meaning that the DOA increases little by further
lengthening of the fiber.

Note, however, that for the signal SOP launched here, the
initial value is DOAin � cos�χin� � 0, thus, from a null value,
the DOA in Fig. 2(a) increases monotonically with the strength
of the nonlinear interaction. Such a result is considerable
since the DOA in Eq. (3) is affected by an unavoidable
DOPs degradation, entailed in the dynamics of LPA [6,8], as
shown in Fig. 2(b), at intermediate values of the nonlinear
phase ϕNL. Anyway, Figs. 2(b) and 2(c) show that the DOPs

decrease is more than compensated by the growth of MSA,
so that their product is increasing monotonically.

So far, only signal SOPs with an intermediate angular
distance from the pump, χ in � 90°, have been considered.
To enlarge the picture, we show in Fig. 3 the DOA [Fig. 3(a)],
and its factors [Figs. 3(b) and 3(c)], obtained for different
input signal SOPs: curves, with different symbols and colors,
correspond to (top to bottom) an increasing angular distance
χin from the input pump SOP ŝp � ŝ1, ranging from 0° to 180°,
in 30° steps. For the moment, we analyze only the dependence
on Leff , deferring the dependence on power to the next

t

Out pump

Pump (Pp)

Signal (Ps)
NZ−DSF (L−km)

DOA
measure

Fig. 1. System setup of the NLP. The NLP is composed of the fiber
along with the (fully polarized) pump laser, with power Pp, and the
optical circulators.
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section. In Fig. 3, the curves were obtained with equal signal
and pump power P � 2 W, a large value chosen to stress
polarization attraction.

The extreme χ in values, plotted with symbols ∇ (dark
green) and Δ (magenta), refer to a signal SOP equal or
orthogonal to the input pump SOP, i.e., ŝins � �ŝp. In this
case, signals propagate without any change in polarization,
since their nonlinear interaction is of a scalar type, reduc-
ing to a simple cross-phase modulation (XPM). Hence, the
DOA remains constant and equal to its input value. For
every other input signal SOP, the DOA increases with increas-
ing effective length, along with the amount of nonlinear
interaction.

In the right side of each curve in Fig. 3(a), DOA values tend
to “saturate,” for effective lengths above 8 km. The DOA value
at which saturation occurs is smaller for input signal SOPs
that are further away from the input pump SOP. Note that
such a saturation phenomenon is due solely to the depolari-
zation of the signal. In fact, while the MSA values in Fig. 3(c)
are all close to 1 (except for orthogonal input SOPs), the depo-
larization of the signal, in Fig. 3(b), is larger for input signal
SOPs further away from the pump. Anyway, even for such
large χin values, results show that the DOA increases most
within the first Leff � 8 km (i.e., L � 10 km), a length after
which the performance of the LPA process does not signifi-
cantly improve.
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Fig. 2. LPA effectiveness as a function of equal pump and signal
power (P) and of effective fiber length (Leff ) for (a) DOA,
(b) DOPs, and (c) MSA. The angular distance between the input signal
and pump SOPs is χin � 90° (on the Poincaré sphere).
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The interest in using short fibers is due to PMD, since, in a
randomly birefringent fiber, a large PMD coefficient can spoil
polarization attraction, if the fiber is too long, due to the
incoherent polarization evolution of pump and signal, located
at different wavelengths [21]. We thus conclude that L �
10 km is a good compromise, to maximize LPA performance
when the impairments due to PMD are not severe. In the
remainder of this work, the fiber length is consequently fixed
at L � 10 km, while we concentrate on the impact of optical
power on the LPA effectiveness.

5. LPA DEPENDENCE ON SIGNAL AND
PUMP POWER
To characterize the effectiveness of LPA as a function of
power, Fig. 4 shows the contour plots of the DOA and of
its factors, DOPs and MSA, in the case of a fiber with length
L � 10 km, obtained by independently varying the pump and
signal input power, Pp and Ps, in a range of practical interest,
between 0.2 and 2.2 W. Here, as in Fig. 2, the input signal SOP
ŝins lies at an angular distance χin � 90° from the input pump
SOP (ŝp � ŝ1).

Again, we see that the DOA [Fig. 4(a)] increases mono
tonically with power, despite the initial decrease of DOPs

[Fig. 4(b)], at low powers, which is more than compensated
by the MSA increase [Fig. 4(c)].

The noteworthy result revealed by Fig. 4 is that all contour
plots overlap with equilateral hyperbolae, as can be seen in
Fig. 4(a), where three hyperbolae with solid thick lines
(red, blue, and green) are superimposed on the DOA contour
plots. Consequently, in the tested range of power, the DOA,
the DOPs, and the MSA all depend on the pump–signal power
product. We verified numerically that this is true for any
launched signal SOP, hence a plot of the DOA (and of its fac-
tors) as a function of P � �PsPp�1∕2 (defined as the geometric
mean of pump and signal power) contains all the necessary
information. As a practical implication, even the polarization
of a weak signal can be effectively attracted toward the pump
polarization, provided that the pump is powerful enough.

Relying on this result, Fig. 5 shows the dependence of
the DOA, the DOPs, and the MSA on the geometric mean
power P for a launched signal SOP with an increasing angular
distance χin from the input pump SOP, ranging from 0° to 180°,
in 30° steps.

From Fig. 5, three different “regimes of operation” can be
identified for LPA. At low power (P ≤ 0.5 W), signals propa-
gate in a quasi-linear regime, where the input signal SOP
is almost unchanged and, from Eq. (3), the DOA is close
to its initial value DOAin � cos�χin�. At intermediate power
(0.5 W < P < 1.5 W), signals propagate in a nonlinear regime,
where the output signal SOP tends to align, on average, to the
input pump SOP [see the increase in MSA in Fig. 5(c)], at
the expense of its DOP [DOPs decreases in Fig. 5(b)], as
we already pointed out. In this region, the DOA versus
power curves, in Fig. 5(a), show the largest slope, hence
the Kerr effect, and in particular the XPolM, is maximally
effective in terms of polarization attraction. At large power
(P > 1.5 W), signals propagate in a strongly nonlinear regime,
where the average output signal SOP has become aligned with
the pump SOP (MSA ≃ 1), regardless of input signal polariza-
tion (except in the case of an almost orthogonally polarized
input signal, χin ≃ 180°), and its DOPs start to increase slowly.

This is due to a repolarization of the signal around its average
SOP, i.e., around the pump SOP. However, the dynamics of
such a repolarization are slow, hence the lowest DOPs that
the signal reaches sets a practical limit to the attainable
DOA values.

6. DYNAMICS OF LPA
To better clarify the dynamics of LPA described above, we can
visualize the quantities defined so far. Figure 6 shows the sig-
nal SOP, at the fiber output, plotted on the Poincaré sphere.
The depolarization traces, visible in red in Figs. 6(a)–6(c),
represent the time evolution of the signal pulse’s SOP,
ŝs�t� � s⃗s�t�∕s0s�t�. The Stokes vector of each time sample
is normalized to its power, so that the depolarization traces
lie on the Poincaré sphere. The inner (red) vector represents
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Fig. 4. LPA effectiveness as a function of signal and pump power for
(a) DOA, (b) DOPs, and (c) MSA. The angular distance between the
input signal and pump SOPs is χin � 90° (on the Poincaré sphere).
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the power-averaged signal SOP hs⃗s�t�i∕hs0s�t�i that appears
in the definition of DOA Eq. (3), which is clearly related
to the depolarization trace (although it is not equal to its
mean value). Its magnitude is equal to the DOPs, as per
Eq. (3), while its direction is the unit magnitude vector m̂s,
appearing in Eq. (4), hence χ is the angle that it forms with
the input pump SOP, represented by the unit magnitude (blue)
vector aligned with ŝ1. In Fig. 6, the angle between the input
signal and pump SOPs is χ in � 90°, while the mean signal
power P is set in the nonlinear regime [1 W, in Fig. 6(a)],
and at the onset [1.6 W, in Fig. 6(b)], or deeply in the strongly
nonlinear regime [2.2 W, in Fig. 6(c)]. These three system con-
figurations are marked by circles, on the black line with □

symbols, in Fig. 5(a).

As pointed out in [8], the leading edge of the signal pulse is
never attracted toward the pump SOP, but rather rotates
around it. In fact, all the depolarization traces in Figs. 6 start
on the �ŝ2; ŝ3� circle. Instead, the following portions of the
pulse move toward the pump SOP, thus giving rise to the depo-
larization trace. The stronger the signal power, the larger the
time extension of that trailing part of the signal pulse
attracted toward the pump SOP. In the strongly nonlinear
regime of Fig. 6(c), where the average signal SOP is already
very close to the pump SOP, the increased power implies that
the signal repolarizes around the input pump SOP, hence
DOPs increases, as can be seen by comparing the (identical)
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Fig. 5. LPA effectiveness as a function of the geometric mean power
P � �PsPp�1∕2 for (a) DOA, (b) DOPs, and (c) MSA. Lines refer to an
angular distance between the input signal and pump SOPs that varies
(top to bottom) from χin � 0° to χin � 180°, in 30° steps.

Fig. 6. SOP of the signal at the output of the NLP, for an equal signal
and pump power of (a) 1 W, (b) 1.6 W, and (c) 2.2 W. The angular
distance between the input signal and pump SOPs is χin � 90°. The
angle between the average output signal SOP (red) and input pump
SOP ŝ1 (blue) is (a) χ̄ � 40°, (b) χ̄ � 8°, and (c) χ̄ � 4°, while the out-
put signal DOPs is (a) 0.89, (b) 0.82, and (c) 0.89.
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DOPs values related to Figs. 6(a) and 6(c). In Fig. 6(a), most of
the pulse has a SOP close to that of its leading edge, while in
Fig. 6(c), most of the pulse has a polarization close to that of
the attracting pump SOP.

The discussion above leads to an important conclusion con-
cerning the maximum value obtainable for the DOA (theoreti-
cally equal to 1). We can have DOA � 1 only when both MSA
and DOPs are both equal to 1, i.e., when the output signal pulse
is fully polarized, with the same polarization as the input pump.
Since the leading edge (hence, for physical continuity, the ini-
tial portion) of the signal pulse will never be attracted toward
the pump SOP, neither the MSA nor the DOPs can reach their
theoretical limit, unless the input signal already has the same
SOP as the pump, i.e., in the trivial case χin � 0°. Consequently,
DOA � 1 only represents an asymptotic value for any signal
polarization (except the one coinciding with the pump SOP
ŝp), as can be seen in Fig. 5(a). Of course, for longer pulses,
the portion closer to the leading pulse edge has less influence
on the overall evaluation of DOPs. The analysis of LPA dynam-
ics clarifies the reason for which there exists a transient in
LPA and short (picoseconds) pulses are not effectively
attracted in a NLP in the counter-propagating configuration
[6], so that a co-propagating configuration is required [21],
which poses other constraints.

7. AVERAGE PERFORMANCE OF LPA
The analysis performed so far assumes an input signal SOP
that is deterministic, at least with respect to the angular dis-
tance from the attracting pump SOP, equal to a given χin. As
discussed in Section 2.B, the performance of LPA should in-
stead be assessed with no prior knowledge on the input SOP,
hence resorting to the ensemble-averaged DOA introduced in
Eq. (5). Thus, we performed a statistical study of the DOA and

of its factors (DOPs andMSA), as a function of the (geometric)
mean power P, defined above, in order to evaluate the average
performance of LPA.

Figures 7(a)–7(c) show the dependence of the ensem-
ble average of DOA, DOPs, and MSA versus P, while
Figs. 7(d)–7(f) report the standard deviation of the same quan-
tities. The two expected values, mean and standard deviation
(first- and second-order moments), were computed numeri-
cally from the “deterministic” curves in Fig. 5, that were
averaged over the unknown angle χin, i.e., weighted by the dis-
tribution of χin. For an input signal SOP uniformly distributed
over the Poincaré sphere, the probability density function
(pdf) of the angular pump–probe distance is f �χin� �
�1∕2� sin�χin��0 ≤ χin ≤ 180°� [26], hence χin � 90° is its mean
value. The curve reported in Fig. 7(a) is, at least from a prac-
tical viewpoint, the most important result in this work, since it
yields the rule for setting the power levels, once the desired
average-performance for the NLP is given.

As already noted in Section 2.A, Fig. 7(a) shows that
DOA ∈ �0; 1�, which can be easily demonstrated as follows.
When power tends to zero, the optical fields propagate in
a linear regime, no polarization attraction occurs, and DOA
coincides with its input value, DOAin ≃ cos�χ in�, with
0 ≤ χin ≤ 180°. Hence, its average value can be calculated
exactly as follows:

DOAin � E�cos�χ in�� �
Z

π

0
cos�χin�

sin�χin�
2

dχ in � 0:

When power increases, the DOA curves in Fig. 5 increase
monotonically toward the asymptotic value 1 (for all but
the orthogonal input SOP case, for which DOA is always null),
hence DOA values cannot become negative.
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Fig. 7. First- and second-order moments of the quantities used to characterize the performance of a NLP, as a function of (geometric) mean power
for (a) and (d) DOA, (b) and (e) DOPs, and (c) and (f) MSA. In (a) and (d), thick dashed lines report the first- and second-order statistics evaluated
by assuming that DOPs and MSA are uncorrelated random variables.
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Regarding the DOA standard deviation in Fig. 7(d), it
is decreasing monotonically with power and its maximum
value, obtained when power tends to zero, can be again
calculated exactly from the DOA variance at the input,
σ2DOAin

≜ E��DOAin�2� − �DOAin�2, as follows:

σ2DOAin
� E�cos2�χin�� �

Z
π

0
cos2�χ in�

sin�χin�
2

dχin � 1
3
;

from which the maximum DOA standard deviation results,
σDOAin

� �1∕3�1∕2 ≃ 0.577. The same values are obtained for
the first- and second-order statistics of the MSA [Figs. 7(c)
and 7(f)] when power tends to zero, since we assume a
fully polarized input signal, for which DOPin

s � 1 always
[see Figs. 7(b) and 7(e)], hence MSA � DOA in this limit.

Even the curves in Fig. 7 seem to suggest the existence of
three different operating regimes for LPA. In particular, in the
strongly nonlinear propagation regime, DOA and its standard
deviation remains almost constant, meaning that a further
increase of power would not lead to an appreciable enhance-
ment of the performance of a NLP.

Since the DOA is the product between the MSA and the
DOPs, its average is DOA � E�MSA × DOPs� and its variance
is σ2DOA � E�MSA2 × DOP2

s � − DOA2. Assuming, for the mo-
ment that the MSA and the DOPs are statistically uncorrelated
random variables, we evaluated the average DOAunc �
E�MSA� × E�DOPs� and the standard deviation σuncDOA accord-
ingly, and plotted these quantities in Figs. 7(a)–7(d), with
thick dashed red lines. In particular, the dashed curve in
Fig. 7(a) is the product of the two curves in Figs. 7(b) and
7(c). The dashed curves match very well with the real curves
of the moments of DOA (solid black lines), suggesting that
MSA and DOPs are indeed almost statistically uncorrelated.
This would be a weird—though not impossible—fact, since
the only random parameter in the system is the angle χ in, from
which both MSA and DOPs deterministically stem from the
propagation equation, thus being a transformation of the same
random variable.

To give another, more immediate, representation of the
average performance of a NLP, Fig. 8 shows the average out-
put signal SOPs m̂s (red circles) obtained for 100 random
input SOPs (with uniform distribution on the Poincaré
sphere), in the case of a (geometric) average power P equal
to (a) 0.6 W, (b) 1.6 W, and (c) 2.2 W. The DOA, evaluated by
using Monte Carlo simulation over the 100 realizations of the
input signal SOP, results in DOA � 0.27, DOA � 0.75, and
DOA � 0.83, for the tested power levels, respectively.

Although we use a small number of input signal SOPs in
order to evaluate the (weighted-) average performance of
the NLP, this method provides results very close to those
obtained with Monte Carlo averaging over 100 SOPs: namely,
the two methods yield results that differ at most by 0.03.

8. CONCLUSION
We characterized, by numerical simulation, the performance
of a nonlinear lossless polarizer, when its free parameters
(signal and pump power; nonlinear fiber length) are varied.
The DOA, introduced here, highlights the trade-off between
the mean SOP attraction and an inevitable DOP degradation.
We find that the attraction of the signal polarization toward
that of a counter-propagating CW pump increases with the
pump–signal power product, which allows the designer to
trade power between the signal and pump. The results found
on the average attraction of randomly polarized signals yield
the rule for setting the power levels. Although longer fibers
increase the performance of the device, length should be lim-
ited by the possible presence of PMD. Results show that fiber
lengths beyond 10 km only yield a marginal improvement on
performance.
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